Properties

Label 325.6.b.i.274.6
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.6
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.i.274.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.84001i q^{2} +12.3562i q^{3} -2.10573 q^{4} +72.1603 q^{6} -135.041i q^{7} -174.583i q^{8} +90.3246 q^{9} +O(q^{10})\) \(q-5.84001i q^{2} +12.3562i q^{3} -2.10573 q^{4} +72.1603 q^{6} -135.041i q^{7} -174.583i q^{8} +90.3246 q^{9} +564.387 q^{11} -26.0188i q^{12} -169.000i q^{13} -788.641 q^{14} -1086.95 q^{16} -1449.57i q^{17} -527.496i q^{18} +530.407 q^{19} +1668.59 q^{21} -3296.03i q^{22} +4715.23i q^{23} +2157.18 q^{24} -986.962 q^{26} +4118.62i q^{27} +284.360i q^{28} -3322.19 q^{29} +1863.25 q^{31} +761.144i q^{32} +6973.68i q^{33} -8465.52 q^{34} -190.199 q^{36} -10222.0i q^{37} -3097.58i q^{38} +2088.20 q^{39} -17960.2 q^{41} -9744.60i q^{42} +7561.88i q^{43} -1188.45 q^{44} +27537.0 q^{46} -24045.4i q^{47} -13430.6i q^{48} -1429.08 q^{49} +17911.2 q^{51} +355.868i q^{52} -5497.17i q^{53} +24052.8 q^{54} -23575.9 q^{56} +6553.80i q^{57} +19401.6i q^{58} +45424.9 q^{59} +29346.1 q^{61} -10881.4i q^{62} -12197.5i q^{63} -30337.3 q^{64} +40726.4 q^{66} -69953.5i q^{67} +3052.41i q^{68} -58262.3 q^{69} +49147.7 q^{71} -15769.1i q^{72} -41342.1i q^{73} -59696.3 q^{74} -1116.89 q^{76} -76215.5i q^{77} -12195.1i q^{78} -48493.3 q^{79} -28941.6 q^{81} +104888. i q^{82} -106062. i q^{83} -3513.61 q^{84} +44161.5 q^{86} -41049.6i q^{87} -98532.4i q^{88} +23361.1 q^{89} -22821.9 q^{91} -9929.00i q^{92} +23022.6i q^{93} -140425. q^{94} -9404.84 q^{96} +77533.3i q^{97} +8345.84i q^{98} +50978.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9} + 2552 q^{11} - 1156 q^{14} + 11414 q^{16} - 7040 q^{19} + 3412 q^{21} - 15446 q^{24} + 1690 q^{26} - 36850 q^{29} + 18136 q^{31} + 28910 q^{34} + 75368 q^{36} - 3718 q^{39} - 20020 q^{41} - 121302 q^{44} - 19716 q^{46} - 146626 q^{49} + 73212 q^{51} - 96026 q^{54} - 2524 q^{56} - 263284 q^{59} - 86730 q^{61} - 360142 q^{64} - 117214 q^{66} - 118690 q^{69} + 136840 q^{71} - 742792 q^{74} + 45034 q^{76} - 104478 q^{79} + 215014 q^{81} - 1705432 q^{84} + 404492 q^{86} - 655424 q^{89} + 70304 q^{91} - 1299948 q^{94} + 1799326 q^{96} - 853396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 5.84001i − 1.03238i −0.856475 0.516189i \(-0.827350\pi\)
0.856475 0.516189i \(-0.172650\pi\)
\(3\) 12.3562i 0.792650i 0.918110 + 0.396325i \(0.129715\pi\)
