Properties

Label 3264.2.a
Level $3264$
Weight $2$
Character orbit 3264.a
Rep. character $\chi_{3264}(1,\cdot)$
Character field $\Q$
Dimension $64$
Newform subspaces $46$
Sturm bound $1152$
Trace bound $19$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 3264 = 2^{6} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3264.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 46 \)
Sturm bound: \(1152\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(13\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3264))\).

Total New Old
Modular forms 600 64 536
Cusp forms 553 64 489
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(17\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(7\)
\(+\)\(+\)\(-\)\(-\)\(10\)
\(+\)\(-\)\(+\)\(-\)\(9\)
\(+\)\(-\)\(-\)\(+\)\(6\)
\(-\)\(+\)\(+\)\(-\)\(9\)
\(-\)\(+\)\(-\)\(+\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(7\)
\(-\)\(-\)\(-\)\(-\)\(10\)
Plus space\(+\)\(26\)
Minus space\(-\)\(38\)

Trace form

\( 64q + 64q^{9} + O(q^{10}) \) \( 64q + 64q^{9} - 16q^{13} - 16q^{21} + 64q^{25} + 32q^{29} + 16q^{37} + 64q^{49} + 32q^{53} - 16q^{61} + 32q^{77} + 64q^{81} - 16q^{93} + 32q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3264))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 17
3264.2.a.a \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(-3\) \(-4\) \(+\) \(+\) \(+\) \(q-q^{3}-3q^{5}-4q^{7}+q^{9}+3q^{11}+\cdots\)
3264.2.a.b \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(-3\) \(0\) \(-\) \(+\) \(+\) \(q-q^{3}-3q^{5}+q^{9}-q^{11}-3q^{13}+\cdots\)
3264.2.a.c \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(-2\) \(-4\) \(+\) \(+\) \(-\) \(q-q^{3}-2q^{5}-4q^{7}+q^{9}-4q^{11}+\cdots\)
3264.2.a.d \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(-2\) \(0\) \(-\) \(+\) \(-\) \(q-q^{3}-2q^{5}+q^{9}-4q^{11}+2q^{13}+\cdots\)
3264.2.a.e \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(-1\) \(-2\) \(-\) \(+\) \(+\) \(q-q^{3}-q^{5}-2q^{7}+q^{9}+5q^{11}+q^{13}+\cdots\)
3264.2.a.f \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(-1\) \(0\) \(+\) \(+\) \(-\) \(q-q^{3}-q^{5}+q^{9}-5q^{11}+5q^{13}+\cdots\)
3264.2.a.g \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(0\) \(-2\) \(+\) \(+\) \(+\) \(q-q^{3}-2q^{7}+q^{9}+6q^{13}-q^{17}+\cdots\)
3264.2.a.h \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(0\) \(2\) \(+\) \(+\) \(+\) \(q-q^{3}+2q^{7}+q^{9}-2q^{13}-q^{17}+\cdots\)
3264.2.a.i \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(0\) \(2\) \(+\) \(+\) \(+\) \(q-q^{3}+2q^{7}+q^{9}-2q^{13}-q^{17}+\cdots\)
3264.2.a.j \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(1\) \(-4\) \(-\) \(+\) \(+\) \(q-q^{3}+q^{5}-4q^{7}+q^{9}+3q^{11}-3q^{13}+\cdots\)
3264.2.a.k \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(1\) \(-2\) \(-\) \(+\) \(-\) \(q-q^{3}+q^{5}-2q^{7}+q^{9}+q^{11}+q^{13}+\cdots\)
