Properties

Label 325.6.k
Level $325$
Weight $6$
Character orbit 325.k
Rep. character $\chi_{325}(57,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $206$
Sturm bound $210$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(i)\)
Sturm bound: \(210\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(325, [\chi])\).

Total New Old
Modular forms 362 214 148
Cusp forms 338 206 132
Eisenstein series 24 8 16

Trace form

\( 206 q + 12 q^{2} + 4 q^{3} + 3232 q^{4} - 4 q^{6} + 516 q^{8} + O(q^{10}) \) \( 206 q + 12 q^{2} + 4 q^{3} + 3232 q^{4} - 4 q^{6} + 516 q^{8} + 716 q^{11} + 920 q^{12} + 656 q^{13} + 49656 q^{16} + 1414 q^{17} - 1940 q^{19} - 1784 q^{21} - 2208 q^{22} + 8700 q^{23} - 17260 q^{24} - 1764 q^{26} - 6020 q^{27} - 14464 q^{31} + 44144 q^{32} - 21628 q^{33} - 7128 q^{34} + 128 q^{38} + 38360 q^{39} - 2514 q^{41} + 25480 q^{42} - 1764 q^{43} - 33328 q^{44} + 18076 q^{46} + 30416 q^{48} - 477462 q^{49} - 2752 q^{52} - 35706 q^{53} - 64596 q^{54} + 68340 q^{57} - 128880 q^{59} + 79992 q^{61} + 129860 q^{62} + 39340 q^{63} + 728832 q^{64} + 5112 q^{66} - 211180 q^{67} + 330208 q^{68} + 322320 q^{69} - 11164 q^{71} - 26536 q^{73} - 199460 q^{76} - 244340 q^{77} - 370160 q^{78} - 980582 q^{81} + 42624 q^{82} - 535808 q^{84} + 18436 q^{86} - 173296 q^{87} - 178976 q^{88} - 395370 q^{89} + 286576 q^{91} + 392196 q^{92} - 676844 q^{96} + 232024 q^{97} - 15068 q^{98} + 792508 q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(325, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(325, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)