Newspace parameters
Level: | \( N \) | \(=\) | \( 3267 = 3^{3} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3267.w (of order \(30\), degree \(8\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.63044539627\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{30})\) |
Coefficient field: | 16.0.26873856000000000000.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} + 2x^{14} - 8x^{10} - 16x^{8} - 32x^{6} + 128x^{2} + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 1089) |
Projective image: | \(S_{4}\) |
Projective field: | Galois closure of 4.2.107811.1 |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 2x^{14} - 8x^{10} - 16x^{8} - 32x^{6} + 128x^{2} + 256 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{4} ) / 4 \)
|
\(\beta_{5}\) | \(=\) |
\( ( \nu^{5} ) / 4 \)
|
\(\beta_{6}\) | \(=\) |
\( ( \nu^{6} ) / 8 \)
|
\(\beta_{7}\) | \(=\) |
\( ( \nu^{7} ) / 8 \)
|
\(\beta_{8}\) | \(=\) |
\( ( \nu^{8} ) / 16 \)
|
\(\beta_{9}\) | \(=\) |
\( ( \nu^{9} ) / 16 \)
|
\(\beta_{10}\) | \(=\) |
\( ( \nu^{10} ) / 32 \)
|
\(\beta_{11}\) | \(=\) |
\( ( \nu^{11} ) / 32 \)
|
\(\beta_{12}\) | \(=\) |
\( ( \nu^{12} ) / 64 \)
|
\(\beta_{13}\) | \(=\) |
\( ( \nu^{15} ) / 128 \)
|
\(\beta_{14}\) | \(=\) |
\( ( \nu^{13} - 32\nu^{3} ) / 64 \)
|
\(\beta_{15}\) | \(=\) |
\( ( \nu^{14} - 4\nu^{10} - 8\nu^{8} + 64\nu^{2} + 128 ) / 128 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{3} \)
|
\(\nu^{4}\) | \(=\) |
\( 4\beta_{4} \)
|
\(\nu^{5}\) | \(=\) |
\( 4\beta_{5} \)
|
\(\nu^{6}\) | \(=\) |
\( 8\beta_{6} \)
|
\(\nu^{7}\) | \(=\) |
\( 8\beta_{7} \)
|
\(\nu^{8}\) | \(=\) |
\( 16\beta_{8} \)
|
\(\nu^{9}\) | \(=\) |
\( 16\beta_{9} \)
|
\(\nu^{10}\) | \(=\) |
\( 32\beta_{10} \)
|
\(\nu^{11}\) | \(=\) |
\( 32\beta_{11} \)
|
\(\nu^{12}\) | \(=\) |
\( 64\beta_{12} \)
|
\(\nu^{13}\) | \(=\) |
\( 64\beta_{14} + 64\beta_{3} \)
|
\(\nu^{14}\) | \(=\) |
\( 128\beta_{15} + 128\beta_{10} + 128\beta_{8} - 128\beta_{2} - 128 \)
|
\(\nu^{15}\) | \(=\) |
\( 128\beta_{13} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3267\mathbb{Z}\right)^\times\).
\(n\) | \(244\) | \(3026\) |
\(\chi(n)\) | \(-\beta_{12}\) | \(-1 + \beta_{10}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
118.1 |
|
−0.575212 | + | 1.29195i | 0 | −0.669131 | − | 0.743145i | 0.913545 | − | 0.406737i | 0 | −0.294032 | − | 1.38331i | 0 | 0 | 1.41421i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
118.2 | 0.575212 | − | 1.29195i | 0 | −0.669131 | − | 0.743145i | 0.913545 | − | 0.406737i | 0 | 0.294032 | + | 1.38331i | 0 | 0 | − | 1.41421i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
766.1 | −1.40647 | − | 0.147826i | 0 | 0.978148 | + | 0.207912i | −0.104528 | − | 0.994522i | 0 | 1.05097 | + | 0.946294i | 0 | 0 | 1.41421i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
766.2 | 1.40647 | + | 0.147826i | 0 | 0.978148 | + | 0.207912i | −0.104528 | − | 0.994522i | 0 | −1.05097 | − | 0.946294i | 0 | 0 | − | 1.41421i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
