Properties

Label 3267.1.w.b
Level $3267$
Weight $1$
Character orbit 3267.w
Analytic conductor $1.630$
Analytic rank $0$
Dimension $16$
Projective image $S_{4}$
CM/RM no
Inner twists $16$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3267.w (of order \(30\), degree \(8\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.63044539627\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{30})\)
Coefficient field: 16.0.26873856000000000000.1
Defining polynomial: \( x^{16} + 2x^{14} - 8x^{10} - 16x^{8} - 32x^{6} + 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1089)
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.107811.1

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{2} q^{4} + ( - \beta_{15} - \beta_{10} - \beta_{8} + \beta_{2} + 1) q^{5} + \beta_{7} q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + \beta_{2} q^{4} + ( - \beta_{15} - \beta_{10} - \beta_{8} + \beta_{2} + 1) q^{5} + \beta_{7} q^{7} + \beta_{13} q^{10} - 2 \beta_{8} q^{14} - \beta_{4} q^{16} + (\beta_{15} - \beta_{6}) q^{20} + \beta_{9} q^{28} + \beta_{7} q^{29} + \beta_{15} q^{31} + \beta_{5} q^{32} + ( - \beta_{11} + \beta_1) q^{35} - \beta_{12} q^{37} + (\beta_{15} + \beta_{12} + \beta_{10} - \beta_{6} - \beta_{4} - \beta_{2}) q^{47} + (\beta_{15} + \beta_{10} + \beta_{8} - \beta_{2} - 1) q^{49} + \beta_{6} q^{53} - 2 \beta_{8} q^{58} + \beta_{2} q^{59} + (\beta_{14} + \beta_{13} - \beta_{7} - \beta_{5} + \beta_{3} + \beta_1) q^{61} + ( - \beta_{13} + \beta_{11} + \beta_{9} - \beta_{3} - \beta_1) q^{62} - \beta_{6} q^{64} + ( - \beta_{10} + 1) q^{67} + (2 \beta_{12} - 2 \beta_{2}) q^{70} + (\beta_{15} + \beta_{10} + \beta_{8} - \beta_{4} - \beta_{2} - 1) q^{71} + ( - \beta_{13} + \beta_{11} + \beta_{9} - \beta_{3} - \beta_1) q^{73} + (\beta_{14} + \beta_{3}) q^{74} + (\beta_{15} + \beta_{12} + \beta_{10} + \beta_{8} - \beta_{6} - \beta_{4} - \beta_{2}) q^{80} + ( - \beta_{14} - \beta_{13} + \beta_{7} + \beta_{5} - \beta_{3} - \beta_1) q^{83} + ( - \beta_{14} - \beta_{13} + \beta_{9} + \beta_{7} + \beta_{5} - \beta_{3} - \beta_1) q^{94} + ( - \beta_{15} + \beta_{6}) q^{97} - \beta_{13} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{4} + 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 2 q^{4} + 2 q^{5} - 4 q^{14} - 2 q^{16} - 2 q^{20} + 2 q^{31} + 4 q^{37} + 2 q^{47} - 2 q^{49} + 4 q^{53} - 4 q^{58} - 2 q^{59} - 4 q^{64} + 8 q^{67} - 4 q^{70} - 4 q^{71} + 4 q^{80} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 2x^{14} - 8x^{10} - 16x^{8} - 32x^{6} + 128x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} ) / 8 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{8} ) / 16 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( \nu^{9} ) / 16 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( \nu^{10} ) / 32 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( \nu^{11} ) / 32 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( \nu^{12} ) / 64 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( \nu^{15} ) / 128 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( \nu^{13} - 32\nu^{3} ) / 64 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( \nu^{14} - 4\nu^{10} - 8\nu^{8} + 64\nu^{2} + 128 ) / 128 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{6} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 