Properties

Label 325.6.b.i.274.7
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.7
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.i.274.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.83767i q^{2} -12.7661i q^{3} -2.07840 q^{4} -74.5243 q^{6} -231.930i q^{7} -174.672i q^{8} +80.0268 q^{9} +O(q^{10})\) \(q-5.83767i q^{2} -12.7661i q^{3} -2.07840 q^{4} -74.5243 q^{6} -231.930i q^{7} -174.672i q^{8} +80.0268 q^{9} -223.383 q^{11} +26.5330i q^{12} +169.000i q^{13} -1353.93 q^{14} -1086.19 q^{16} -1329.26i q^{17} -467.170i q^{18} +1480.66 q^{19} -2960.84 q^{21} +1304.04i q^{22} -1324.23i q^{23} -2229.89 q^{24} +986.566 q^{26} -4123.79i q^{27} +482.042i q^{28} -1670.85 q^{29} +8484.76 q^{31} +751.294i q^{32} +2851.73i q^{33} -7759.78 q^{34} -166.327 q^{36} +4109.10i q^{37} -8643.62i q^{38} +2157.47 q^{39} -10014.5 q^{41} +17284.4i q^{42} +3443.28i q^{43} +464.279 q^{44} -7730.43 q^{46} -16459.1i q^{47} +13866.4i q^{48} -36984.6 q^{49} -16969.5 q^{51} -351.249i q^{52} +16934.3i q^{53} -24073.3 q^{54} -40511.8 q^{56} -18902.3i q^{57} +9753.89i q^{58} -11919.2 q^{59} +37419.0 q^{61} -49531.2i q^{62} -18560.6i q^{63} -30372.2 q^{64} +16647.5 q^{66} -7254.26i q^{67} +2762.73i q^{68} -16905.3 q^{69} +52098.4 q^{71} -13978.5i q^{72} +85653.0i q^{73} +23987.6 q^{74} -3077.40 q^{76} +51809.3i q^{77} -12594.6i q^{78} +45167.6 q^{79} -33198.2 q^{81} +58461.3i q^{82} +114443. i q^{83} +6153.80 q^{84} +20100.7 q^{86} +21330.3i q^{87} +39018.9i q^{88} -22697.0 q^{89} +39196.2 q^{91} +2752.28i q^{92} -108317. i q^{93} -96082.7 q^{94} +9591.09 q^{96} +107803. i q^{97} +215904. i q^{98} -17876.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9} + 2552 q^{11} - 1156 q^{14} + 11414 q^{16} - 7040 q^{19} + 3412 q^{21} - 15446 q^{24} + 1690 q^{26} - 36850 q^{29} + 18136 q^{31} + 28910 q^{34} + 75368 q^{36} - 3718 q^{39} - 20020 q^{41} - 121302 q^{44} - 19716 q^{46} - 146626 q^{49} + 73212 q^{51} - 96026 q^{54} - 2524 q^{56} - 263284 q^{59} - 86730 q^{61} - 360142 q^{64} - 117214 q^{66} - 118690 q^{69} + 136840 q^{71} - 742792 q^{74} + 45034 q^{76} - 104478 q^{79} + 215014 q^{81} - 1705432 q^{84} + 404492 q^{86} - 655424 q^{89} + 70304 q^{91} - 1299948 q^{94} + 1799326 q^{96} - 853396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 5.83767i − 1.03196i −0.856599 0.515982i \(-0.827427\pi\)
0.856599 0.515982i \(-0.172573\pi\)
\(3\) − 12.7661i − 0.818946i −0.912322 0.409473i \(-0.865713\pi\)
0.912322 0.409473i \(-0.134287\pi\)
\(4\) −2.07840 −0.0649499
\(5\) 0 0
\(6\) −74.5243 −0.845122
\(7\) − 231.930i − 1.78901i −0.447061 0.894503i \(-0.647529\pi\)
0.447061 0.894503i \(-0.352471\pi\)
\(8\) − 174.672i − 0.964938i
\(9\) 80.0268 0.329328
\(10\) 0 0
\(11\) −223.383 −0.556633 −0.278317 0.960489i \(-0.589776\pi\)
−0.278317 + 0.960489i \(0.589776\pi\)
\(12\) 26.5330i 0.0531904i
\(13\) 169.000i 0.277350i
\(14\) −1353.93 −1.84619
\(15\) 0 0
\(16\) −1086.19 −1.06073
\(17\) − 1329.26i − 1.11555i −0.829993 0.557773i \(-0.811656\pi\)
0.829993 0.557773i \(-0.188344\pi\)
\(18\) − 467.170i − 0.339855i
\(19\) 1480.66 0.940962 0.470481 0.882410i \(-0.344080\pi\)
0.470481 + 0.882410i \(0.344080\pi\)
\(20\) 0 0
\(21\) −2960.84 −1.46510
\(22\) 1304.04i 0.574425i
\(23\) − 1324.23i − 0.521969i −0.965343 0.260984i \(-0.915953\pi\)
0.965343 0.260984i \(-0.0840471\pi\)
\(24\) −2229.89 −0.790232
\(25\) 0 0
\(26\) 986.566 0.286215
\(27\) − 4123.79i − 1.08865i
\(28\) 482.042i 0.116196i
\(29\) −1670.85 −0.368929 −0.184465 0.982839i \(-0.559055\pi\)
−0.184465 + 0.982839i \(0.559055\pi\)
\(30\) 0 0
\(31\) 8484.76 1.58575 0.792876 0.609383i \(-0.208583\pi\)
0.792876 + 0.609383i \(0.208583\pi\)
\(32\) 751.294i 0.129699i
\(33\) 2851.73i 0.455852i
\(34\) −7759.78 −1.15120
\(35\) 0 0
\(36\) −166.327 −0.0213898
\(37\) 4109.10i 0.493449i 0.969086 + 0.246725i \(0.0793543\pi\)
−0.969086 + 0.246725i \(0.920646\pi\)
\(38\) − 8643.62i − 0.971039i
\(39\) 2157.47 0.227135
\(40\) 0 0
\(41\) −10014.5 −0.930399 −0.465200 0.885206i \(-0.654017\pi\)
−0.465200 + 0.885206i \(0.654017\pi\)
\(42\) 17284.4i 1.51193i
\(43\) 3443.28i 0.283989i 0.989867 + 0.141994i \(0.0453515\pi\)
−0.989867 + 0.141994i \(0.954648\pi\)
\(44\) 464.279 0.0361532
\(45\) 0 0
\(46\) −7730.43 −0.538653
\(47\) − 16459.1i − 1.08683i −0.839465 0.543414i \(-0.817131\pi\)
0.839465 0.543414i \(-0.182869\pi\)
\(48\) 13866.4i 0.868681i
\(49\) −36984.6 −2.20055
\(50\) 0 0
\(51\) −16969.5 −0.913572
\(52\) − 351.249i − 0.0180138i
\(53\) 16934.3i 0.828090i 0.910256 + 0.414045i \(0.135884\pi\)
−0.910256 + 0.414045i \(0.864116\pi\)
\(54\) −24073.3 −1.12345
\(55\) 0 0
\(56\) −40511.8 −1.72628
\(57\) − 18902.3i − 0.770596i
\(58\) 9753.89i 0.380722i
\(59\) −11919.2 −0.445777 −0.222889 0.974844i \(-0.571549\pi\)
−0.222889 + 0.974844i \(0.571549\pi\)
\(60\) 0 0
\(61\) 37419.0 1.28756 0.643780 0.765210i \(-0.277365\pi\)
0.643780 + 0.765210i \(0.277365\pi\)
\(62\) − 49531.2i − 1.63644i
\(63\) − 18560.6i − 0.589170i
\(64\) −30372.2 −0.926887
\(65\) 0 0
\(66\) 16647.5 0.470423
\(67\) − 7254.26i − 0.197427i −0.995116 0.0987134i \(-0.968527\pi\)