820.1 | −1.05097 | − | 0.946294i | 0 | 0.104528 | + | 0.994522i | 0.669131 | + | 0.743145i | 0 | 0.575212 | − | 1.29195i | 0 | 0 | − | 1.41421i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
820.2 | 1.05097 | + | 0.946294i | 0 | 0.104528 | + | 0.994522i | 0.669131 | + | 0.743145i | 0 | −0.575212 | + | 1.29195i | 0 | 0 | 1.41421i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1207.1 | −1.40647 | + | 0.147826i | 0 | 0.978148 | − | 0.207912i | −0.104528 | + | 0.994522i | 0 | 1.05097 | − | 0.946294i | 0 | 0 | − | 1.41421i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1207.2 | 1.40647 | − | 0.147826i | 0 | 0.978148 | − | 0.207912i | −0.104528 | + | 0.994522i | 0 | −1.05097 | + | 0.946294i | 0 | 0 | 1.41421i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1855.1 | −0.575212 | − | 1.29195i | 0 | −0.669131 | + | 0.743145i | 0.913545 | + | 0.406737i | 0 | −0.294032 | + | 1.38331i | 0 | 0 | − | 1.41421i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1855.2 | 0.575212 | + | 1.29195i | 0 | −0.669131 | + | 0.743145i | 0.913545 | + | 0.406737i | 0 | 0.294032 | − | 1.38331i | 0 | 0 | 1.41421i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1909.1 | −0.294032 | + | 1.38331i | 0 | −0.913545 | − | 0.406737i | −0.978148 | + | 0.207912i | 0 | −1.40647 | + | 0.147826i | 0 | 0 | − | 1.41421i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1909.2 | 0.294032 | − | 1.38331i | 0 | −0.913545 | − | 0.406737i | −0.978148 | + | 0.207912i | 0 | 1.40647 | − | 0.147826i | 0 | 0 | 1.41421i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1927.1 | −0.294032 | − | 1.38331i | 0 | −0.913545 | + | 0.406737i | −0.978148 | − | 0.207912i | 0 | −1.40647 | − | 0.147826i | 0 | 0 | 1.41421i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1927.2 | 0.294032 | + | 1.38331i | 0 | −0.913545 | + | 0.406737i | −0.978148 | − | 0.207912i | 0 | 1.40647 | + | 0.147826i | 0 | 0 | − | 1.41421i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3016.1 | −1.05097 | + | 0.946294i | 0 | 0.104528 | − | 0.994522i | 0.669131 | − | 0.743145i | 0 | 0.575212 | + | 1.29195i | 0 | 0 | 1.41421i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3016.2 | 1.05097 | − | 0.946294i | 0 | 0.104528 | − | 0.994522i | 0.669131 | − | 0.743145i | 0 | −0.575212 | − | 1.29195i | 0 | 0 | − | 1.41421i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
11.b | odd | 2 | 1 | inner |
11.c | even | 5 | 3 | inner |
11.d | odd | 10 | 3 | inner |
99.h | odd | 6 | 1 | inner |
99.m | even | 15 | 3 | inner |
99.o | odd | 30 | 3 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3267.1.w.b | 16 | |
3.b | odd | 2 | 1 | 1089.1.s.b | 16 | ||
9.c | even | 3 | 1 | inner | 3267.1.w.b | 16 | |
9.d | odd | 6 | 1 | 1089.1.s.b | 16 | ||
11.b | odd | 2 | 1 | inner | 3267.1.w.b | 16 | |
11.c | even | 5 | 1 | 3267.1.h.a | 4 | ||
11.c | even | 5 | 3 | inner | 3267.1.w.b | 16 | |
11.d | odd | 10 | 1 | 3267.1.h.a | 4 | ||
11.d | odd | 10 | 3 | inner | 3267.1.w.b | 16 | |
33.d | even | 2 | 1 | 1089.1.s.b | 16 | ||
33.f | even | 10 | 1 | 1089.1.h.a | ✓ | 4 | |