8\beta_{7} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 16\beta_{8} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 16\beta_{9} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 32\beta_{10} \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 32\beta_{11} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 64\beta_{12} \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 64\beta_{14} + 64\beta_{3} \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 128\beta_{15} + 128\beta_{10} + 128\beta_{8} - 128\beta_{2} - 128 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 128\beta_{13} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3267\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(3026\)
\(\chi(n)\) \(-\beta_{12}\) \(-1 + \beta_{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
118.1
0.575212 1.29195i
−0.575212 + 1.29195i
1.40647 + 0.147826i
−1.40647 0.147826i
1.05097 + 0.946294i
−1.05097 0.946294i
1.40647 0.147826i
−1.40647 + 0.147826i
0.575212 + 1.29195i
−0.575212 1.29195i
0.294032 1.38331i
−0.294032 + 1.38331i
0.294032 + 1.38331i
−0.294032 1.38331i
1.05097 0.946294i
−1.05097 + 0.946294i
−0.575212 + 1.29195i 0 −0.669131 0.743145i 0.913545 0.406737i 0 −0.294032 1.38331i 0 0 1.41421i
118.2 0.575212 1.29195i 0 −0.669131 0.743145i 0.913545 0.406737i 0 0.294032 + 1.38331i 0 0 1.41421i
766.1 −1.40647 0.147826i 0 0.978148 + 0.207912i −0.104528 0.994522i 0 1.05097 + 0.946294i 0 0 1.41421i
766.2 1.40647 + 0.147826i 0 0.978148 + 0.207912i −0.104528 0.994522i 0 −1.05097 0.946294i 0 0 1.41421i
820.1 −1.05097 0.946294i 0 0.104528 + 0.994522i 0.669131 + 0.743145i 0 0.575212 1.29195i 0 0 1.41421i
820.2 1.05097 + 0.946294i 0 0.104528 + 0.994522i 0.669131 + 0.743145i 0 −0.575212 + 1.29195i 0 0 1.41421i
1207.1 −1.40647 + 0.147826i 0 0.978148 0.207912i −0.104528 + 0.994522i 0 1.05097 0.946294i 0 0 1.41421i
1207.2 1.40647 0.147826i 0 0.978148 0.207912i −0.104528 + 0.994522i 0 −1.05097 + 0.946294i 0 0 1.41421i
1855.1 −0.575212 1.29195i 0 −0.669131 + 0.743145i 0.913545 + 0.406737i 0 −0.294032 + 1.38331i 0 0 1.41421i
1855.2 0.575212 + 1.29195i 0 −0.669131 + 0.743145i 0.913545 + 0.406737i 0 0.294032 1.38331i 0 0 1.41421i
1909.1 −0.294032 + 1.38331i 0 −0.913545 0.406737i −0.978148 + 0.207912i 0 −1.40647 + 0.147826i 0 0 1.41421i
1909.2 0.294032 1.38331i 0 −0.913545 0.406737i −0.978148 + 0.207912i 0 1.40647 0.147826i 0 0 1.41421i
1927.1 −0.294032 1.38331i 0 −0.913545 + 0.406737i −0.978148 0.207912i 0 −1.40647 0.147826i 0 0 1.41421i
1927.2 0.294032 + 1.38331i 0 −0.913545 + 0.406737i −0.978148 0.207912i 0 1.40647 + 0.147826i 0 0 1.41421i
3016.1 −1.05097 + 0.946294i 0 0.104528 0.994522i 0.669131 0.743145i 0 0.575212 + 1.29195i 0 0 1.41421i
3016.2 1.05097 0.946294i 0 0.104528 0.994522i 0.669131 0.743145i 0 −0.575212 1.29195i 0 0 1.41421i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3016.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner
11.b odd 2 1 inner
11.c even 5 3 inner
11.d odd 10 3 inner
99.h odd 6 1 inner
99.m even 15 3 inner
99.o odd 30 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3267.1.w.b 16
3.b odd 2 1 1089.1.s.b 16
9.c even 3 1 inner 3267.1.w.b 16
9.d odd 6 1 1089.1.s.b 16
11.b odd 2 1 inner 3267.1.w.b 16
11.c even 5 1 3267.1.h.a 4