0.995116 0.0987134i \(-0.0314727\pi\)
\(68\) 2762.73i 0.0724546i
\(69\) −16905.3 −0.427464
\(70\) 0 0
\(71\) 52098.4 1.22653 0.613266 0.789877i \(-0.289855\pi\)
0.613266 + 0.789877i \(0.289855\pi\)
\(72\) − 13978.5i − 0.317781i
\(73\) 85653.0i 1.88120i 0.339513 + 0.940601i \(0.389738\pi\)
−0.339513 + 0.940601i \(0.610262\pi\)
\(74\) 23987.6 0.509222
\(75\) 0 0
\(76\) −3077.40 −0.0611153
\(77\) 51809.3i 0.995820i
\(78\) − 12594.6i − 0.234395i
\(79\) 45167.6 0.814252 0.407126 0.913372i \(-0.366531\pi\)
0.407126 + 0.913372i \(0.366531\pi\)
\(80\) 0 0
\(81\) −33198.2 −0.562215
\(82\) 58461.3i 0.960139i
\(83\) 114443.i 1.82345i 0.410802 + 0.911724i \(0.365249\pi\)
−0.410802 + 0.911724i \(0.634751\pi\)
\(84\) 6153.80 0.0951580
\(85\) 0 0
\(86\) 20100.7 0.293066
\(87\) 21330.3i 0.302133i
\(88\) 39018.9i 0.537116i
\(89\) −22697.0 −0.303733 −0.151867 0.988401i \(-0.548528\pi\)
−0.151867 + 0.988401i \(0.548528\pi\)
\(90\) 0 0
\(91\) 39196.2 0.496181
\(92\) 2752.28i 0.0339018i
\(93\) − 108317.i − 1.29864i
\(94\) −96082.7 −1.12157
\(95\) 0 0
\(96\) 9591.09 0.106216
\(97\) 107803.i 1.16333i 0.813429 + 0.581664i \(0.197598\pi\)
−0.813429 + 0.581664i \(0.802402\pi\)
\(98\) 215904.i 2.27088i
\(99\) −17876.6 −0.183315
\(100\) 0 0
\(101\) 196051. 1.91234 0.956172 0.292806i \(-0.0945889\pi\)
0.956172 + 0.292806i \(0.0945889\pi\)
\(102\) 99062.1i 0.942773i
\(103\) − 168848.i − 1.56820i −0.620633 0.784101i \(-0.713124\pi\)
0.620633 0.784101i \(-0.286876\pi\)
\(104\) 29519.6 0.267626
\(105\) 0 0
\(106\) 98856.9 0.854559
\(107\) 69103.1i 0.583496i 0.956495 + 0.291748i \(0.0942369\pi\)
−0.956495 + 0.291748i \(0.905763\pi\)
\(108\) 8570.87i 0.0707075i
\(109\) −31697.4 −0.255539 −0.127770 0.991804i \(-0.540782\pi\)
−0.127770 + 0.991804i \(0.540782\pi\)
\(110\) 0 0
\(111\) 52457.2 0.404108
\(112\) 251920.i 1.89766i
\(113\) − 104371.i − 0.768922i −0.923141 0.384461i \(-0.874387\pi\)
0.923141 0.384461i \(-0.125613\pi\)
\(114\) −110345. −0.795228
\(115\) 0 0
\(116\) 3472.69 0.0239619
\(117\) 13524.5i 0.0913392i
\(118\) 69580.5i 0.460026i
\(119\) −308295. −1.99572
\(120\) 0 0
\(121\) −111151. −0.690160
\(122\) − 218440.i − 1.32872i
\(123\) 127846.i 0.761946i
\(124\) −17634.7 −0.102994
\(125\) 0 0
\(126\) −108351. −0.608003
\(127\) 204212.i 1.12350i 0.827307 + 0.561749i \(0.189871\pi\)
−0.827307 + 0.561749i \(0.810129\pi\)
\(128\) 201345.i 1.08621i
\(129\) 43957.3 0.232571
\(130\) 0 0
\(131\) 186798. 0.951027 0.475514 0.879708i \(-0.342262\pi\)
0.475514 + 0.879708i \(0.342262\pi\)
\(132\) − 5927.03i − 0.0296075i
\(133\) − 343410.i − 1.68339i
\(134\) −42348.0 −0.203737
\(135\) 0 0
\(136\) −232185. −1.07643
\(137\) 169640.i 0.772195i 0.922458 + 0.386098i \(0.126177\pi\)
−0.922458 + 0.386098i \(0.873823\pi\)
\(138\) 98687.4i 0.441128i
\(139\) −65860.1 −0.289125 −0.144562 0.989496i \(-0.546177\pi\)
−0.144562 + 0.989496i \(0.546177\pi\)
\(140\) 0 0
\(141\) −210118. −0.890053
\(142\) − 304133.i − 1.26574i
\(143\) − 37751.8i − 0.154382i
\(144\) −86924.2 −0.349329
\(145\) 0 0
\(146\) 500014. 1.94133
\(147\) 472149.i 1.80213i
\(148\) − 8540.34i − 0.0320495i
\(149\) 191843. 0.707914 0.353957 0.935262i \(-0.384836\pi\)
0.353957 + 0.935262i \(0.384836\pi\)
\(150\) 0 0
\(151\) −252918. −0.902687 −0.451343 0.892350i \(-0.649055\pi\)
−0.451343 + 0.892350i \(0.649055\pi\)
\(152\) − 258631.i − 0.907970i
\(153\) − 106376.i − 0.367381i
\(154\) 302446. 1.02765
\(155\) 0 0
\(156\) −4484.08 −0.0147524
\(157\) − 246156.i − 0.797007i −0.917167 0.398503i \(-0.869530\pi\)
0.917167 0.398503i \(-0.130470\pi\)
\(158\) − 263673.i − 0.840279i
\(159\) 216185. 0.678161
\(160\) 0 0
\(161\) −307129. −0.933806
\(162\) 193800.i 0.580185i
\(163\) − 487736.i − 1.43786i −0.695084 0.718929i \(-0.744633\pi\)
0.695084 0.718929i \(-0.255367\pi\)
\(164\) 20814.1 0.0604293
\(165\) 0 0
\(166\) 668080. 1.88173
\(167\) 336570.i 0.933866i 0.884293 + 0.466933i \(0.154641\pi\)
−0.884293 + 0.466933i \(0.845359\pi\)
\(168\) 517178.i 1.41373i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 118493. 0.309885
\(172\) − 7156.50i − 0.0184450i
\(173\) 290715.i 0.738502i 0.929330 + 0.369251i \(0.120386\pi\)
−0.929330 + 0.369251i \(0.879614\pi\)
\(174\) 124519. 0.311790
\(175\) 0 0
\(176\) 242636. 0.590438
\(177\) 152162.i 0.365067i
\(178\) 132497.i 0.313442i
\(179\) −293142. −0.683827 −0.341913 0.939732i \(-0.611075\pi\)
−0.341913 + 0.939732i \(0.611075\pi\)
\(180\) 0 0
\(181\) 74419.3 0.168845 0.0844227 0.996430i \(-0.473095\pi\)
0.0844227 + 0.996430i \(0.473095\pi\)
\(182\) − 228814.i − 0.512041i
\(183\) − 477695.i − 1.05444i
\(184\) −231307. −0.503668
\(185\) 0 0
\(186\) −632320. −1.34015
\(187\) 296935.i 0.620950i
\(188\) 34208.5i 0.0705893i
\(189\) −956431. −1.94760
\(190\) 0 0
\(191\) −464114. −0.920537 −0.460269 0.887780i \(-0.652247\pi\)
−0.460269 + 0.887780i \(0.652247\pi\)
\(192\) 387735.i 0.759070i
\(193\) 204016.i 0.394249i 0.980379 + 0.197124i \(0.0631602\pi\)
−0.980379 + 0.197124i \(0.936840\pi\)
\(194\) 629319. 1.20051
\(195\) 0 0
\(196\) 76868.5 0.142925