−0.918110 + 0.396325i \(0.870285\pi\)
\(4\) −2.10573 −0.0658041
\(5\) 0 0
\(6\) 72.1603 0.818314
\(7\) − 135.041i − 1.04165i −0.853664 0.520824i \(-0.825625\pi\)
0.853664 0.520824i \(-0.174375\pi\)
\(8\) − 174.583i − 0.964443i
\(9\) 90.3246 0.371706
\(10\) 0 0
\(11\) 564.387 1.40636 0.703179 0.711013i \(-0.251763\pi\)
0.703179 + 0.711013i \(0.251763\pi\)
\(12\) − 26.0188i − 0.0521596i
\(13\) − 169.000i − 0.277350i
\(14\) −788.641 −1.07537
\(15\) 0 0
\(16\) −1086.95 −1.06147
\(17\) − 1449.57i − 1.21652i −0.793740 0.608258i \(-0.791869\pi\)
0.793740 0.608258i \(-0.208131\pi\)
\(18\) − 527.496i − 0.383741i
\(19\) 530.407 0.337074 0.168537 0.985695i \(-0.446096\pi\)
0.168537 + 0.985695i \(0.446096\pi\)
\(20\) 0 0
\(21\) 1668.59 0.825662
\(22\) − 3296.03i − 1.45189i
\(23\) 4715.23i 1.85859i 0.369341 + 0.929294i \(0.379584\pi\)
−0.369341 + 0.929294i \(0.620416\pi\)
\(24\) 2157.18 0.764466
\(25\) 0 0
\(26\) −986.962 −0.286330
\(27\) 4118.62i 1.08728i
\(28\) 284.360i 0.0685446i
\(29\) −3322.19 −0.733549 −0.366774 0.930310i \(-0.619538\pi\)
−0.366774 + 0.930310i \(0.619538\pi\)
\(30\) 0 0
\(31\) 1863.25 0.348230 0.174115 0.984725i \(-0.444294\pi\)
0.174115 + 0.984725i \(0.444294\pi\)
\(32\) 761.144i 0.131399i
\(33\) 6973.68i 1.11475i
\(34\) −8465.52 −1.25590
\(35\) 0 0
\(36\) −190.199 −0.0244598
\(37\) − 10222.0i − 1.22752i −0.789491 0.613762i \(-0.789656\pi\)
0.789491 0.613762i \(-0.210344\pi\)
\(38\) − 3097.58i − 0.347987i
\(39\) 2088.20 0.219842
\(40\) 0 0
\(41\) −17960.2 −1.66859 −0.834297 0.551315i \(-0.814126\pi\)
−0.834297 + 0.551315i \(0.814126\pi\)
\(42\) − 9744.60i − 0.852395i
\(43\) 7561.88i 0.623675i 0.950135 + 0.311838i \(0.100945\pi\)
−0.950135 + 0.311838i \(0.899055\pi\)
\(44\) −1188.45 −0.0925440
\(45\) 0 0
\(46\) 27537.0 1.91877
\(47\) − 24045.4i − 1.58777i −0.608069 0.793884i \(-0.708056\pi\)
0.608069 0.793884i \(-0.291944\pi\)
\(48\) − 13430.6i − 0.841377i
\(49\) −1429.08 −0.0850288
\(50\) 0 0
\(51\) 17911.2 0.964271
\(52\) 355.868i 0.0182508i
\(53\) − 5497.17i − 0.268812i −0.990926 0.134406i \(-0.957087\pi\)
0.990926 0.134406i \(-0.0429127\pi\)
\(54\) 24052.8 1.12249
\(55\) 0 0
\(56\) −23575.9 −1.00461
\(57\) 6553.80i 0.267181i
\(58\) 19401.6i 0.757299i
\(59\) 45424.9 1.69889 0.849443 0.527680i \(-0.176938\pi\)
0.849443 + 0.527680i \(0.176938\pi\)
\(60\) 0 0
\(61\) 29346.1 1.00978 0.504889 0.863185i \(-0.331534\pi\)
0.504889 + 0.863185i \(0.331534\pi\)
