Properties

Label 325.6.n
Level 325325
Weight 66
Character orbit 325.n
Rep. character χ325(101,)\chi_{325}(101,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 214214
Sturm bound 210210

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 325=5213 325 = 5^{2} \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 325.n (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 210210

Dimensions

The following table gives the dimensions of various subspaces of M6(325,[χ])M_{6}(325, [\chi]).

Total New Old
Modular forms 364 226 138
Cusp forms 340 214 126
Eisenstein series 24 12 12

Trace form

214q+3q28q3+1633q4+162q6270q78047q9306q11+584q12+215q134052q1421931q16+2267q17+1722q19+1670q22+5744q23+19494q24++236829q98+O(q100) 214 q + 3 q^{2} - 8 q^{3} + 1633 q^{4} + 162 q^{6} - 270 q^{7} - 8047 q^{9} - 306 q^{11} + 584 q^{12} + 215 q^{13} - 4052 q^{14} - 21931 q^{16} + 2267 q^{17} + 1722 q^{19} + 1670 q^{22} + 5744 q^{23} + 19494 q^{24}+ \cdots + 236829 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(325,[χ])S_{6}^{\mathrm{new}}(325, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S6old(325,[χ])S_{6}^{\mathrm{old}}(325, [\chi]) into lower level spaces

S6old(325,[χ]) S_{6}^{\mathrm{old}}(325, [\chi]) \simeq S6new(13,[χ])S_{6}^{\mathrm{new}}(13, [\chi])3^{\oplus 3}\oplusS6new(65,[χ])S_{6}^{\mathrm{new}}(65, [\chi])2^{\oplus 2}