\(197\) − 792402.i − 1.45472i −0.686255 0.727361i \(-0.740747\pi\)
0.686255 0.727361i \(-0.259253\pi\)
\(198\) 104358.i 0.189174i
\(199\) 635602. 1.13776 0.568882 0.822419i \(-0.307376\pi\)
0.568882 + 0.822419i \(0.307376\pi\)
\(200\) 0 0
\(201\) −92608.6 −0.161682
\(202\) − 1.14448e6i − 1.97347i
\(203\) 387521.i 0.660017i
\(204\) 35269.3 0.0593364
\(205\) 0 0
\(206\) −985677. −1.61833
\(207\) − 105974.i − 0.171899i
\(208\) − 183566.i − 0.294194i
\(209\) −330755. −0.523770
\(210\) 0 0
\(211\) 590802. 0.913557 0.456779 0.889580i \(-0.349003\pi\)
0.456779 + 0.889580i \(0.349003\pi\)
\(212\) − 35196.2i − 0.0537843i
\(213\) − 665094.i − 1.00446i
\(214\) 403401. 0.602147
\(215\) 0 0
\(216\) −720313. −1.05048
\(217\) − 1.96787e6i − 2.83692i
\(218\) 185039.i 0.263707i
\(219\) 1.09345e6 1.54060
\(220\) 0 0
\(221\) 224645. 0.309397
\(222\) − 306228.i − 0.417025i
\(223\) 1.19025e6i 1.60279i 0.598139 + 0.801393i \(0.295907\pi\)
−0.598139 + 0.801393i \(0.704093\pi\)
\(224\) 174248. 0.232032
\(225\) 0 0
\(226\) −609282. −0.793500
\(227\) − 925858.i − 1.19256i −0.802777 0.596279i \(-0.796645\pi\)
0.802777 0.596279i \(-0.203355\pi\)
\(228\) 39286.4i 0.0500501i
\(229\) −989943. −1.24744 −0.623722 0.781646i \(-0.714380\pi\)
−0.623722 + 0.781646i \(0.714380\pi\)
\(230\) 0 0
\(231\) 661403. 0.815523
\(232\) 291852.i 0.355994i
\(233\) − 907234.i − 1.09479i −0.836876 0.547393i \(-0.815620\pi\)
0.836876 0.547393i \(-0.184380\pi\)
\(234\) 78951.7 0.0942588
\(235\) 0 0
\(236\) 24772.9 0.0289532
\(237\) − 576613.i − 0.666828i
\(238\) 1.79973e6i 2.05951i
\(239\) −702154. −0.795129 −0.397564 0.917574i \(-0.630144\pi\)
−0.397564 + 0.917574i \(0.630144\pi\)
\(240\) 0 0
\(241\) −631777. −0.700682 −0.350341 0.936622i \(-0.613934\pi\)
−0.350341 + 0.936622i \(0.613934\pi\)
\(242\) 648862.i 0.712220i
\(243\) − 578270.i − 0.628224i
\(244\) −77771.5 −0.0836269
\(245\) 0 0
\(246\) 746323. 0.786301
\(247\) 250232.i 0.260976i
\(248\) − 1.48205e6i − 1.53015i
\(249\) 1.46099e6 1.49331
\(250\) 0 0
\(251\) 655538. 0.656770 0.328385 0.944544i \(-0.393496\pi\)
0.328385 + 0.944544i \(0.393496\pi\)
\(252\) 38576.3i 0.0382665i
\(253\) 295811.i 0.290545i
\(254\) 1.19212e6 1.15941
\(255\) 0 0
\(256\) 203471. 0.194045
\(257\) − 1.90957e6i − 1.80344i −0.432320 0.901720i \(-0.642305\pi\)
0.432320 0.901720i \(-0.357695\pi\)
\(258\) − 256608.i − 0.240005i
\(259\) 953024. 0.882784
\(260\) 0 0
\(261\) −133713. −0.121499
\(262\) − 1.09046e6i − 0.981426i
\(263\) − 1.00173e6i − 0.893025i −0.894777 0.446512i \(-0.852666\pi\)
0.894777 0.446512i \(-0.147334\pi\)
\(264\) 498119. 0.439869
\(265\) 0 0
\(266\) −2.00471e6 −1.73719
\(267\) 289752.i 0.248741i
\(268\) 15077.2i 0.0128228i
\(269\) 298009. 0.251101 0.125551 0.992087i \(-0.459930\pi\)
0.125551 + 0.992087i \(0.459930\pi\)
\(270\) 0 0
\(271\) −505333. −0.417979 −0.208990 0.977918i \(-0.567017\pi\)
−0.208990 + 0.977918i \(0.567017\pi\)
\(272\) 1.44383e6i 1.18330i
\(273\) − 500382.i − 0.406345i
\(274\) 990303. 0.796878
\(275\) 0 0
\(276\) 35135.8 0.0277637
\(277\) 708331.i 0.554673i 0.960773 + 0.277337i \(0.0894517\pi\)
−0.960773 + 0.277337i \(0.910548\pi\)
\(278\) 384469.i 0.298366i
\(279\) 679008. 0.522233
\(280\) 0 0
\(281\) −1.37074e6 −1.03559 −0.517797 0.855503i \(-0.673248\pi\)
−0.517797 + 0.855503i \(0.673248\pi\)
\(282\) 1.22660e6i 0.918503i
\(283\) − 1.46799e6i − 1.08957i −0.838574 0.544787i \(-0.816610\pi\)
0.838574 0.544787i \(-0.183390\pi\)
\(284\) −108281. −0.0796631
\(285\) 0 0
\(286\) −220382. −0.159317
\(287\) 2.32266e6i 1.66449i
\(288\) 60123.6i 0.0427134i
\(289\) −347075. −0.244444
\(290\) 0 0
\(291\) 1.37623e6 0.952702
\(292\) − 178021.i − 0.122184i
\(293\) − 1.94491e6i − 1.32352i −0.749715 0.661760i \(-0.769810\pi\)
0.749715 0.661760i \(-0.230190\pi\)
\(294\) 2.75625e6 1.85973
\(295\) 0 0
\(296\) 717747. 0.476148
\(297\) 921186.i 0.605977i
\(298\) − 1.11992e6i − 0.730541i
\(299\) 223795. 0.144768
\(300\) 0 0
\(301\) 798600. 0.508058
\(302\) 1.47645e6i 0.931540i
\(303\) − 2.50281e6i − 1.56611i
\(304\) −1.60828e6 −0.998108
\(305\) 0 0
\(306\) −620990. −0.379124
\(307\) − 1.90204e6i − 1.15179i −0.817523 0.575896i \(-0.804653\pi\)
0.817523 0.575896i \(-0.195347\pi\)
\(308\) − 107680.i − 0.0646784i
\(309\) −2.15553e6 −1.28427
\(310\) 0 0
\(311\) 1.59136e6 0.932970 0.466485 0.884529i \(-0.345520\pi\)
0.466485 + 0.884529i \(0.345520\pi\)
\(312\) − 376851.i − 0.219171i
\(313\) 3.09137e6i 1.78357i 0.452459 + 0.891785i \(0.350547\pi\)
−0.452459 + 0.891785i \(0.649453\pi\)
\(314\) −1.43698e6 −0.822482
\(315\) 0 0
\(316\) −93876.0 −0.0528856
\(317\) − 953763.i − 0.533080i −0.963824 0.266540i \(-0.914120\pi\)
0.963824 0.266540i \(-0.0858804\pi\)
\(318\) − 1.26202e6i − 0.699837i
\(319\) 373241. 0.205358
\(320\) 0 0
\(321\) 882177. 0.477852
\(322\) 1.79292e6i 0.963654i
\(323\) − 1.96818e6i − 1.04969i
\(324\) 68999.0 0.0365158
\(325\) 0 0
\(326\) −2.84724e6 −1.48382
\(327\) 404653.i 0.209273i
\(328\) 1.74926e6i 0.897778i
\(329\) −3.81736e6 −1.94434
\(330\) 0 0
\(331\) −308119. −0.154578 −0.0772890 0.997009i \(-0.524626\pi\)
