Properties

Label 33.14.a.b
Level $33$
Weight $14$
Character orbit 33.a
Self dual yes
Analytic conductor $35.386$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [33,14,Mod(1,33)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(33, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("33.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 33.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.3862065541\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 13257x^{2} - 346987x + 15531868 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 3) q^{2} + 729 q^{3} + (\beta_{3} + 5 \beta_{2} + 37 \beta_1 - 1564) q^{4} + (4 \beta_{3} - 57 \beta_{2} - 17 \beta_1 - 20869) q^{5} + (729 \beta_1 - 2187) q^{6} + ( - 44 \beta_{3} + 190 \beta_{2} - 242 \beta_1 + 17532) q^{7} + (33 \beta_{3} + 405 \beta_{2} - 5563 \beta_1 + 257044) q^{8} + 531441 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 - 3) q^{2} + 729 q^{3} + (\beta_{3} + 5 \beta_{2} + 37 \beta_1 - 1564) q^{4} + (4 \beta_{3} - 57 \beta_{2} - 17 \beta_1 - 20869) q^{5} + (729 \beta_1 - 2187) q^{6} + ( - 44 \beta_{3} + 190 \beta_{2} - 242 \beta_1 + 17532) q^{7} + (33 \beta_{3} + 405 \beta_{2} - 5563 \beta_1 + 257044) q^{8} + 531441 q^{9} + ( - 726 \beta_{3} + 718 \beta_{2} - 31872 \beta_1 + 139526) q^{10} + 1771561 q^{11} + (729 \beta_{3} + 3645 \beta_{2} + 26973 \beta_1 - 1140156) q^{12} + ( - 4884 \beta_{3} + 16185 \beta_{2} - 26783 \beta_1 - 2835915) q^{13} + (3624 \beta_{3} - 10480 \beta_{2} + 1230 \beta_1 - 2274306) q^{14} + (2916 \beta_{3} - 41553 \beta_{2} - 12393 \beta_1 - 15213501) q^{15} + ( - 11727 \beta_{3} - 61275 \beta_{2} - 113051 \beta_1 - 26149532) q^{16} + (6952 \beta_{3} - 81055 \beta_{2} - 604255 \beta_1 - 41481177) q^{17} + (531441 \beta_1 - 1594323) q^{18} + (67584 \beta_{3} + 117395 \beta_{2} - 1622061 \beta_1 - 46979701) q^{19} + ( - 22604 \beta_{3} + 152212 \beta_{2} - 1770028 \beta_1 - 42552096) q^{20} + ( - 32076 \beta_{3} + 138510 \beta_{2} - 176418 \beta_1 + 12780828) q^{21} + (1771561 \beta_1 - 5314683) q^{22} + (61236 \beta_{3} - 265985 \beta_{2} - 4586025 \beta_1 - 125277087) q^{23} + (24057 \beta_{3} + 295245 \beta_{2} - 4055427 \beta_1 + 187385076) q^{24} + ( - 455328 \beta_{3} + 2364854 \beta_{2} + \cdots + 462262593) q^{25}+ \cdots + 941480149401 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 11 q^{2} + 2916 q^{3} - 6223 q^{4} - 83432 q^{5} - 8019 q^{6} + 69652 q^{7} + 1022241 q^{8} + 2125764 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 11 q^{2} + 2916 q^{3} - 6223 q^{4} - 83432 q^{5} - 8019 q^{6} + 69652 q^{7} + 1022241 q^{8} + 2125764 q^{9} + 524788 q^{10} + 7086244 q^{11} - 4536567 q^{12} - 11391512 q^{13} - 9081890 q^{14} - 60821928 q^{15} - 104661631 q^{16} - 166440956 q^{17} - 5845851 q^{18} - 189590676 q^{19} - 172153228 q^{20} + 50776308 q^{21} - 19487171 q^{22} - 505367152 q^{23} + 745213689 q^{24} + 1842596804 q^{25} - 889054820 q^{26} + 1549681956 q^{27} - 377068714 q^{28} - 1129971084 q^{29} + 382570452 q^{30} + 579322264 q^{31} - 10274927839 q^{32} + 5165871876 q^{33} - 14503534346 q^{34} - 20992706768 q^{35} - 3307157343 q^{36} - 25851986544 q^{37} - 44056506192 q^{38} - 8304412248 q^{39} - 52744727244 q^{40} - 44818054028 q^{41} - 6620697810 q^{42} - 90015055548 q^{43} - 11024424103 q^{44} - 44339185512 q^{45} - 116744298022 q^{46} - 99166057072 q^{47} - 76298328999 q^{48} - 280710743724 q^{49} - 132235395721 q^{50} - 121335456924 q^{51} - 47923090468 q^{52} - 135081202320 q^{53} - 4261625379 q^{54} - 147804877352 q^{55} + 131370703926 q^{56} - 138211602804 q^{57} - 41922374862 q^{58} - 397512944800 q^{59} - 125499703212 q^{60} - 354311482272 q^{61} - 169905591944 q^{62} + 37015928532 q^{63} + 502884358081 q^{64} - 1533695846936 q^{65} - 14206147659 q^{66} - 467820853432 q^{67} - 659929593730 q^{68} - 368412653808 q^{69} + 1374270349432 q^{70} - 1809393745344 q^{71} + 543260779281 q^{72} + 301866290176 q^{73} + 2168369910630 q^{74} + 1343253070116 q^{75} + 1877837120016 q^{76} + 123392766772 