\(62\) − 10881.4i − 0.359505i
\(63\) − 12197.5i − 0.387186i
\(64\) −30337.3 −0.925821
\(65\) 0 0
\(66\) 40726.4 1.15084
\(67\) − 69953.5i − 1.90381i −0.306399 0.951903i \(-0.599124\pi\)
0.306399 0.951903i \(-0.400876\pi\)
\(68\) 3052.41i 0.0800517i
\(69\) −58262.3 −1.47321
\(70\) 0 0
\(71\) 49147.7 1.15706 0.578532 0.815659i \(-0.303626\pi\)
0.578532 + 0.815659i \(0.303626\pi\)
\(72\) − 15769.1i − 0.358489i
\(73\) − 41342.1i − 0.907999i −0.891002 0.454000i \(-0.849997\pi\)
0.891002 0.454000i \(-0.150003\pi\)
\(74\) −59696.3 −1.26727
\(75\) 0 0
\(76\) −1116.89 −0.0221808
\(77\) − 76215.5i − 1.46493i
\(78\) − 12195.1i − 0.226960i
\(79\) −48493.3 −0.874207 −0.437104 0.899411i \(-0.643996\pi\)
−0.437104 + 0.899411i \(0.643996\pi\)
\(80\) 0 0
\(81\) −28941.6 −0.490129
\(82\) 104888.i 1.72262i
\(83\) − 106062.i − 1.68991i −0.534834 0.844957i \(-0.679626\pi\)
0.534834 0.844957i \(-0.320374\pi\)
\(84\) −3513.61 −0.0543319
\(85\) 0 0
\(86\) 44161.5 0.643869
\(87\) − 41049.6i − 0.581447i
\(88\) − 98532.4i − 1.35635i
\(89\) 23361.1 0.312621 0.156311 0.987708i \(-0.450040\pi\)
0.156311 + 0.987708i \(0.450040\pi\)
\(90\) 0 0
\(91\) −22821.9 −0.288901
\(92\) − 9929.00i − 0.122303i
\(93\) 23022.6i 0.276025i
\(94\) −140425. −1.63918
\(95\) 0 0
\(96\) −9404.84 −0.104153
\(97\) 77533.3i 0.836679i 0.908291 + 0.418340i \(0.137388\pi\)
−0.908291 + 0.418340i \(0.862612\pi\)
\(98\) 8345.84i 0.0877818i
\(99\) 50978.0 0.522751
\(100\) 0 0
\(101\) −90450.2 −0.882279 −0.441140 0.897438i \(-0.645426\pi\)
−0.441140 + 0.897438i \(0.645426\pi\)
\(102\) − 104602.i − 0.995492i
\(103\) 51829.2i 0.481373i 0.970603 + 0.240686i \(0.0773725\pi\)
−0.970603 + 0.240686i \(0.922628\pi\)
\(104\) −29504.5 −0.267488
\(105\) 0 0
\(106\) −32103.5 −0.277516
\(107\) 143602.i 1.21255i 0.795254 + 0.606277i \(0.207338\pi\)
−0.795254 + 0.606277i \(0.792662\pi\)
\(108\) − 8672.70i − 0.0715476i
\(109\) −67227.5 −0.541977 −0.270989 0.962583i \(-0.587351\pi\)
−0.270989 + 0.962583i \(0.587351\pi\)
\(110\) 0 0
\(111\) 126304. 0.972996
\(112\) 146783.i 1.10568i
\(113\) − 8555.23i − 0.0630283i −0.999503 0.0315142i \(-0.989967\pi\)
0.999503 0.0315142i \(-0.0100329\pi\)
\(114\) 38274.3 0.275832
\(115\) 0 0
\(116\) 6995.63 0.0482705
\(117\) − 15264.9i − 0.103093i
\(118\) − 265282.i − 1.75389i
\(119\) −195752. −1.26718
\(120\) 0 0
\(121\) 157482. 0.977841
\(122\) − 171381.i − 1.04247i
\(123\) − 221919.i − 1.32261i
\(124\) −3923.50 −0.0229150