−0.0772890 + 0.997009i \(0.524626\pi\)
\(332\) − 237858.i − 0.118433i
\(333\) 328838.i 0.162507i
\(334\) 1.96479e6 0.963716
\(335\) 0 0
\(336\) 3.21603e6 1.55408
\(337\) 766929.i 0.367858i 0.982940 + 0.183929i \(0.0588817\pi\)
−0.982940 + 0.183929i \(0.941118\pi\)
\(338\) 166730.i 0.0793819i
\(339\) −1.33241e6 −0.629705
\(340\) 0 0
\(341\) −1.89535e6 −0.882682
\(342\) − 691721.i − 0.319790i
\(343\) 4.67978e6i 2.14778i
\(344\) 601446. 0.274032
\(345\) 0 0
\(346\) 1.69710e6 0.762108
\(347\) − 2.86866e6i − 1.27895i −0.768810 0.639477i \(-0.779151\pi\)
0.768810 0.639477i \(-0.220849\pi\)
\(348\) − 44332.7i − 0.0196235i
\(349\) 2.02182e6 0.888546 0.444273 0.895891i \(-0.353462\pi\)
0.444273 + 0.895891i \(0.353462\pi\)
\(350\) 0 0
\(351\) 696921. 0.301936
\(352\) − 167827.i − 0.0721945i
\(353\) − 2.28884e6i − 0.977638i −0.872385 0.488819i \(-0.837428\pi\)
0.872385 0.488819i \(-0.162572\pi\)
\(354\) 888271. 0.376736
\(355\) 0 0
\(356\) 47173.2 0.0197274
\(357\) 3.93573e6i 1.63439i
\(358\) 1.71127e6i 0.705684i
\(359\) −989244. −0.405105 −0.202552 0.979271i \(-0.564924\pi\)
−0.202552 + 0.979271i \(0.564924\pi\)
\(360\) 0 0
\(361\) −283739. −0.114591
\(362\) − 434435.i − 0.174242i
\(363\) 1.41896e6i 0.565203i
\(364\) −81465.2 −0.0322269
\(365\) 0 0
\(366\) −2.78862e6 −1.08815
\(367\) 216471.i 0.0838948i 0.999120 + 0.0419474i \(0.0133562\pi\)
−0.999120 + 0.0419474i \(0.986644\pi\)
\(368\) 1.43837e6i 0.553669i
\(369\) −801427. −0.306407
\(370\) 0 0
\(371\) 3.92757e6 1.48146
\(372\) 225126.i 0.0843468i
\(373\) − 1.42264e6i − 0.529448i −0.964324 0.264724i \(-0.914719\pi\)
0.964324 0.264724i \(-0.0852808\pi\)
\(374\) 1.73341e6 0.640798
\(375\) 0 0
\(376\) −2.87495e6 −1.04872
\(377\) − 282374.i − 0.102323i
\(378\) 5.58333e6i 2.00985i
\(379\) 3.44946e6 1.23354 0.616770 0.787144i \(-0.288441\pi\)
0.616770 + 0.787144i \(0.288441\pi\)
\(380\) 0 0
\(381\) 2.60699e6 0.920084
\(382\) 2.70935e6i 0.949962i
\(383\) − 1.77836e6i − 0.619474i −0.950822 0.309737i \(-0.899759\pi\)
0.950822 0.309737i \(-0.100241\pi\)
\(384\) 2.57038e6 0.889549
\(385\) 0 0
\(386\) 1.19098e6 0.406850
\(387\) 275555.i 0.0935255i
\(388\) − 224057.i − 0.0755579i
\(389\) −3.65001e6 −1.22298 −0.611491 0.791251i \(-0.709430\pi\)
−0.611491 + 0.791251i \(0.709430\pi\)
\(390\) 0 0
\(391\) −1.76025e6 −0.582280
\(392\) 6.46018e6i 2.12339i
\(393\) − 2.38468e6i − 0.778839i
\(394\) −4.62578e6 −1.50122
\(395\) 0 0
\(396\) 37154.7 0.0119063
\(397\) − 2.18400e6i − 0.695465i −0.937594 0.347733i \(-0.886952\pi\)
0.937594 0.347733i \(-0.113048\pi\)
\(398\) − 3.71043e6i − 1.17413i
\(399\) −4.38401e6 −1.37860
\(400\) 0 0
\(401\) 3.39990e6 1.05586 0.527929 0.849289i \(-0.322969\pi\)
0.527929 + 0.849289i \(0.322969\pi\)
\(402\) 540619.i 0.166850i
\(403\) 1.43392e6i 0.439808i
\(404\) −407472. −0.124206
\(405\) 0 0
\(406\) 2.26222e6 0.681114
\(407\) − 917905.i − 0.274670i
\(408\) 2.96410e6i 0.881540i
\(409\) 4.95079e6 1.46341 0.731705 0.681622i \(-0.238725\pi\)
0.731705 + 0.681622i \(0.238725\pi\)
\(410\) 0 0
\(411\) 2.16564e6 0.632386
\(412\) 350932.i 0.101855i
\(413\) 2.76443e6i 0.797498i
\(414\) −618641. −0.177394
\(415\) 0 0
\(416\) −126969. −0.0359719
\(417\) 840776.i 0.236777i
\(418\) 1.93084e6i 0.540512i
\(419\) −2.60913e6 −0.726040 −0.363020 0.931781i \(-0.618254\pi\)
−0.363020 + 0.931781i \(0.618254\pi\)
\(420\) 0 0
\(421\) 5.93872e6 1.63301 0.816503 0.577342i \(-0.195910\pi\)
0.816503 + 0.577342i \(0.195910\pi\)
\(422\) − 3.44891e6i − 0.942758i
\(423\) − 1.31717e6i − 0.357923i
\(424\) 2.95796e6 0.799056
\(425\) 0 0
\(426\) −3.88260e6 −1.03657
\(427\) − 8.67859e6i − 2.30345i
\(428\) − 143624.i − 0.0378980i
\(429\) −481943. −0.126431
\(430\) 0 0
\(431\) −5.74808e6 −1.49049 −0.745247 0.666789i \(-0.767668\pi\)
−0.745247 + 0.666789i \(0.767668\pi\)
\(432\) 4.47922e6i 1.15476i
\(433\) − 2.59160e6i − 0.664275i −0.943231 0.332137i \(-0.892230\pi\)
0.943231 0.332137i \(-0.107770\pi\)
\(434\) −1.14878e7 −2.92760
\(435\) 0 0
\(436\) 65879.8 0.0165972
\(437\) − 1.96074e6i − 0.491153i
\(438\) − 6.38323e6i − 1.58985i
\(439\) 765476. 0.189570 0.0947851 0.995498i \(-0.469784\pi\)
0.0947851 + 0.995498i \(0.469784\pi\)
\(440\) 0 0
\(441\) −2.95975e6 −0.724702
\(442\) − 1.31140e6i − 0.319286i
\(443\) 5.41714e6i 1.31148i 0.754988 + 0.655739i \(0.227643\pi\)
−0.754988 + 0.655739i \(0.772357\pi\)
\(444\) −109027. −0.0262468
\(445\) 0 0
\(446\) 6.94828e6 1.65402
\(447\) − 2.44909e6i − 0.579743i
\(448\) 7.04424e6i 1.65821i
\(449\) 1.21210e6 0.283742 0.141871 0.989885i \(-0.454688\pi\)
0.141871 + 0.989885i \(0.454688\pi\)
\(450\) 0 0
\(451\) 2.23707e6 0.517891
\(452\) 216924.i 0.0499414i
\(453\) 3.22877e6i 0.739251i
\(454\) −5.40485e6 −1.23068
\(455\) 0 0
\(456\) −3.30171e6 −0.743578
\(457\) 8.01067e6i 1.79423i 0.441796 + 0.897115i \(0.354341\pi\)
−0.441796 + 0.897115i \(0.645659\pi\)
\(458\) 5.77896e6i 1.28732i
\(459\) −5.48159e6 −1.21444
\(460\) 0 0
\(461\) −4.10263e6 −0.899105 −0.449552 0.893254i \(-0.648416\pi\)
−0.449552 + 0.893254i \(0.648416\pi\)
\(462\) − 3.86105e6i − 0.841590i
