[N,k,chi] = [33,14,Mod(1,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 14, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.1");
S:= CuspForms(chi, 14);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(-1\)
\(11\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 11T_{2}^{3} - 13212T_{2}^{2} - 426448T_{2} + 14371648 \)
T2^4 + 11*T2^3 - 13212*T2^2 - 426448*T2 + 14371648
acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(33))\).
$p$
$F_p(T)$
$2$
\( T^{4} + 11 T^{3} - 13212 T^{2} + \cdots + 14371648 \)
T^4 + 11*T^3 - 13212*T^2 - 426448*T + 14371648
$3$
\( (T - 729)^{4} \)
(T - 729)^4
$5$
\( T^{4} + 83432 T^{3} + \cdots + 91\!\cdots\!00 \)
T^4 + 83432*T^3 + 117744660*T^2 - 58718744693200*T + 91522411399168000
$7$
\( T^{4} - 69652 T^{3} + \cdots - 15\!\cdots\!88 \)
T^4 - 69652*T^3 - 50996948400*T^2 - 2824646664291760*T - 15506621886374270288
$11$
\( (T - 1771561)^{4} \)
(T - 1771561)^4
$13$
\( T^{4} + 11391512 T^{3} + \cdots - 24\!\cdots\!24 \)
T^4 + 11391512*T^3 - 478652344716780*T^2 - 7005327408923572737712*T - 24052227704607539373978170624
$17$
\( T^{4} + 166440956 T^{3} + \cdots + 12\!\cdots\!04 \)
T^4 + 166440956*T^3 + 940165665163188*T^2 - 431936926171006332021088*T + 1214421909266870097923675082304
$19$
\( T^{4} + 189590676 T^{3} + \cdots - 64\!\cdots\!00 \)
T^4 + 189590676*T^3 - 106931973627516924*T^2 - 18454604917824383554810080*T - 649202906605881239489826484416000
$23$
\( T^{4} + 505367152 T^{3} + \cdots - 82\!\cdots\!16 \)
T^4 + 505367152*T^3 - 267360500985964068*T^2 - 103943916119385864630057344*T - 8245965445058028535750179965244416
$29$
\( T^{4} + 1129971084 T^{3} + \cdots - 12\!\cdots\!36 \)
T^4 + 1129971084*T^3 - 14231795052579028476*T^2 - 27352901507356340229880653120*T - 1234543695518922658349450027830177536
$31$
\( T^{4} - 579322264 T^{3} + \cdots + 12\!\cdots\!32 \)
T^4 - 579322264*T^3 - 90809328593807391168*T^2 - 88146594604827554198073375232*T + 1227023872298495860209974778999165509632
$37$
\( T^{4} + 25851986544 T^{3} + \cdots + 30\!\cdots\!36 \)
T^4 + 25851986544*T^3 - 250302302539995506280*T^2 - 4191593581239529337662859971776*T + 30478008172499631233632517920619073921936
$41$
\( T^{4} + 44818054028 T^{3} + \cdots - 90\!\cdots\!16 \)
T^4 + 44818054028*T^3 - 1079529442462042071804*T^2 - 75906886608934026852196312189120*T - 906822970046355053140405534514243656630016
$43$
\( T^{4} + 90015055548 T^{3} + \cdots - 73\!\cdots\!00 \)
T^4 + 90015055548*T^3 - 2208878859539699011212*T^2 - 357048255142479166585182222052320*T - 7382216152127643347048999997965179271256000
$47$
\( T^{4} + 99166057072 T^{3} + \cdots - 19\!\cdots\!64 \)
T^4 + 99166057072*T^3 - 9067667372271181202340*T^2 - 1084244566096937562021330916448192*T - 19757638884612116695214079664339389737310464
$53$
\( T^{4} + 135081202320 T^{3} + \cdots + 93\!\cdots\!24 \)
T^4 + 135081202320*T^3 - 14524226496334680464364*T^2 + 9621181811611099992549599575344*T + 935035841541543267226830132687811451869824
$59$
\( T^{4} + 397512944800 T^{3} + \cdots + 85\!\cdots\!16 \)
T^4 + 397512944800*T^3 - 147954599859567378150192*T^2 - 36250830201924912116393437565264000*T + 8560607014176884179393655967541896925200418816
$61$
\( T^{4} + 354311482272 T^{3} + \cdots - 67\!\cdots\!04 \)
T^4 + 354311482272*T^3 - 402742711944537754429356*T^2 - 140467465382514227710535770390746288*T - 6726092825464861458431131076750439328601301504
$67$
\( T^{4} + 467820853432 T^{3} + \cdots - 24\!\cdots\!48 \)
T^4 + 467820853432*T^3 - 441238240412688342265920*T^2 - 221120394991899786854693364759251840*T - 24069190311627780720533488970896310991383330048
$71$
\( T^{4} + 1809393745344 T^{3} + \cdots + 85\!\cdots\!00 \)
T^4 + 1809393745344*T^3 - 2905545872038393665121668*T^2 - 4687614038029875109107211141394218560*T + 850932271925868292489118803880636030188094918400
$73$
\( T^{4} - 301866290176 T^{3} + \cdots + 41\!\cdots\!52 \)
T^4 - 301866290176*T^3 - 1276158795780547222355784*T^2 + 196474758825627332675386616239480832*T + 418850552699839525657999471408678119895720263952
$79$
\( T^{4} - 3418698303812 T^{3} + \cdots - 11\!\cdots\!72 \)
T^4 - 3418698303812*T^3 + 1481844074691004784192304*T^2 + 2041847431153925769263963236777817104*T - 1187847301755858319607900139107058049482328805072
$83$
\( T^{4} - 2239472717328 T^{3} + \cdots + 27\!\cdots\!84 \)
T^4 - 2239472717328*T^3 - 11068015063507598745852624*T^2 + 16335263014167502535042632311050088960*T + 27974111723030159848604782875159654411591258845184
$89$
\( T^{4} - 201191498616 T^{3} + \cdots + 55\!\cdots\!08 \)
T^4 - 201191498616*T^3 - 50353272968795195532342792*T^2 + 21324178669176502181659797600664840608*T + 552280622466974048760601017460187184392507943051408
$97$
\( T^{4} - 18754143066776 T^{3} + \cdots - 11\!\cdots\!96 \)
T^4 - 18754143066776*T^3 + 62980369065199520229570648*T^2 + 271556256672336542247170278547717234848*T - 1173921757257720632012441796943314784618060735149296
show more
show less