Properties

Label 3276.2.fp
Level $3276$
Weight $2$
Character orbit 3276.fp
Rep. character $\chi_{3276}(911,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $864$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.fp (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3276, [\chi])\).

Total New Old
Modular forms 1360 864 496
Cusp forms 1328 864 464
Eisenstein series 32 0 32

Trace form

\( 864 q - 8 q^{9} + 56 q^{18} + 84 q^{20} - 28 q^{24} + 432 q^{25} + 8 q^{30} - 60 q^{32} + 88 q^{33} + 24 q^{34} - 20 q^{36} + 24 q^{40} + 120 q^{41} - 40 q^{42} + 48 q^{45} + 48 q^{46} + 28 q^{48} + 432 q^{49}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3276, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3276, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3276, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)