\(463\) 7.69493e6i 1.66822i 0.551601 + 0.834108i \(0.314017\pi\)
−0.551601 + 0.834108i \(0.685983\pi\)
\(464\) 1.81486e6 0.391335
\(465\) 0 0
\(466\) −5.29613e6 −1.12978
\(467\) 1.97041e6i 0.418086i 0.977906 + 0.209043i \(0.0670348\pi\)
−0.977906 + 0.209043i \(0.932965\pi\)
\(468\) − 28109.3i − 0.00593247i
\(469\) −1.68248e6 −0.353198
\(470\) 0 0
\(471\) −3.14246e6 −0.652705
\(472\) 2.08196e6i 0.430147i
\(473\) − 769171.i − 0.158078i
\(474\) −3.36608e6 −0.688143
\(475\) 0 0
\(476\) 640760. 0.129622
\(477\) 1.35520e6i 0.272713i
\(478\) 4.09894e6i 0.820544i
\(479\) −5.97974e6 −1.19081 −0.595407 0.803424i \(-0.703009\pi\)
−0.595407 + 0.803424i \(0.703009\pi\)
\(480\) 0 0
\(481\) −694438. −0.136858
\(482\) 3.68810e6i 0.723079i
\(483\) 3.92084e6i 0.764736i
\(484\) 231016. 0.0448258
\(485\) 0 0
\(486\) −3.37575e6 −0.648305
\(487\) − 3.79919e6i − 0.725887i −0.931811 0.362943i \(-0.881772\pi\)
0.931811 0.362943i \(-0.118228\pi\)
\(488\) − 6.53607e6i − 1.24242i
\(489\) −6.22649e6 −1.17753
\(490\) 0 0
\(491\) 4.33342e6 0.811199 0.405599 0.914051i \(-0.367063\pi\)
0.405599 + 0.914051i \(0.367063\pi\)
\(492\) − 265715.i − 0.0494883i
\(493\) 2.22100e6i 0.411558i
\(494\) 1.46077e6 0.269318
\(495\) 0 0
\(496\) −9.21605e6 −1.68206
\(497\) − 1.20832e7i − 2.19427i
\(498\) − 8.52877e6i − 1.54104i
\(499\) 2.99219e6 0.537945 0.268972 0.963148i \(-0.413316\pi\)
0.268972 + 0.963148i \(0.413316\pi\)
\(500\) 0 0
\(501\) 4.29669e6 0.764785
\(502\) − 3.82681e6i − 0.677763i
\(503\) 2.84092e6i 0.500656i 0.968161 + 0.250328i \(0.0805384\pi\)
−0.968161 + 0.250328i \(0.919462\pi\)
\(504\) −3.24203e6 −0.568513
\(505\) 0 0
\(506\) 1.72685e6 0.299832
\(507\) 364613.i 0.0629958i
\(508\) − 424434.i − 0.0729711i
\(509\) 7.05718e6 1.20736 0.603680 0.797227i \(-0.293700\pi\)
0.603680 + 0.797227i \(0.293700\pi\)
\(510\) 0 0
\(511\) 1.98655e7 3.36548
\(512\) 5.25523e6i 0.885965i
\(513\) − 6.10594e6i − 1.02438i
\(514\) −1.11474e7 −1.86109
\(515\) 0 0
\(516\) −91360.6 −0.0151055
\(517\) 3.67668e6i 0.604964i
\(518\) − 5.56344e6i − 0.911002i
\(519\) 3.71129e6 0.604793
\(520\) 0 0
\(521\) −6.86977e6 −1.10879 −0.554393 0.832255i \(-0.687050\pi\)
−0.554393 + 0.832255i \(0.687050\pi\)
\(522\) 780572.i 0.125382i
\(523\) 238445.i 0.0381183i 0.999818 + 0.0190592i \(0.00606709\pi\)
−0.999818 + 0.0190592i \(0.993933\pi\)
\(524\) −388239. −0.0617691
\(525\) 0 0
\(526\) −5.84780e6 −0.921569
\(527\) − 1.12784e7i − 1.76898i
\(528\) − 3.09752e6i − 0.483537i
\(529\) 4.68275e6 0.727549
\(530\) 0 0
\(531\) −953857. −0.146807
\(532\) 713742.i 0.109336i
\(533\) − 1.69245e6i − 0.258046i
\(534\) 1.69147e6 0.256692
\(535\) 0 0
\(536\) −1.26712e6 −0.190505
\(537\) 3.74228e6i 0.560017i
\(538\) − 1.73968e6i − 0.259127i
\(539\) 8.26173e6 1.22490
\(540\) 0 0
\(541\) −2.33837e6 −0.343495 −0.171747 0.985141i \(-0.554941\pi\)
−0.171747 + 0.985141i \(0.554941\pi\)
\(542\) 2.94997e6i 0.431340i
\(543\) − 950044.i − 0.138275i
\(544\) 998665. 0.144685
\(545\) 0 0
\(546\) −2.92107e6 −0.419334
\(547\) 1.02081e7i 1.45874i 0.684120 + 0.729370i \(0.260187\pi\)
−0.684120 + 0.729370i \(0.739813\pi\)
\(548\) − 352579.i − 0.0501540i
\(549\) 2.99452e6 0.424030
\(550\) 0 0
\(551\) −2.47397e6 −0.347148
\(552\) 2.95289e6i 0.412476i
\(553\) − 1.04757e7i − 1.45670i
\(554\) 4.13501e6 0.572403
\(555\) 0 0
\(556\) 136883. 0.0187786
\(557\) − 3.35038e6i − 0.457568i −0.973477 0.228784i \(-0.926525\pi\)
0.973477 0.228784i \(-0.0734749\pi\)
\(558\) − 3.96382e6i − 0.538925i
\(559\) −581914. −0.0787643
\(560\) 0 0
\(561\) 3.79069e6 0.508524
\(562\) 8.00193e6i 1.06870i
\(563\) 4.99891e6i 0.664667i 0.943162 + 0.332333i \(0.107836\pi\)
−0.943162 + 0.332333i \(0.892164\pi\)
\(564\) 436709. 0.0578088
\(565\) 0 0
\(566\) −8.56964e6 −1.12440
\(567\) 7.69967e6i 1.00581i
\(568\) − 9.10016e6i − 1.18353i
\(569\) −7.06035e6 −0.914209 −0.457105 0.889413i \(-0.651113\pi\)
−0.457105 + 0.889413i \(0.651113\pi\)
\(570\) 0 0
\(571\) 1.21226e7 1.55599 0.777994 0.628271i \(-0.216237\pi\)
0.777994 + 0.628271i \(0.216237\pi\)
\(572\) 78463.1i 0.0100271i
\(573\) 5.92493e6i 0.753870i
\(574\) 1.35589e7 1.71769
\(575\) 0 0
\(576\) −2.43059e6 −0.305250
\(577\) 1.26694e7i 1.58422i 0.610380 + 0.792109i \(0.291017\pi\)
−0.610380 + 0.792109i \(0.708983\pi\)
\(578\) 2.02611e6i 0.252257i
\(579\) 2.60448e6 0.322868
\(580\) 0 0
\(581\) 2.65427e7 3.26216
\(582\) − 8.03395e6i − 0.983154i
\(583\) − 3.78284e6i − 0.460942i
\(584\) 1.49612e7 1.81524
\(585\) 0 0
\(586\) −1.13538e7 −1.36583
\(587\) 1.25878e7i 1.50783i 0.656971 + 0.753916i \(0.271837\pi\)
−0.656971 + 0.753916i \(0.728163\pi\)
\(588\) − 981311.i − 0.117048i
\(589\) 1.25631e7 1.49213
\(590\) 0 0
\(591\) −1.01159e7 −1.19134
\(592\) − 4.46326e6i − 0.523417i
\(593\) − 1.42337e7i − 1.66219i −0.556130 0.831096i \(-0.687714\pi\)
0.556130 0.831096i \(-0.312286\pi\)
\(594\) 5.37758e6 0.625347
\(595\) 0 0
\(596\) −398726. −0.0459789
\(597\) − 8.11415e6i − 0.931767i
\(598\) − 1.30644e6i − 0.149395i
\(599\) −3.07901e6 −0.350626 −0.175313 0.984513i \(-0.556094\pi\)
−0.175313 + 0.984513i \(0.556094\pi\)
