Properties

Label 3267.1.l
Level $3267$
Weight $1$
Character orbit 3267.l
Rep. character $\chi_{3267}(838,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $16$
Newform subspaces $1$
Sturm bound $396$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3267.l (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(396\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3267, [\chi])\).

Total New Old
Modular forms 176 16 160
Cusp forms 32 16 16
Eisenstein series 144 0 144

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - 4 q^{4} + O(q^{10}) \) \( 16 q - 4 q^{4} - 4 q^{16} + 4 q^{25} + 4 q^{49} - 4 q^{64} + 4 q^{91} - 4 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3267, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3267.1.l.a 3267.l 11.d $16$ $1.630$ 16.0.\(\cdots\).7 $D_{12}$ \(\Q(\sqrt{-3}) \) None 3267.1.c.a \(0\) \(0\) \(0\) \(0\) \(q-\beta _{4}q^{4}-\beta _{12}q^{7}+\beta _{3}q^{13}-\beta _{8}q^{16}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3267, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3267, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1089, [\chi])\)\(^{\oplus 2}\)