\(125\) 0 0
\(126\) −71233.7 −0.399723
\(127\) 203972.i 1.12218i 0.827755 + 0.561089i \(0.189618\pi\)
−0.827755 + 0.561089i \(0.810382\pi\)
\(128\) 201527.i 1.08720i
\(129\) −93436.0 −0.494356
\(130\) 0 0
\(131\) −121053. −0.616308 −0.308154 0.951336i \(-0.599711\pi\)
−0.308154 + 0.951336i \(0.599711\pi\)
\(132\) − 14684.7i − 0.0733550i
\(133\) − 71626.6i − 0.351112i
\(134\) −408529. −1.96545
\(135\) 0 0
\(136\) −253071. −1.17326
\(137\) − 313663.i − 1.42778i −0.700257 0.713891i \(-0.746931\pi\)
0.700257 0.713891i \(-0.253069\pi\)
\(138\) 340252.i 1.52091i
\(139\) 200259. 0.879132 0.439566 0.898210i \(-0.355132\pi\)
0.439566 + 0.898210i \(0.355132\pi\)
\(140\) 0 0
\(141\) 297109. 1.25854
\(142\) − 287023.i − 1.19453i
\(143\) − 95381.5i − 0.390053i
\(144\) −98178.2 −0.394556
\(145\) 0 0
\(146\) −241438. −0.937398
\(147\) − 17658.0i − 0.0673981i
\(148\) 21524.7i 0.0807760i
\(149\) −256467. −0.946379 −0.473190 0.880961i \(-0.656897\pi\)
−0.473190 + 0.880961i \(0.656897\pi\)
\(150\) 0 0
\(151\) −111385. −0.397542 −0.198771 0.980046i \(-0.563695\pi\)
−0.198771 + 0.980046i \(0.563695\pi\)
\(152\) − 92599.9i − 0.325088i
\(153\) − 130932.i − 0.452186i
\(154\) −445099. −1.51236
\(155\) 0 0
\(156\) −4397.18 −0.0144665
\(157\) − 104914.i − 0.339691i −0.985471 0.169845i \(-0.945673\pi\)
0.985471 0.169845i \(-0.0543268\pi\)
\(158\) 283202.i 0.902512i
\(159\) 67924.1 0.213074
\(160\) 0 0
\(161\) 636749. 1.93599
\(162\) 169019.i 0.505998i
\(163\) 159530.i 0.470298i 0.971959 + 0.235149i \(0.0755578\pi\)
−0.971959 + 0.235149i \(0.924442\pi\)
\(164\) 37819.3 0.109800
\(165\) 0 0
\(166\) −619403. −1.74463
\(167\) 687941.i 1.90880i 0.298533 + 0.954399i \(0.403503\pi\)
−0.298533 + 0.954399i \(0.596497\pi\)
\(168\) − 291308.i − 0.796304i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 47908.7 0.125292
\(172\) − 15923.3i − 0.0410404i
\(173\) − 195842.i − 0.497497i −0.968568 0.248748i \(-0.919981\pi\)
0.968568 0.248748i \(-0.0800192\pi\)
\(174\) −239730. −0.600273
\(175\) 0 0
\(176\) −613461. −1.49281
\(177\) 561279.i 1.34662i
\(178\) − 136429.i − 0.322743i
\(179\) 444742. 1.03747 0.518735 0.854935i \(-0.326403\pi\)
0.518735 + 0.854935i \(0.326403\pi\)
\(180\) 0 0
\(181\) 303087. 0.687654 0.343827 0.939033i \(-0.388277\pi\)
0.343827 + 0.939033i \(0.388277\pi\)
\(182\) 133280.i 0.298255i
\(183\) 362606.i 0.800400i
\(184\) 823198. 1.79250
\(185\) 0 0
\(186\) 134453. 0.284962
\(187\) − 818121.i − 1.71086i