\(600\) 0 0
\(601\) 4.32299e6 0.488200 0.244100 0.969750i \(-0.421507\pi\)
0.244100 + 0.969750i \(0.421507\pi\)
\(602\) − 4.66197e6i − 0.524298i
\(603\) − 580535.i − 0.0650182i
\(604\) 525663. 0.0586294
\(605\) 0 0
\(606\) −1.46106e7 −1.61616
\(607\) − 1.65670e7i − 1.82503i −0.409038 0.912517i \(-0.634136\pi\)
0.409038 0.912517i \(-0.365864\pi\)
\(608\) 1.11241e6i 0.122041i
\(609\) 4.94713e6 0.540518
\(610\) 0 0
\(611\) 2.78158e6 0.301432
\(612\) 221092.i 0.0238613i
\(613\) 7.82552e6i 0.841128i 0.907263 + 0.420564i \(0.138168\pi\)
−0.907263 + 0.420564i \(0.861832\pi\)
\(614\) −1.11035e7 −1.18861
\(615\) 0 0
\(616\) 9.04966e6 0.960905
\(617\) 1.93061e6i 0.204165i 0.994776 + 0.102083i \(0.0325506\pi\)
−0.994776 + 0.102083i \(0.967449\pi\)
\(618\) 1.25833e7i 1.32532i
\(619\) −1.06583e7 −1.11805 −0.559024 0.829151i \(-0.688824\pi\)
−0.559024 + 0.829151i \(0.688824\pi\)
\(620\) 0 0
\(621\) −5.46086e6 −0.568240
\(622\) − 9.28984e6i − 0.962792i
\(623\) 5.26411e6i 0.543381i
\(624\) −2.34342e6 −0.240929
\(625\) 0 0
\(626\) 1.80464e7 1.84058
\(627\) 4.22245e6i 0.428939i
\(628\) 511610.i 0.0517655i
\(629\) 5.46207e6 0.550466
\(630\) 0 0
\(631\) 1.46286e7 1.46261 0.731307 0.682048i \(-0.238911\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(632\) − 7.88953e6i − 0.785703i
\(633\) − 7.54224e6i − 0.748154i
\(634\) −5.56775e6 −0.550119
\(635\) 0 0
\(636\) −449318. −0.0440464
\(637\) − 6.25039e6i − 0.610321i
\(638\) − 2.17886e6i − 0.211922i
\(639\) 4.16927e6 0.403931
\(640\) 0 0
\(641\) 7.89850e6 0.759275 0.379638 0.925135i \(-0.376049\pi\)
0.379638 + 0.925135i \(0.376049\pi\)
\(642\) − 5.14986e6i − 0.493126i
\(643\) 9.26854e6i 0.884064i 0.896999 + 0.442032i \(0.145742\pi\)
−0.896999 + 0.442032i \(0.854258\pi\)
\(644\) 638336. 0.0606505
\(645\) 0 0
\(646\) −1.14896e7 −1.08324
\(647\) − 6.76009e6i − 0.634880i −0.948278 0.317440i \(-0.897177\pi\)
0.948278 0.317440i \(-0.102823\pi\)
\(648\) 5.79881e6i 0.542502i
\(649\) 2.66256e6 0.248134
\(650\) 0 0
\(651\) −2.51220e7 −2.32328
\(652\) 1.01371e6i 0.0933887i
\(653\) − 1.61068e7i − 1.47818i −0.673609 0.739088i \(-0.735257\pi\)
0.673609 0.739088i \(-0.264743\pi\)
\(654\) 2.36223e6 0.215962
\(655\) 0 0
\(656\) 1.08776e7 0.986904
\(657\) 6.85453e6i 0.619533i
\(658\) 2.22845e7i 2.00649i
\(659\) 9.81974e6 0.880818 0.440409 0.897797i \(-0.354833\pi\)
0.440409 + 0.897797i \(0.354833\pi\)
\(660\) 0 0
\(661\) −1.14240e7 −1.01699 −0.508494 0.861066i \(-0.669797\pi\)
−0.508494 + 0.861066i \(0.669797\pi\)
\(662\) 1.79869e6i 0.159519i
\(663\) − 2.86784e6i − 0.253379i
\(664\) 1.99900e7 1.75952
\(665\) 0 0
\(666\) 1.91965e6 0.167701
\(667\) 2.21260e6i 0.192570i
\(668\) − 699526.i − 0.0606545i
\(669\) 1.51948e7 1.31259
\(670\) 0 0
\(671\) −8.35878e6 −0.716699
\(672\) − 2.22446e6i − 0.190021i
\(673\) − 1.41804e7i − 1.20684i −0.797422 0.603422i \(-0.793803\pi\)
0.797422 0.603422i \(-0.206197\pi\)
\(674\) 4.47708e6 0.379616
\(675\) 0 0
\(676\) 59361.0 0.00499614
\(677\) − 1.05474e7i − 0.884455i −0.896903 0.442228i \(-0.854188\pi\)
0.896903 0.442228i \(-0.145812\pi\)
\(678\) 7.77815e6i 0.649833i
\(679\) 2.50028e7 2.08120
\(680\) 0 0
\(681\) −1.18196e7 −0.976641
\(682\) 1.10644e7i 0.910896i
\(683\) − 8.95552e6i − 0.734580i −0.930107 0.367290i \(-0.880286\pi\)
0.930107 0.367290i \(-0.119714\pi\)
\(684\) −246274. −0.0201270
\(685\) 0 0
\(686\) 2.73190e7 2.21644
\(687\) 1.26377e7i 1.02159i
\(688\) − 3.74005e6i − 0.301236i
\(689\) −2.86190e6 −0.229671
\(690\) 0 0
\(691\) −614647. −0.0489700 −0.0244850 0.999700i \(-0.507795\pi\)
−0.0244850 + 0.999700i \(0.507795\pi\)
\(692\) − 604220.i − 0.0479656i
\(693\) 4.14613e6i 0.327952i
\(694\) −1.67463e7 −1.31984
\(695\) 0 0
\(696\) 3.72581e6 0.291540
\(697\) 1.33119e7i 1.03790i
\(698\) − 1.18027e7i − 0.916947i
\(699\) −1.15818e7 −0.896570
\(700\) 0 0
\(701\) 1.38233e6 0.106247 0.0531235 0.998588i \(-0.483082\pi\)
0.0531235 + 0.998588i \(0.483082\pi\)
\(702\) − 4.06839e6i − 0.311588i
\(703\) 6.08419e6i 0.464317i
\(704\) 6.78465e6 0.515936
\(705\) 0 0
\(706\) −1.33615e7 −1.00889
\(707\) − 4.54702e7i − 3.42120i
\(708\) − 316253.i − 0.0237111i
\(709\) −8.21660e6 −0.613870 −0.306935 0.951730i \(-0.599303\pi\)
−0.306935 + 0.951730i \(0.599303\pi\)
\(710\) 0 0
\(711\) 3.61461e6 0.268156
\(712\) 3.96453e6i 0.293084i
\(713\) − 1.12358e7i − 0.827713i
\(714\) 2.29755e7 1.68663
\(715\) 0 0
\(716\) 609266. 0.0444144
\(717\) 8.96376e6i 0.651167i
\(718\) 5.77488e6i 0.418054i
\(719\) −2.34126e7 −1.68899 −0.844496 0.535562i \(-0.820100\pi\)
−0.844496 + 0.535562i \(0.820100\pi\)
\(720\) 0 0
\(721\) −3.91609e7 −2.80552
\(722\) 1.65638e6i 0.118254i
\(723\) 8.06532e6i 0.573821i
\(724\) −154673. −0.0109665
\(725\) 0 0
\(726\) 8.28344e6 0.583269
\(727\) 1.33689e7i 0.938122i 0.883166 + 0.469061i \(0.155408\pi\)
−0.883166 + 0.469061i \(0.844592\pi\)
\(728\) − 6.84649e6i − 0.478784i
\(729\) −1.54494e7 −1.07670
\(730\) 0 0
\(731\) 4.57701e6 0.316803
\(732\) 992839.i 0.0684859i
\(733\) − 1.68737e7i − 1.15998i −0.814625 0.579988i \(-0.803057\pi\)
0.814625 0.579988i \(-0.196943\pi\)