33.f | even | 10 | 3 | 1089.1.s.b | 16 | ||
33.h | odd | 10 | 1 | 1089.1.h.a | ✓ | 4 | |
33.h | odd | 10 | 3 | 1089.1.s.b | 16 | ||
99.g | even | 6 | 1 | 1089.1.s.b | 16 | ||
99.h | odd | 6 | 1 | inner | 3267.1.w.b | 16 | |
99.m | even | 15 | 1 | 3267.1.h.a | 4 | ||
99.m | even | 15 | 3 | inner | 3267.1.w.b | 16 | |
99.n | odd | 30 | 1 | 1089.1.h.a | ✓ | 4 | |
99.n | odd | 30 | 3 | 1089.1.s.b | 16 | ||
99.o | odd | 30 | 1 | 3267.1.h.a | 4 | ||
99.o | odd | 30 | 3 | inner | 3267.1.w.b | 16 | |
99.p | even | 30 | 1 | 1089.1.h.a | ✓ | 4 | |
99.p | even | 30 | 3 | 1089.1.s.b | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1089.1.h.a | ✓ | 4 | 33.f | even | 10 | 1 | |
1089.1.h.a | ✓ | 4 | 33.h | odd | 10 | 1 | |
1089.1.h.a | ✓ | 4 | 99.n | odd | 30 | 1 | |
1089.1.h.a | ✓ | 4 | 99.p | even | 30 | 1 | |
1089.1.s.b | 16 | 3.b | odd | 2 | 1 | ||
1089.1.s.b | 16 | 9.d | odd | 6 | 1 | ||
1089.1.s.b | 16 | 33.d | even | 2 | 1 | ||
1089.1.s.b | 16 | 33.f | even | 10 | 3 | ||
1089.1.s.b | 16 | 33.h | odd | 10 | 3 | ||
1089.1.s.b | 16 | 99.g | even | 6 | 1 | ||
1089.1.s.b | 16 | 99.n | odd | 30 | 3 | ||
1089.1.s.b | 16 | 99.p | even | 30 | 3 | ||
3267.1.h.a | 4 | 11.c | even | 5 | 1 | ||
3267.1.h.a | 4 | 11.d | odd | 10 | 1 | ||
3267.1.h.a | 4 | 99.m | even | 15 | 1 | ||
3267.1.h.a | 4 | 99.o | odd | 30 | 1 | ||
3267.1.w.b | 16 | 1.a | even | 1 | 1 | trivial | |
3267.1.w.b | 16 | 9.c | even | 3 | 1 | inner | |
3267.1.w.b | 16 | 11.b | odd | 2 | 1 | inner | |
3267.1.w.b | 16 | 11.c | even | 5 | 3 | inner | |
3267.1.w.b | 16 | 11.d | odd | 10 | 3 | inner | |
3267.1.w.b | 16 | 99.h | odd | 6 | 1 | inner | |
3267.1.w.b | 16 | 99.m | even | 15 | 3 | inner | |
3267.1.w.b | 16 | 99.o | odd | 30 | 3 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} + 2T_{2}^{14} - 8T_{2}^{10} - 16T_{2}^{8} - 32T_{2}^{6} + 128T_{2}^{2} + 256 \)
acting on \(S_{1}^{\mathrm{new}}(3267, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} + 2 T^{14} - 8 T^{10} - 16 T^{8} + \cdots + 256 \)
$3$
\( T^{16} \)
$5$
\( (T^{8} - T^{7} + T^{5} - T^{4} + T^{3} - T + 1)^{2} \)
$7$
\( T^{16} + 2 T^{14} - 8 T^{10} - 16 T^{8} + \cdots + 256 \)
$11$
\( T^{16} \)
$13$
\( T^{16} \)
$17$
\( T^{16} \)
$19$
\( T^{16} \)
$23$
\( T^{16} \)
$29$
\( T^{16} + 2 T^{14} - 8 T^{10} - 16 T^{8} + \cdots + 256 \)
$31$
\( (T^{8} - T^{7} + T^{5} - T^{4} + T^{3} - T + 1)^{2} \)
$37$
\( (T^{4} - T^{3} + T^{2} - T + 1)^{4} \)
$41$
\( T^{16} \)
$43$
\( T^{16} \)
$47$
\( (T^{8} - T^{7} + T^{5} - T^{4} + T^{3} - T + 1)^{2} \)
$53$
\( (T^{4} - T^{3} + T^{2} - T + 1)^{4} \)
$59$
\( (T^{8} + T^{7} - T^{5} - T^{4} - T^{3} + T + 1)^{2} \)
$61$
\( T^{16} + 2 T^{14} - 8 T^{10} - 16 T^{8} + \cdots + 256 \)
$67$
\( (T^{2} - T + 1)^{8} \)
$71$
\( (T^{4} + T^{3} + T^{2} + T + 1)^{4} \)
$73$
\( (T^{8} - 2 T^{6} + 4 T^{4} - 8 T^{2} + 16)^{2} \)
$79$
\( T^{16} \)
$83$
\( T^{16} + 2 T^{14} - 8 T^{10} - 16 T^{8} + \cdots + 256 \)
$89$
\( T^{16} \)
$97$
\( (T^{8} - T^{7} + T^{5} - T^{4} + T^{3} - T + 1)^{2} \)
show more
show less