\(188\) 50633.1i 0.104482i
\(189\) 556183. 1.13256
\(190\) 0 0
\(191\) 161932. 0.321181 0.160590 0.987021i \(-0.448660\pi\)
0.160590 + 0.987021i \(0.448660\pi\)
\(192\) − 374853.i − 0.733852i
\(193\) − 37091.5i − 0.0716773i −0.999358 0.0358386i \(-0.988590\pi\)
0.999358 0.0358386i \(-0.0114102\pi\)
\(194\) 452795. 0.863769
\(195\) 0 0
\(196\) 3009.25 0.00559524
\(197\) − 643579.i − 1.18151i −0.806852 0.590753i \(-0.798831\pi\)
0.806852 0.590753i \(-0.201169\pi\)
\(198\) − 297712.i − 0.539677i
\(199\) 344561. 0.616785 0.308392 0.951259i \(-0.400209\pi\)
0.308392 + 0.951259i \(0.400209\pi\)
\(200\) 0 0
\(201\) 864359. 1.50905
\(202\) 528230.i 0.910846i
\(203\) 448631.i 0.764099i
\(204\) −37716.1 −0.0634529
\(205\) 0 0
\(206\) 302683. 0.496958
\(207\) 425901.i 0.690848i
\(208\) 183694.i 0.294400i
\(209\) 299355. 0.474046
\(210\) 0 0
\(211\) −680992. −1.05302 −0.526509 0.850169i \(-0.676499\pi\)
−0.526509 + 0.850169i \(0.676499\pi\)
\(212\) 11575.5i 0.0176889i
\(213\) 607279.i 0.917147i
\(214\) 838637. 1.25181
\(215\) 0 0
\(216\) 719041. 1.04862
\(217\) − 251615.i − 0.362733i
\(218\) 392609.i 0.559525i
\(219\) 510831. 0.719726
\(220\) 0 0
\(221\) −244978. −0.337401
\(222\) − 737619.i − 1.00450i
\(223\) − 568334.i − 0.765318i −0.923890 0.382659i \(-0.875008\pi\)
0.923890 0.382659i \(-0.124992\pi\)
\(224\) 102786. 0.136871
\(225\) 0 0
\(226\) −49962.6 −0.0650690
\(227\) 997825.i 1.28526i 0.766178 + 0.642628i \(0.222156\pi\)
−0.766178 + 0.642628i \(0.777844\pi\)
\(228\) − 13800.5i − 0.0175816i
\(229\) 164230. 0.206949 0.103475 0.994632i \(-0.467004\pi\)
0.103475 + 0.994632i \(0.467004\pi\)
\(230\) 0 0
\(231\) 941733. 1.16118
\(232\) 579997.i 0.707466i
\(233\) − 1.08853e6i − 1.31356i −0.754082 0.656781i \(-0.771918\pi\)
0.754082 0.656781i \(-0.228082\pi\)
\(234\) −89146.9 −0.106431
\(235\) 0 0
\(236\) −95652.6 −0.111794
\(237\) − 599193.i − 0.692940i
\(238\) 1.14319e6i 1.30821i
\(239\) −230234. −0.260720 −0.130360 0.991467i \(-0.541613\pi\)
−0.130360 + 0.991467i \(0.541613\pi\)
\(240\) 0 0
\(241\) −482240. −0.534836 −0.267418 0.963581i \(-0.586170\pi\)
−0.267418 + 0.963581i \(0.586170\pi\)
\(242\) − 919698.i − 1.00950i
\(243\) 643217.i 0.698782i
\(244\) −61794.9 −0.0664474
\(245\) 0 0
\(246\) −1.29601e6 −1.36543
\(247\) − 89638.7i − 0.0934874i
\(248\) − 325291.i − 0.335848i
\(249\) 1.31052e6 1.33951
\(250\) 0 0
\(251\) 1.08969e6 1.09174 0.545869 0.837871i \(-0.316200\pi\)