\(734\) 1.26369e6 0.0865764
\(735\) 0 0
\(736\) 994888. 0.0676986
\(737\) 1.62048e6i 0.109894i
\(738\) 4.67847e6i 0.316201i
\(739\) 7.20516e6 0.485325 0.242663 0.970111i \(-0.421979\pi\)
0.242663 + 0.970111i \(0.421979\pi\)
\(740\) 0 0
\(741\) 3.19448e6 0.213725
\(742\) − 2.29279e7i − 1.52881i
\(743\) − 2.32904e7i − 1.54777i −0.633328 0.773883i \(-0.718312\pi\)
0.633328 0.773883i \(-0.281688\pi\)
\(744\) −1.89200e7 −1.25311
\(745\) 0 0
\(746\) −8.30490e6 −0.546371
\(747\) 9.15849e6i 0.600513i
\(748\) − 617147.i − 0.0403306i
\(749\) 1.60271e7 1.04388
\(750\) 0 0
\(751\) 2.64679e7 1.71246 0.856228 0.516599i \(-0.172802\pi\)
0.856228 + 0.516599i \(0.172802\pi\)
\(752\) 1.78777e7i 1.15283i
\(753\) − 8.36866e6i − 0.537859i
\(754\) −1.64841e6 −0.105593
\(755\) 0 0
\(756\) 1.98784e6 0.126496
\(757\) − 1.34842e7i − 0.855234i −0.903960 0.427617i \(-0.859353\pi\)
0.903960 0.427617i \(-0.140647\pi\)
\(758\) − 2.01368e7i − 1.27297i
\(759\) 3.77636e6 0.237941
\(760\) 0 0
\(761\) 5.97967e6 0.374296 0.187148 0.982332i \(-0.440076\pi\)
0.187148 + 0.982332i \(0.440076\pi\)
\(762\) − 1.52188e7i − 0.949494i
\(763\) 7.35159e6i 0.457162i
\(764\) 964613. 0.0597888
\(765\) 0 0
\(766\) −1.03815e7 −0.639275
\(767\) − 2.01435e6i − 0.123636i
\(768\) − 2.59753e6i − 0.158913i
\(769\) −1.49826e7 −0.913634 −0.456817 0.889561i \(-0.651011\pi\)
−0.456817 + 0.889561i \(0.651011\pi\)
\(770\) 0 0
\(771\) −2.43777e7 −1.47692
\(772\) − 424025.i − 0.0256064i
\(773\) 2.52693e7i 1.52106i 0.649305 + 0.760528i \(0.275060\pi\)
−0.649305 + 0.760528i \(0.724940\pi\)
\(774\) 1.60860e6 0.0965150
\(775\) 0 0
\(776\) 1.88302e7 1.12254
\(777\) − 1.21664e7i − 0.722952i
\(778\) 2.13076e7i 1.26207i
\(779\) −1.48281e7 −0.875470
\(780\) 0 0
\(781\) −1.16379e7 −0.682728
\(782\) 1.02758e7i 0.600892i
\(783\) 6.89025e6i 0.401634i
\(784\) 4.01722e7 2.33419
\(785\) 0 0
\(786\) −1.39209e7 −0.803734
\(787\) − 2.44969e7i − 1.40985i −0.709280 0.704927i \(-0.750980\pi\)
0.709280 0.704927i \(-0.249020\pi\)
\(788\) 1.64692e6i 0.0944840i
\(789\) −1.27882e7 −0.731339
\(790\) 0 0
\(791\) −2.42067e7 −1.37561
\(792\) 3.12256e6i 0.176888i
\(793\) 6.32381e6i 0.357105i
\(794\) −1.27494e7 −0.717695
\(795\) 0 0
\(796\) −1.32103e6 −0.0738976
\(797\) 1.45189e7i 0.809633i 0.914398 + 0.404817i \(0.132665\pi\)
−0.914398 + 0.404817i \(0.867335\pi\)
\(798\) 2.55924e7i 1.42267i
\(799\) −2.18784e7 −1.21241
\(800\) 0 0
\(801\) −1.81636e6 −0.100028
\(802\) − 1.98475e7i − 1.08961i
\(803\) − 1.91335e7i − 1.04714i
\(804\) 192477. 0.0105012
\(805\) 0 0
\(806\) 8.37078e6 0.453866
\(807\) − 3.80441e6i − 0.205638i
\(808\) − 3.42447e7i − 1.84529i
\(809\) 2.54949e6 0.136956 0.0684781 0.997653i \(-0.478186\pi\)
0.0684781 + 0.997653i \(0.478186\pi\)
\(810\) 0 0
\(811\) −2.28468e7 −1.21976 −0.609880 0.792494i \(-0.708782\pi\)
−0.609880 + 0.792494i \(0.708782\pi\)
\(812\) − 805422.i − 0.0428680i
\(813\) 6.45114e6i 0.342302i
\(814\) −5.35843e6 −0.283450
\(815\) 0 0
\(816\) 1.84320e7 0.969054
\(817\) 5.09833e6i 0.267223i
\(818\) − 2.89011e7i − 1.51019i
\(819\) 3.13674e6 0.163406
\(820\) 0 0
\(821\) −1.97995e7 −1.02517 −0.512584 0.858637i \(-0.671312\pi\)
−0.512584 + 0.858637i \(0.671312\pi\)
\(822\) − 1.26423e7i − 0.652599i
\(823\) 2.65781e7i 1.36781i 0.729572 + 0.683904i \(0.239719\pi\)
−0.729572 + 0.683904i \(0.760281\pi\)
\(824\) −2.94930e7 −1.51322
\(825\) 0 0
\(826\) 1.61378e7 0.822990
\(827\) 2.68344e7i 1.36436i 0.731186 + 0.682178i \(0.238967\pi\)
−0.731186 + 0.682178i \(0.761033\pi\)
\(828\) 220256.i 0.0111648i
\(829\) −5.90654e6 −0.298502 −0.149251 0.988799i \(-0.547686\pi\)
−0.149251 + 0.988799i \(0.547686\pi\)
\(830\) 0 0
\(831\) 9.04263e6 0.454247
\(832\) − 5.13291e6i − 0.257072i
\(833\) 4.91621e7i 2.45481i
\(834\) 4.90817e6 0.244346
\(835\) 0 0
\(836\) 687440. 0.0340188
\(837\) − 3.49894e7i − 1.72632i
\(838\) 1.52312e7i 0.749247i
\(839\) −2.72137e7 −1.33470 −0.667350 0.744745i \(-0.732571\pi\)
−0.667350 + 0.744745i \(0.732571\pi\)
\(840\) 0 0
\(841\) −1.77194e7 −0.863891
\(842\) − 3.46683e7i − 1.68520i
\(843\) 1.74990e7i 0.848095i
\(844\) −1.22792e6 −0.0593354
\(845\) 0 0
\(846\) −7.68918e6 −0.369364
\(847\) 2.57792e7i 1.23470i
\(848\) − 1.83938e7i − 0.878381i
\(849\) −1.87405e7 −0.892302
\(850\) 0 0
\(851\) 5.44140e6 0.257565
\(852\) 1.38233e6i 0.0652397i
\(853\) 2.41385e7i 1.13589i 0.823066 + 0.567946i \(0.192262\pi\)
−0.823066 + 0.567946i \(0.807738\pi\)
\(854\) −5.06628e7 −2.37708
\(855\) 0 0
\(856\) 1.20704e7 0.563038
\(857\) 4.27143e7i 1.98665i 0.115351 + 0.993325i \(0.463201\pi\)
−0.115351 + 0.993325i \(0.536799\pi\)
\(858\) 2.81342e6i 0.130472i
\(859\) 1.60393e7 0.741657 0.370828 0.928701i \(-0.379074\pi\)
0.370828 + 0.928701i \(0.379074\pi\)
\(860\) 0 0
\(861\) 2.96513e7 1.36313
\(862\) 3.35554e7i 1.53814i
\(863\) 2.63477e7i 1.20425i 0.798403 + 0.602124i \(0.205679\pi\)
−0.798403 + 0.602124i \(0.794321\pi\)
\(864\) 3.09818e6 0.141196
\(865\) 0 0
\(866\) −1.51289e7 −0.685508
\(867\) 4.43080e6i 0.200186i
\(868\) 4.09001e6i 0.184258i
\(869\) −1.00897e7 −0.453240
\(870\) 0 0
