Properties

Label 3267.1.c
Level $3267$
Weight $1$
Character orbit 3267.c
Rep. character $\chi_{3267}(2782,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $396$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3267.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(396\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3267, [\chi])\).

Total New Old
Modular forms 44 4 40
Cusp forms 8 4 4
Eisenstein series 36 0 36

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q + 4 q^{4} + O(q^{10}) \) \( 4 q + 4 q^{4} + 4 q^{16} - 4 q^{25} - 4 q^{49} + 4 q^{64} - 4 q^{91} + 4 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3267, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3267.1.c.a 3267.c 11.b $4$ $1.630$ \(\Q(\sqrt{-2}, \sqrt{3})\) $D_{12}$ \(\Q(\sqrt{-3}) \) None 3267.1.c.a \(0\) \(0\) \(0\) \(0\) \(q+q^{4}-\beta _{1}q^{7}-\beta _{3}q^{13}+q^{16}+(\beta _{1}+\cdots)q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3267, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3267, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(1089, [\chi])\)\(^{\oplus 2}\)