Properties

Label 33.14.a.e
Level $33$
Weight $14$
Character orbit 33.a
Self dual yes
Analytic conductor $35.386$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,14,Mod(1,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 33.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.3862065541\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 33742x^{4} + 162324x^{3} + 293102344x^{2} - 383417792x - 721869968512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 2) q^{2} - 729 q^{3} + (\beta_{2} - 10 \beta_1 + 3061) q^{4} + (\beta_{5} - 3 \beta_{2} + 205 \beta_1 - 3524) q^{5} + (729 \beta_1 - 1458) q^{6} + (11 \beta_{5} - 9 \beta_{4} - 5 \beta_{3} + 35 \beta_{2} - 200 \beta_1 + 47411) q^{7} + (18 \beta_{5} - 29 \beta_{4} + 11 \beta_{3} + 47 \beta_{2} - 45 \beta_1 + 101770) q^{8} + 531441 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 + 2) q^{2} - 729 q^{3} + (\beta_{2} - 10 \beta_1 + 3061) q^{4} + (\beta_{5} - 3 \beta_{2} + 205 \beta_1 - 3524) q^{5} + (729 \beta_1 - 1458) q^{6} + (11 \beta_{5} - 9 \beta_{4} - 5 \beta_{3} + 35 \beta_{2} - 200 \beta_1 + 47411) q^{7} + (18 \beta_{5} - 29 \beta_{4} + 11 \beta_{3} + 47 \beta_{2} - 45 \beta_1 + 101770) q^{8} + 531441 q^{9} + ( - 17 \beta_{5} + 148 \beta_{4} - 25 \beta_{3} - 167 \beta_{2} + \cdots - 2311013) q^{10}+ \cdots + 941480149401 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 11 q^{2} - 4374 q^{3} + 18353 q^{4} - 20932 q^{5} - 8019 q^{6} + 284152 q^{7} + 610467 q^{8} + 3188646 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 11 q^{2} - 4374 q^{3} + 18353 q^{4} - 20932 q^{5} - 8019 q^{6} + 284152 q^{7} + 610467 q^{8} + 3188646 q^{9} - 13843786 q^{10} + 10629366 q^{11} - 13379337 q^{12} - 10016732 q^{13} + 13550744 q^{14} + 15259428 q^{15} - 147522607 q^{16} + 67290212 q^{17} + 5845851 q^{18} - 86262088 q^{19} - 1337521730 q^{20} - 207146808 q^{21} + 19487171 q^{22} + 1208367520 q^{23} - 445030443 q^{24} + 4268359058 q^{25} + 949983422 q^{26} - 2324522934 q^{27} + 10898112852 q^{28} + 2525702652 q^{29} + 10092119994 q^{30} + 9935999560 q^{31} + 8609407675 q^{32} - 7748807814 q^{33} + 24731771666 q^{34} + 12604746440 q^{35} + 9753536673 q^{36} - 5010959596 q^{37} + 68464260792 q^{38} + 7302197628 q^{39} + 11007073506 q^{40} - 44262563620 q^{41} - 9878492376 q^{42} + 41074648472 q^{43} + 32513459033 q^{44} - 11124123012 q^{45} + 332157316084 q^{46} + 149258240752 q^{47} + 107543980503 q^{48} + 734391427278 q^{49} + 557562702829 q^{50} - 49054564548 q^{51} + 161355216990 q^{52} + 357253697580 q^{53} - 4261625379 q^{54} - 37082314852 q^{55} + 1161973627044 q^{56} + 62885062152 q^{57} + 623445007158 q^{58} + 14313635176 q^{59} + 975053341170 q^{60} - 496086757804 q^{61} + 724647564872 q^{62} + 151010023032 q^{63} + 634471759977 q^{64} - 1821435768592 q^{65} - 14206147659 q^{66} - 771785141856 q^{67} - 387574470866 q^{68} - 880899922080 q^{69} - 4401122851912 q^{70} - 775009869936 q^{71} + 324427192947 q^{72} - 482995319444 q^{73} - 2740107941934 q^{74} - 3111633753282 q^{75} + 5267982900224 q^{76} + 503392601272 q^{77} - 692537914638 q^{78} + 3012132622488 q^{79} - 3403412691002 q^{80} + 1694577218886 q^{81} - 7279263980614 q^{82} - 6855454677456 q^{83} - 7944724269108 q^{84} - 4592034708712 q^{85} - 13695702953520 q^{86} - 1841237233308 q^{87} + 1081479528987 q^{88} - 10551236825748 q^{89} - 7357155475626 q^{90} - 1253153118120 q^{91} - 3725297981320 q^{92} - 7243343679240 q^{93} - 12145376056484 q^{94} - 12847151060832 q^{95} - 6276258195075 q^{96} + 20589100190868 q^{97} + 15856461091515 q^{98} + 5648880896406 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 33742x^{4} + 162324x^{3} + 293102344x^{2} - 383417792x - 721869968512 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 6\nu - 11249 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -107\nu^{5} - 3003\nu^{4} + 2807060\nu^{3} + 52913996\nu^{2} - 11923560576\nu - 238899045056 ) / 5623296 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -407\nu^{5} + 27993\nu^{4} + 