Properties

Label 325.6.r
Level $325$
Weight $6$
Character orbit 325.r
Rep. character $\chi_{325}(14,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $600$
Sturm bound $210$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.r (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(210\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(325, [\chi])\).

Total New Old
Modular forms 712 600 112
Cusp forms 696 600 96
Eisenstein series 16 0 16

Trace form

\( 600 q + 2400 q^{4} + 210 q^{5} + 144 q^{6} - 1230 q^{8} + 12026 q^{9} + O(q^{10}) \) \( 600 q + 2400 q^{4} + 210 q^{5} + 144 q^{6} - 1230 q^{8} + 12026 q^{9} - 322 q^{10} + 1442 q^{11} - 640 q^{12} + 2748 q^{14} + 2064 q^{15} - 34572 q^{16} + 1910 q^{17} - 2888 q^{19} + 3460 q^{20} - 2580 q^{21} + 9440 q^{22} + 17370 q^{23} + 44420 q^{24} + 17708 q^{25} - 16224 q^{26} + 27600 q^{27} - 18240 q^{28} - 4254 q^{29} - 75078 q^{30} - 17268 q^{31} + 15360 q^{34} + 31882 q^{35} - 139724 q^{36} + 154760 q^{38} - 12168 q^{39} - 71606 q^{40} + 26896 q^{41} - 288020 q^{42} - 49534 q^{44} + 74324 q^{45} + 57344 q^{46} + 66440 q^{47} - 25600 q^{48} - 1372444 q^{49} + 231974 q^{50} - 32388 q^{51} + 17890 q^{53} - 46656 q^{54} - 113304 q^{55} + 131904 q^{56} - 291830 q^{58} - 99114 q^{59} - 198638 q^{60} + 58180 q^{61} - 66120 q^{62} + 238950 q^{63} + 699282 q^{64} - 338 q^{65} - 93550 q^{66} + 132350 q^{67} + 100910 q^{69} + 58440 q^{70} + 87926 q^{71} + 108890 q^{72} + 204440 q^{73} - 196472 q^{74} - 33776 q^{75} - 420020 q^{76} + 157240 q^{77} + 247108 q^{79} - 232808 q^{80} - 952672 q^{81} + 148010 q^{83} - 708624 q^{84} + 114462 q^{85} + 52500 q^{86} - 654100 q^{87} + 213570 q^{88} - 355456 q^{89} - 1288530 q^{90} + 66248 q^{91} + 694740 q^{92} + 398520 q^{94} - 130106 q^{95} + 1129720 q^{96} + 950410 q^{97} + 742944 q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(325, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(325, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)