3264.2.a.l \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(1\) \(2\) \(+\) \(+\) \(-\) \(q-q^{3}+q^{5}+2q^{7}+q^{9}+5q^{11}+5q^{13}+\cdots\)
3264.2.a.m \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(2\) \(0\) \(+\) \(+\) \(-\) \(q-q^{3}+2q^{5}+q^{9}+4q^{11}+2q^{13}+\cdots\)
3264.2.a.n \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(3\) \(-4\) \(+\) \(+\) \(-\) \(q-q^{3}+3q^{5}-4q^{7}+q^{9}-q^{11}+5q^{13}+\cdots\)
3264.2.a.o \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(3\) \(-2\) \(+\) \(+\) \(+\) \(q-q^{3}+3q^{5}-2q^{7}+q^{9}-3q^{11}+\cdots\)
3264.2.a.p \(1\) \(26.063\) \(\Q\) None \(0\) \(-1\) \(4\) \(2\) \(-\) \(+\) \(+\) \(q-q^{3}+4q^{5}+2q^{7}+q^{9}+6q^{13}+\cdots\)
3264.2.a.q \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(-3\) \(0\) \(+\) \(-\) \(+\) \(q+q^{3}-3q^{5}+q^{9}+q^{11}-3q^{13}+\cdots\)
3264.2.a.r \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(-3\) \(4\) \(-\) \(-\) \(+\) \(q+q^{3}-3q^{5}+4q^{7}+q^{9}-3q^{11}+\cdots\)
3264.2.a.s \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(-2\) \(0\) \(-\) \(-\) \(-\) \(q+q^{3}-2q^{5}+q^{9}+4q^{11}+2q^{13}+\cdots\)
3264.2.a.t \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(-2\) \(4\) \(-\) \(-\) \(-\) \(q+q^{3}-2q^{5}+4q^{7}+q^{9}+4q^{11}+\cdots\)
3264.2.a.u \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(-1\) \(0\) \(-\) \(-\) \(-\) \(q+q^{3}-q^{5}+q^{9}+5q^{11}+5q^{13}+\cdots\)
3264.2.a.v \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(-1\) \(2\) \(-\) \(-\) \(+\) \(q+q^{3}-q^{5}+2q^{7}+q^{9}-5q^{11}+q^{13}+\cdots\)
3264.2.a.w \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(0\) \(-2\) \(-\) \(-\) \(+\) \(q+q^{3}-2q^{7}+q^{9}-2q^{13}-q^{17}+\cdots\)
3264.2.a.x \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(0\) \(-2\) \(-\) \(-\) \(+\) \(q+q^{3}-2q^{7}+q^{9}-2q^{13}-q^{17}+\cdots\)
3264.2.a.y \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(0\) \(2\) \(+\) \(-\) \(+\) \(q+q^{3}+2q^{7}+q^{9}+6q^{13}-q^{17}+\cdots\)
3264.2.a.z \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(1\) \(-2\) \(+\) \(-\) \(-\) \(q+q^{3}+q^{5}-2q^{7}+q^{9}-5q^{11}+5q^{13}+\cdots\)
3264.2.a.ba \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(1\) \(2\) \(-\) \(-\) \(-\) \(q+q^{3}+q^{5}+2q^{7}+q^{9}-q^{11}+q^{13}+\cdots\)
3264.2.a.bb \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(1\) \(4\) \(+\) \(-\) \(+\) \(q+q^{3}+q^{5}+4q^{7}+q^{9}-3q^{11}-3q^{13}+\cdots\)
3264.2.a.bc \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(2\) \(0\) \(-\) \(-\) \(-\) \(q+q^{3}+2q^{5}+q^{9}-4q^{11}+2q^{13}+\cdots\)
3264.2.a.bd \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(3\) \(2\) \(+\) \(-\) \(+\) \(q+q^{3}+3q^{5}+2q^{7}+q^{9}+3q^{11}+\cdots\)
3264.2.a.be \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(3\) \(4\) \(-\) \(-\) \(-\) \(q+q^{3}+3q^{5}+4q^{7}+q^{9}+q^{11}+5q^{13}+\cdots\)