11557604\nu^{3} - 843453316\nu^{2} - 53394471552\nu + 3646483043392 ) / 5623296 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -253\nu^{5} + 20115\nu^{4} + 7111180\nu^{3} - 601732268\nu^{2} - 31584491136\nu + 2633153552576 ) / 2409984 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 6\beta _1 + 11249 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -18\beta_{5} + 29\beta_{4} - 11\beta_{3} - 41\beta_{2} + 16381\beta _1 - 67036 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 402\beta_{5} - 505\beta_{4} - 297\beta_{3} + 27421\beta_{2} - 320885\beta _1 + 184087444 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -483498\beta_{5} + 774965\beta_{4} - 332795\beta_{3} - 1350661\beta_{2} + 324346009\beta _1 - 3594936192 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
141.593
95.5104
64.1750
−72.8479
−74.8139
−152.617
−139.593 −729.000 11294.2 −15834.3 101763. 276059. −433047. 531441. 2.21035e6
1.2 −93.5104 −729.000 552.193 14973.8 68169.1 −516871. 714401. 531441. −1.40020e6
1.3 −62.1750 −729.000 −4326.27 60284.7 45325.6 589111. 778323. 531441. −3.74820e6
1.4 74.8479 −729.000 −2589.80 32694.1 −54564.1 −118538. −806994. 531441. 2.44709e6
1.5 76.8139 −729.000 −2291.63 −53039.8 −55997.3 −524972. −805288. 531441. −4.07420e6
1.6 154.617 −729.000 15714.3 −60010.5 −112716. 579363. 1.16307e6 531441. −9.27862e6
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.14.a.e 6
3.b odd 2 1 99.14.a.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.14.a.e 6 1.a even 1 1 trivial
99.14.a.f 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 11T_{2}^{5} - 33692T_{2}^{4} + 107492T_{2}^{3} + 293266640T_{2}^{2} - 789859840T_{2} - 721463635968 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(33))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 11 T^{5} + \cdots - 721463635968 \) Copy content Toggle raw display
$3$ \( (T + 729)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 20932 T^{5} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{6} - 284152 T^{5} + \cdots - 30\!\cdots\!92 \) Copy content Toggle raw display
$11$ \( (T - 1771561)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + 10016732 T^{5} + \cdots - 60\!\cdots\!56 \) Copy content Toggle raw display
$17$ \( T^{6} - 67290212 T^{5} + \cdots - 31\!\cdots\!52 \) Copy content Toggle raw display
$19$ \( T^{6} + 86262088 T^{5} + \cdots - 19\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} - 1208367520 T^{5} + \cdots + 89\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{6} - 2525702652 T^{5} + \cdots + 12\!\cdots\!20 \) Copy content Toggle raw display
$31$ \( T^{6} - 9935999560 T^{5} + \cdots + 98\!\cdots\!32 \) Copy content Toggle raw display
$37$ \( T^{6} + 5010959596 T^{5} + \cdots + 63\!\cdots\!08 \) Copy content Toggle raw display
$41$ \( T^{6} + 44262563620 T^{5} + \cdots + 26\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{6} - 41074648472 T^{5} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{6} - 149258240752 T^{5} + \cdots - 17\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{6} - 357253697580 T^{5} + \cdots + 54\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{6} - 14313635176 T^{5} + \cdots + 75\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T^{6} + 496086757804 T^{5} + \cdots + 71\!\cdots\!88 \) Copy content Toggle raw display
$67$ \( T^{6} + 771785141856 T^{5} + \cdots + 78\!\cdots\!12 \) Copy content Toggle raw display
$71$ \( T^{6} + 775009869936 T^{5} + \cdots - 11\!\cdots\!60 \) Copy content Toggle raw display
$73$ \( T^{6} + 482995319444 T^{5} + \cdots + 36\!\cdots\!52 \) Copy content Toggle raw display
$79$ \( T^{6} - 3012132622488 T^{5} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + 6855454677456 T^{5} + \cdots - 58\!\cdots\!08 \) Copy content Toggle raw display
$89$ \( T^{6} + 10551236825748 T^{5} + \cdots - 30\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{6} - 20589100190868 T^{5} + \cdots + 29\!\cdots\!24 \) Copy content Toggle raw display
show more
show less