0.545869 + 0.837871i \(0.316200\pi\)
\(252\) 25684.7i 0.0254784i
\(253\) 2.66122e6i 2.61384i
\(254\) 1.19120e6 1.15851
\(255\) 0 0
\(256\) 206125. 0.196576
\(257\) 888841.i 0.839443i 0.907653 + 0.419721i \(0.137872\pi\)
−0.907653 + 0.419721i \(0.862128\pi\)
\(258\) 545667.i 0.510363i
\(259\) −1.38038e6 −1.27865
\(260\) 0 0
\(261\) −300075. −0.272664
\(262\) 706952.i 0.636263i
\(263\) − 911106.i − 0.812231i −0.913822 0.406115i \(-0.866883\pi\)
0.913822 0.406115i \(-0.133117\pi\)
\(264\) 1.21748e6 1.07511
\(265\) 0 0
\(266\) −418300. −0.362480
\(267\) 288654.i 0.247799i
\(268\) 147303.i 0.125278i
\(269\) 1.21729e6 1.02568 0.512841 0.858484i \(-0.328593\pi\)
0.512841 + 0.858484i \(0.328593\pi\)
\(270\) 0 0
\(271\) −1.72452e6 −1.42642 −0.713208 0.700953i \(-0.752758\pi\)
−0.713208 + 0.700953i \(0.752758\pi\)
\(272\) 1.57561e6i 1.29130i
\(273\) − 281992.i − 0.228997i
\(274\) −1.83180e6 −1.47401
\(275\) 0 0
\(276\) 122685. 0.0969432
\(277\) − 1.14049e6i − 0.893086i −0.894762 0.446543i \(-0.852655\pi\)
0.894762 0.446543i \(-0.147345\pi\)
\(278\) − 1.16951e6i − 0.907596i
\(279\) 168297. 0.129439
\(280\) 0 0
\(281\) −42346.3 −0.0319926 −0.0159963 0.999872i \(-0.505092\pi\)
−0.0159963 + 0.999872i \(0.505092\pi\)
\(282\) − 1.73512e6i − 1.29929i
\(283\) − 1.73212e6i − 1.28562i −0.766027 0.642808i \(-0.777769\pi\)
0.766027 0.642808i \(-0.222231\pi\)
\(284\) −103492. −0.0761396
\(285\) 0 0
\(286\) −557029. −0.402682
\(287\) 2.42536e6i 1.73809i
\(288\) 68750.0i 0.0488418i
\(289\) −681404. −0.479910
\(290\) 0 0
\(291\) −958016. −0.663194
\(292\) 87055.3i 0.0597500i
\(293\) 1.09014e6i 0.741842i 0.928664 + 0.370921i \(0.120958\pi\)
−0.928664 + 0.370921i \(0.879042\pi\)
\(294\) −103123. −0.0695803
\(295\) 0 0
\(296\) −1.78458e6 −1.18388
\(297\) 2.32450e6i 1.52911i
\(298\) 1.49777e6i 0.977021i
\(299\) 796874. 0.515480
\(300\) 0 0
\(301\) 1.02116e6 0.649650
\(302\) 650488.i 0.410413i
\(303\) − 1.11762e6i − 0.699339i
\(304\) −576525. −0.357795
\(305\) 0 0
\(306\) −764644. −0.466827
\(307\) 1.05264e6i 0.637432i 0.947850 + 0.318716i \(0.103252\pi\)
−0.947850 + 0.318716i \(0.896748\pi\)
\(308\) 160489.i 0.0963982i
\(309\) −640411. −0.381560
\(310\) 0 0
\(311\) 1.49770e6 0.878058 0.439029 0.898473i \(-0.355323\pi\)
0.439029 + 0.898473i \(0.355323\pi\)
\(312\) − 364563.i − 0.212025i
\(313\) 1.99926e6i 1.15347i 0.816930 + 0.576737i \(0.195674\pi\)
−0.816930 + 0.576737i \(0.804326\pi\)
\(314\) −612698. −0.350689