11.c even 5 3 inner 3267.1.w.b 16
11.d odd 10 1 3267.1.h.a 4
11.d odd 10 3 inner 3267.1.w.b 16
33.d even 2 1 1089.1.s.b 16
33.f even 10 1 1089.1.h.a 4
33.f even 10 3 1089.1.s.b 16
33.h odd 10 1 1089.1.h.a 4
33.h odd 10 3 1089.1.s.b 16
99.g even 6 1 1089.1.s.b 16
99.h odd 6 1 inner 3267.1.w.b 16
99.m even 15 1 3267.1.h.a 4
99.m even 15 3 inner 3267.1.w.b 16
99.n odd 30 1 1089.1.h.a 4
99.n odd 30 3 1089.1.s.b 16
99.o odd 30 1 3267.1.h.a 4
99.o odd 30 3 inner 3267.1.w.b 16
99.p even 30 1 1089.1.h.a 4
99.p even 30 3 1089.1.s.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1089.1.h.a 4 33.f even 10 1
1089.1.h.a 4 33.h odd 10 1
1089.1.h.a 4 99.n odd 30 1
1089.1.h.a 4 99.p even 30 1
1089.1.s.b 16 3.b odd 2 1
1089.1.s.b 16 9.d odd 6 1
1089.1.s.b 16 33.d even 2 1
1089.1.s.b 16 33.f even 10 3
1089.1.s.b 16 33.h odd 10 3
1089.1.s.b 16 99.g even 6 1
1089.1.s.b 16 99.n odd 30 3
1089.1.s.b 16 99.p even 30 3
3267.1.h.a 4 11.c even 5 1
3267.1.h.a 4 11.d odd 10 1
3267.1.h.a 4 99.m even 15 1
3267.1.h.a 4 99.o odd 30 1
3267.1.w.b 16 1.a even 1 1 trivial
3267.1.w.b 16 9.c even 3 1 inner
3267.1.w.b 16 11.b odd 2 1 inner
3267.1.w.b 16 11.c even 5 3 inner
3267.1.w.b 16 11.d odd 10 3 inner
3267.1.w.b 16 99.h odd 6 1 inner
3267.1.w.b 16 99.m even 15 3 inner
3267.1.w.b 16 99.o odd 30 3 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{16} + 2T_{2}^{14} - 8T_{2}^{10} - 16T_{2}^{8} - 32T_{2}^{6} + 128T_{2}^{2} + 256 \) acting on \(S_{1}^{\mathrm{new}}(3267, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 2 T^{14} - 8 T^{10} - 16 T^{8} + \cdots + 256 \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T^{8} - T^{7} + T^{5} - T^{4} + T^{3} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{16} + 2 T^{14} - 8 T^{10} - 16 T^{8} + \cdots + 256 \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( T^{16} \) Copy content Toggle raw display
$17$ \( T^{16} \) Copy content Toggle raw display
$19$ \( T^{16} \) Copy content Toggle raw display
$23$ \( T^{16} \) Copy content Toggle raw display
$29$ \( T^{16} + 2 T^{14} - 8 T^{10} - 16 T^{8} + \cdots + 256 \) Copy content Toggle raw display
$31$ \( (T^{8} - T^{7} + T^{5} - T^{4} + T^{3} - T + 1)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - T^{3} + T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$41$ \( T^{16} \) Copy content Toggle raw display
$43$ \( T^{16} \) Copy content Toggle raw display
$47$ \( (T^{8} - T^{7} + T^{5} - T^{4} + T^{3} - T + 1)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - T^{3} + T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$59$ \( (T^{8} + T^{7} - T^{5} - T^{4} - T^{3} + T + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{16} + 2 T^{14} - 8 T^{10} - 16 T^{8} + \cdots + 256 \) Copy content Toggle raw display
$67$ \( (T^{2} - T + 1)^{8} \) Copy content Toggle raw display
$71$ \( (T^{4} + T^{3} + T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$73$ \( (T^{8} - 2 T^{6} + 4 T^{4} - 8 T^{2} + 16)^{2} \) Copy content Toggle raw display
$79$ \( T^{16} \) Copy content Toggle raw display
$83$ \( T^{16} + 2 T^{14} - 8 T^{10} - 16 T^{8} + \cdots + 256 \) Copy content Toggle raw display
$89$ \( T^{16} \) Copy content Toggle raw display
$97$ \( (T^{8} - T^{7} + T^{5} - T^{4} + T^{3} - T + 1)^{2} \) Copy content Toggle raw display
show more
show less