q^{77} - 648120963780 q^{78} + 3418698303812 q^{79} + 6032794541492 q^{80} + 1129718145924 q^{81} + 8080708579498 q^{82} + 2239472717328 q^{83} - 274883092506 q^{84} + 10506139235944 q^{85} + 14283360498708 q^{86} - 823748920236 q^{87} + 1810962288201 q^{88} + 201191498616 q^{89} + 278893859508 q^{90} + 10256445802384 q^{91} - 3355659565022 q^{92} + 422325930456 q^{93} - 8271060750370 q^{94} + 205754874600 q^{95} - 7490422394631 q^{96} + 18754143066776 q^{97} - 6288314165727 q^{98} + 3765920597604 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 13257x^{2} - 346987x + 15531868 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 42\nu^{2} - 9375\nu + 10508 ) / 240 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 90\nu^{2} + 7311\nu - 328220 ) / 48 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 5\beta_{2} + 43\beta _1 + 6619 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 42\beta_{3} + 450\beta_{2} + 11181\beta _1 + 267490 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−80.2732
−65.7847
23.8773
123.181
−83.2732 729.000 −1257.57 1569.19 −60706.2 −149633. 786896. 531441. −130671.
1.2 −68.7847 729.000 −3460.66 −69187.2 −50144.0 284486. 801525. 531441. 4.75902e6
1.3 20.8773 729.000 −7756.14 22184.8 15219.6 −59030.1 −332955. 531441. 463160.
1.4 120.181 729.000 6251.37 −37998.8 87611.6 −6170.97 −233226. 531441. −4.56672e6
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.14.a.b 4
3.b odd 2 1 99.14.a.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.14.a.b 4 1.a even 1 1 trivial
99.14.a.c 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 11T_{2}^{3} - 13212T_{2}^{2} - 426448T_{2} + 14371648 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(33))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 11 T^{3} - 13212 T^{2} + \cdots + 14371648 \) Copy content Toggle raw display
$3$ \( (T - 729)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 83432 T^{3} + \cdots + 91\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} - 69652 T^{3} + \cdots - 15\!\cdots\!88 \) Copy content Toggle raw display
$11$ \( (T - 1771561)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 11391512 T^{3} + \cdots - 24\!\cdots\!24 \) Copy content Toggle raw display
$17$ \( T^{4} + 166440956 T^{3} + \cdots + 12\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{4} + 189590676 T^{3} + \cdots - 64\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + 505367152 T^{3} + \cdots - 82\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{4} + 1129971084 T^{3} + \cdots - 12\!\cdots\!36 \) Copy content Toggle raw display
$31$ \( T^{4} - 579322264 T^{3} + \cdots + 12\!\cdots\!32 \) Copy content Toggle raw display
$37$ \( T^{4} + 25851986544 T^{3} + \cdots + 30\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{4} + 44818054028 T^{3} + \cdots - 90\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{4} + 90015055548 T^{3} + \cdots - 73\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + 99166057072 T^{3} + \cdots - 19\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{4} + 135081202320 T^{3} + \cdots + 93\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{4} + 397512944800 T^{3} + \cdots + 85\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T^{4} + 354311482272 T^{3} + \cdots - 67\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{4} + 467820853432 T^{3} + \cdots - 24\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{4} + 1809393745344 T^{3} + \cdots + 85\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} - 301866290176 T^{3} + \cdots + 41\!\cdots\!52 \) Copy content Toggle raw display
$79$ \( T^{4} - 3418698303812 T^{3} + \cdots - 11\!\cdots\!72 \) Copy content Toggle raw display
$83$ \( T^{4} - 2239472717328 T^{3} + \cdots + 27\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{4} - 201191498616 T^{3} + \cdots + 55\!\cdots\!08 \) Copy content Toggle raw display
$97$ \( T^{4} - 18754143066776 T^{3} + \cdots - 11\!\cdots\!96 \) Copy content Toggle raw display
show more
show less