\(315\) 0 0
\(316\) 102114. 0.0575264
\(317\) 1.56963e6i 0.877303i 0.898657 + 0.438652i \(0.144544\pi\)
−0.898657 + 0.438652i \(0.855456\pi\)
\(318\) − 396677.i − 0.219973i
\(319\) −1.87500e6 −1.03163
\(320\) 0 0
\(321\) −1.77437e6 −0.961131
\(322\) − 3.71862e6i − 1.99868i
\(323\) − 768863.i − 0.410055i
\(324\) 60943.2 0.0322525
\(325\) 0 0
\(326\) 931656. 0.485525
\(327\) − 830676.i − 0.429598i
\(328\) 3.13554e6i 1.60926i
\(329\) −3.24711e6 −1.65389
\(330\) 0 0
\(331\) 1.49980e6 0.752425 0.376213 0.926533i \(-0.377226\pi\)
0.376213 + 0.926533i \(0.377226\pi\)
\(332\) 223338.i 0.111203i
\(333\) − 923294.i − 0.456278i
\(334\) 4.01758e6 1.97060
\(335\) 0 0
\(336\) −1.81368e6 −0.876418
\(337\) 1.70350e6i 0.817084i 0.912740 + 0.408542i \(0.133963\pi\)
−0.912740 + 0.408542i \(0.866037\pi\)
\(338\) 166797.i 0.0794137i
\(339\) 105710. 0.0499594
\(340\) 0 0
\(341\) 1.05159e6 0.489736
\(342\) − 279788.i − 0.129349i
\(343\) − 2.07665e6i − 0.953077i
\(344\) 1.32017e6 0.601500
\(345\) 0 0
\(346\) −1.14372e6 −0.513604
\(347\) 1.57481e6i 0.702109i 0.936355 + 0.351055i \(0.114177\pi\)
−0.936355 + 0.351055i \(0.885823\pi\)
\(348\) 86439.3i 0.0382616i
\(349\) 87651.2 0.0385207 0.0192604 0.999815i \(-0.493869\pi\)
0.0192604 + 0.999815i \(0.493869\pi\)
\(350\) 0 0
\(351\) 696047. 0.301558
\(352\) 429580.i 0.184794i
\(353\) 3.19310e6i 1.36388i 0.731409 + 0.681939i \(0.238863\pi\)
−0.731409 + 0.681939i \(0.761137\pi\)
\(354\) 3.27788e6 1.39022
\(355\) 0 0
\(356\) −49192.2 −0.0205717
\(357\) − 2.41875e6i − 1.00443i
\(358\) − 2.59730e6i − 1.07106i
\(359\) −1.23310e6 −0.504965 −0.252482 0.967601i \(-0.581247\pi\)
−0.252482 + 0.967601i \(0.581247\pi\)
\(360\) 0 0
\(361\) −2.19477e6 −0.886381
\(362\) − 1.77003e6i − 0.709919i
\(363\) 1.94588e6i 0.775085i
\(364\) 48056.8 0.0190109
\(365\) 0 0
\(366\) 2.11762e6 0.826315
\(367\) 2.30172e6i 0.892046i 0.895021 + 0.446023i \(0.147160\pi\)
−0.895021 + 0.446023i \(0.852840\pi\)
\(368\) − 5.12521e6i − 1.97284i
\(369\) −1.62224e6 −0.620226
\(370\) 0 0
\(371\) −742343. −0.280008
\(372\) − 48479.5i − 0.0181635i
\(373\) 1.62545e6i 0.604925i 0.953161 + 0.302462i \(0.0978087\pi\)
−0.953161 + 0.302462i \(0.902191\pi\)
\(374\) −4.77783e6 −1.76625
\(375\) 0 0
\(376\) −4.19791e6 −1.53131
\(377\) 561449.i 0.203450i
\(378\) − 3.24811e6i − 1.16924i
\(379\) −3.62459e6 −1.29617 −0.648083 0.761570i \(-0.724429\pi\)
−0.648083 + 0.761570i \(0.724429\pi\)
\(380\) 0 0
\(381\) −2.52032e6 −0.889495