\(871\) 1.22597e6 0.0547564
\(872\) 5.53667e6i 0.246580i
\(873\) 8.62713e6i 0.383117i
\(874\) −1.14462e7 −0.506852
\(875\) 0 0
\(876\) −2.27263e6 −0.100062
\(877\) − 2.76379e6i − 0.121341i −0.998158 0.0606704i \(-0.980676\pi\)
0.998158 0.0606704i \(-0.0193238\pi\)
\(878\) − 4.46860e6i − 0.195630i
\(879\) −2.48289e7 −1.08389
\(880\) 0 0
\(881\) −2.52826e7 −1.09744 −0.548722 0.836005i \(-0.684886\pi\)
−0.548722 + 0.836005i \(0.684886\pi\)
\(882\) 1.72781e7i 0.747866i
\(883\) − 2.46984e7i − 1.06602i −0.846108 0.533012i \(-0.821060\pi\)
0.846108 0.533012i \(-0.178940\pi\)
\(884\) −466901. −0.0200953
\(885\) 0 0
\(886\) 3.16235e7 1.35340
\(887\) 2.74349e7i 1.17083i 0.810734 + 0.585415i \(0.199068\pi\)
−0.810734 + 0.585415i \(0.800932\pi\)
\(888\) − 9.16283e6i − 0.389939i
\(889\) 4.73630e7 2.00995
\(890\) 0 0
\(891\) 7.41593e6 0.312947
\(892\) − 2.47381e6i − 0.104101i
\(893\) − 2.43703e7i − 1.02266i
\(894\) −1.42970e7 −0.598274
\(895\) 0 0
\(896\) 4.66979e7 1.94324
\(897\) − 2.85699e6i − 0.118557i
\(898\) − 7.07587e6i − 0.292812i
\(899\) −1.41768e7 −0.585030
\(900\) 0 0
\(901\) 2.25101e7 0.923773
\(902\) − 1.30593e7i − 0.534445i
\(903\) − 1.01950e7i − 0.416072i
\(904\) −1.82307e7 −0.741962
\(905\) 0 0
\(906\) 1.88485e7 0.762881
\(907\) 3.72957e7i 1.50536i 0.658386 + 0.752681i \(0.271240\pi\)
−0.658386 + 0.752681i \(0.728760\pi\)
\(908\) 1.92430e6i 0.0774565i
\(909\) 1.56893e7 0.629789
\(910\) 0 0
\(911\) 4.32029e7 1.72471 0.862356 0.506302i \(-0.168988\pi\)
0.862356 + 0.506302i \(0.168988\pi\)
\(912\) 2.05314e7i 0.817396i
\(913\) − 2.55646e7i − 1.01499i
\(914\) 4.67637e7 1.85158
\(915\) 0 0
\(916\) 2.05749e6 0.0810214
\(917\) − 4.33240e7i − 1.70139i
\(918\) 3.19997e7i 1.25326i
\(919\) −2.00349e7 −0.782526 −0.391263 0.920279i \(-0.627962\pi\)
−0.391263 + 0.920279i \(0.627962\pi\)
\(920\) 0 0
\(921\) −2.42816e7 −0.943254
\(922\) 2.39498e7i 0.927844i
\(923\) 8.80463e6i 0.340179i
\(924\) −1.37466e6 −0.0529681
\(925\) 0 0
\(926\) 4.49205e7 1.72154
\(927\) − 1.35123e7i − 0.516453i
\(928\) − 1.25530e6i − 0.0478496i
\(929\) 2.77906e7 1.05647 0.528237 0.849097i \(-0.322853\pi\)
0.528237 + 0.849097i \(0.322853\pi\)
\(930\) 0 0
\(931\) −5.47616e7 −2.07063
\(932\) 1.88559e6i 0.0711062i
\(933\) − 2.03155e7i − 0.764052i
\(934\) 1.15026e7 0.431449
\(935\) 0 0
\(936\) 2.36236e6 0.0881367
\(937\) − 296766.i − 0.0110425i −0.999985 0.00552123i \(-0.998243\pi\)
0.999985 0.00552123i \(-0.00175747\pi\)
\(938\) 9.82177e6i 0.364488i
\(939\) 3.94647e7 1.46065
\(940\) 0 0
\(941\) −1.24096e7 −0.456861 −0.228431 0.973560i \(-0.573359\pi\)
−0.228431 + 0.973560i \(0.573359\pi\)
\(942\) 1.83446e7i 0.673568i
\(943\) 1.32615e7i 0.485639i
\(944\) 1.29465e7 0.472850
\(945\) 0 0
\(946\) −4.49017e6 −0.163130
\(947\) 2.07818e7i 0.753021i 0.926412 + 0.376511i \(0.122876\pi\)
−0.926412 + 0.376511i \(0.877124\pi\)
\(948\) 1.19843e6i 0.0433104i
\(949\) −1.44754e7 −0.521752
\(950\) 0 0
\(951\) −1.21758e7 −0.436563
\(952\) 5.38507e7i 1.92575i
\(953\) − 4.37556e7i − 1.56064i −0.625383 0.780318i \(-0.715057\pi\)
0.625383 0.780318i \(-0.284943\pi\)
\(954\) 7.91119e6 0.281430
\(955\) 0 0
\(956\) 1.45935e6 0.0516435
\(957\) − 4.76483e6i − 0.168177i
\(958\) 3.49078e7i 1.22888i
\(959\) 3.93446e7 1.38146
\(960\) 0 0
\(961\) 4.33620e7 1.51461
\(962\) 4.05390e6i 0.141233i
\(963\) 5.53010e6i 0.192162i
\(964\) 1.31308e6 0.0455092
\(965\) 0 0
\(966\) 2.28886e7 0.789180
\(967\) 2.96578e7i 1.01994i 0.860193 + 0.509968i \(0.170343\pi\)
−0.860193 + 0.509968i \(0.829657\pi\)
\(968\) 1.94150e7i 0.665961i
\(969\) −2.51260e7 −0.859636
\(970\) 0 0
\(971\) 2.43354e7 0.828304 0.414152 0.910208i \(-0.364078\pi\)
0.414152 + 0.910208i \(0.364078\pi\)
\(972\) 1.20187e6i 0.0408031i
\(973\) 1.52749e7i 0.517246i
\(974\) −2.21784e7 −0.749089
\(975\) 0 0
\(976\) −4.06441e7 −1.36576
\(977\) − 1.45469e7i − 0.487566i −0.969830 0.243783i \(-0.921612\pi\)
0.969830 0.243783i \(-0.0783884\pi\)
\(978\) 3.63482e7i 1.21517i
\(979\) 5.07012e6 0.169068
\(980\) 0 0
\(981\) −2.53664e6 −0.0841563
\(982\) − 2.52971e7i − 0.837128i
\(983\) 8.32905e6i 0.274924i 0.990507 + 0.137462i \(0.0438944\pi\)
−0.990507 + 0.137462i \(0.956106\pi\)
\(984\) 2.23312e7 0.735231
\(985\) 0 0
\(986\) 1.29655e7 0.424713
\(987\) 4.87327e7i 1.59231i
\(988\) − 520081.i − 0.0169503i
\(989\) 4.55970e6 0.148233
\(990\) 0 0
\(991\) −1.94665e6 −0.0629657 −0.0314828 0.999504i \(-0.510023\pi\)
−0.0314828 + 0.999504i \(0.510023\pi\)
\(992\) 6.37455e6i 0.205670i
\(993\) 3.93347e6i 0.126591i
\(994\) −7.05377e7 −2.26441
\(995\) 0 0
\(996\) −3.03651e6 −0.0969900
\(997\) 728335.i 0.0232056i 0.999933 + 0.0116028i \(0.00369337\pi\)
−0.999933 + 0.0116028i \(0.996307\pi\)
\(998\) − 1.74674e7i − 0.555140i
\(999\) 1.69451e7 0.537192
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.i.274.7 22
5.2 odd 4 325.6.a.k.1.8 yes 11
5.3 odd 4 325.6.a.j.1.4 11
5.4 even 2 inner 325.6.b.i.274.16 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.4 11 5.3 odd 4
325.6.a.k.1.8 yes 11 5.2 odd 4
325.6.b.i.274.7 22 1.1 even 1 trivial
325.6.b.i.274.16 22 5.4 even 2 inner