3264.2.a.bf \(1\) \(26.063\) \(\Q\) None \(0\) \(1\) \(4\) \(-2\) \(+\) \(-\) \(+\) \(q+q^{3}+4q^{5}-2q^{7}+q^{9}+6q^{13}+\cdots\)
3264.2.a.bg \(2\) \(26.063\) \(\Q(\sqrt{17}) \) None \(0\) \(-2\) \(-3\) \(0\) \(-\) \(+\) \(-\) \(q-q^{3}+(-1-\beta )q^{5}+q^{9}+(-1+\beta )q^{11}+\cdots\)
3264.2.a.bh \(2\) \(26.063\) \(\Q(\sqrt{33}) \) None \(0\) \(-2\) \(-1\) \(4\) \(+\) \(+\) \(+\) \(q-q^{3}-\beta q^{5}+2q^{7}+q^{9}+\beta q^{11}+\cdots\)
3264.2.a.bi \(2\) \(26.063\) \(\Q(\sqrt{17}) \) None \(0\) \(-2\) \(1\) \(2\) \(-\) \(+\) \(+\) \(q-q^{3}+\beta q^{5}+(2-2\beta )q^{7}+q^{9}+(-4+\cdots)q^{11}+\cdots\)
3264.2.a.bj \(2\) \(26.063\) \(\Q(\sqrt{57}) \) None \(0\) \(-2\) \(1\) \(8\) \(+\) \(+\) \(-\) \(q-q^{3}+\beta q^{5}+4q^{7}+q^{9}+(2-\beta )q^{11}+\cdots\)
3264.2.a.bk \(2\) \(26.063\) \(\Q(\sqrt{17}) \) None \(0\) \(-2\) \(3\) \(2\) \(-\) \(+\) \(-\) \(q-q^{3}+(1+\beta )q^{5}+(2-2\beta )q^{7}+q^{9}+\cdots\)
3264.2.a.bl \(2\) \(26.063\) \(\Q(\sqrt{17}) \) None \(0\) \(2\) \(-3\) \(0\) \(+\) \(-\) \(-\) \(q+q^{3}+(-1-\beta )q^{5}+q^{9}+(1-\beta )q^{11}+\cdots\)
3264.2.a.bm \(2\) \(26.063\) \(\Q(\sqrt{33}) \) None \(0\) \(2\) \(-1\) \(-4\) \(+\) \(-\) \(+\) \(q+q^{3}-\beta q^{5}-2q^{7}+q^{9}-\beta q^{11}+\cdots\)
3264.2.a.bn \(2\) \(26.063\) \(\Q(\sqrt{57}) \) None \(0\) \(2\) \(1\) \(-8\) \(-\) \(-\) \(-\) \(q+q^{3}+\beta q^{5}-4q^{7}+q^{9}+(-2+\beta )q^{11}+\cdots\)
3264.2.a.bo \(2\) \(26.063\) \(\Q(\sqrt{17}) \) None \(0\) \(2\) \(1\) \(-2\) \(+\) \(-\) \(+\) \(q+q^{3}+\beta q^{5}+(-2+2\beta )q^{7}+q^{9}+\cdots\)
3264.2.a.bp \(2\) \(26.063\) \(\Q(\sqrt{17}) \) None \(0\) \(2\) \(3\) \(-2\) \(-\) \(-\) \(-\) \(q+q^{3}+(1+\beta )q^{5}+(-2+2\beta )q^{7}+q^{9}+\cdots\)
3264.2.a.bq \(3\) \(26.063\) 3.3.316.1 None \(0\) \(-3\) \(-3\) \(2\) \(+\) \(+\) \(-\) \(q-q^{3}+(-1+\beta _{1})q^{5}+(1+\beta _{1}+\beta _{2})q^{7}+\cdots\)
3264.2.a.br \(3\) \(26.063\) 3.3.229.1 None \(0\) \(-3\) \(-1\) \(6\) \(-\) \(+\) \(+\) \(q-q^{3}+\beta _{1}q^{5}+2q^{7}+q^{9}+(1+\beta _{1}+\cdots)q^{11}+\cdots\)
3264.2.a.bs \(3\) \(26.063\) 3.3.316.1 None \(0\) \(3\) \(-3\) \(-2\) \(+\) \(-\) \(-\) \(q+q^{3}+(-1+\beta _{1})q^{5}+(-1-\beta _{1}-\beta _{2})q^{7}+\cdots\)
3264.2.a.bt \(3\) \(26.063\) 3.3.229.1 None \(0\) \(3\) \(-1\) \(-6\) \(-\) \(-\) \(+\) \(q+q^{3}+\beta _{1}q^{5}-2q^{7}+q^{9}+(-1-\beta _{1}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3264))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3264)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(272))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(408))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(544))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(816))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1088))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1632))\)\(^{\oplus 2}\)