\(382\) − 945685.i − 0.331580i
\(383\) − 271233.i − 0.0944813i −0.998884 0.0472407i \(-0.984957\pi\)
0.998884 0.0472407i \(-0.0150428\pi\)
\(384\) −2.49010e6 −0.861766
\(385\) 0 0
\(386\) −216615. −0.0739980
\(387\) 683024.i 0.231824i
\(388\) − 163264.i − 0.0550569i
\(389\) 1.60205e6 0.536787 0.268394 0.963309i \(-0.413507\pi\)
0.268394 + 0.963309i \(0.413507\pi\)
\(390\) 0 0
\(391\) 6.83507e6 2.26100
\(392\) 249493.i 0.0820054i
\(393\) − 1.49576e6i − 0.488516i
\(394\) −3.75851e6 −1.21976
\(395\) 0 0
\(396\) −107346. −0.0343992
\(397\) 57870.0i 0.0184280i 0.999958 + 0.00921398i \(0.00293294\pi\)
−0.999958 + 0.00921398i \(0.997067\pi\)
\(398\) − 2.01224e6i − 0.636755i
\(399\) 885032. 0.278309
\(400\) 0 0
\(401\) 5.74549e6 1.78429 0.892147 0.451746i \(-0.149199\pi\)
0.892147 + 0.451746i \(0.149199\pi\)
\(402\) − 5.04787e6i − 1.55791i
\(403\) − 314889.i − 0.0965817i
\(404\) 190464. 0.0580576
\(405\) 0 0
\(406\) 2.62001e6 0.788839
\(407\) − 5.76914e6i − 1.72634i
\(408\) − 3.12699e6i − 0.929985i
\(409\) 346702. 0.102482 0.0512411 0.998686i \(-0.483682\pi\)
0.0512411 + 0.998686i \(0.483682\pi\)
\(410\) 0 0
\(411\) 3.87568e6 1.13173
\(412\) − 109138.i − 0.0316763i
\(413\) − 6.13423e6i − 1.76964i
\(414\) 2.48727e6 0.713217
\(415\) 0 0
\(416\) 128633. 0.0364435
\(417\) 2.47443e6i 0.696844i
\(418\) − 1.74824e6i − 0.489395i
\(419\) −5.22131e6 −1.45293 −0.726464 0.687205i \(-0.758838\pi\)
−0.726464 + 0.687205i \(0.758838\pi\)
\(420\) 0 0
\(421\) 790165. 0.217276 0.108638 0.994081i \(-0.465351\pi\)
0.108638 + 0.994081i \(0.465351\pi\)
\(422\) 3.97700e6i 1.08711i
\(423\) − 2.17189e6i − 0.590183i
\(424\) −959711. −0.259254
\(425\) 0 0
\(426\) 3.54652e6 0.946843
\(427\) − 3.96292e6i − 1.05183i
\(428\) − 302387.i − 0.0797910i
\(429\) 1.17855e6 0.309176
\(430\) 0 0
\(431\) 6.34150e6 1.64437 0.822184 0.569221i \(-0.192755\pi\)
0.822184 + 0.569221i \(0.192755\pi\)
\(432\) − 4.47673e6i − 1.15412i
\(433\) 3.67068e6i 0.940864i 0.882436 + 0.470432i \(0.155902\pi\)
−0.882436 + 0.470432i \(0.844098\pi\)
\(434\) −1.46943e6 −0.374478
\(435\) 0 0
\(436\) 141563. 0.0356643
\(437\) 2.50099e6i 0.626481i
\(438\) − 2.98326e6i − 0.743029i
\(439\) −2.64288e6 −0.654510 −0.327255 0.944936i \(-0.606124\pi\)
−0.327255 + 0.944936i \(0.606124\pi\)
\(440\) 0 0
\(441\) −129081. −0.0316057
\(442\) 1.43067e6i 0.348325i
\(443\) 7.06558e6i 1.71056i 0.518165 + 0.855281i \(0.326615\pi\)
−0.518165 + 0.855281i \(0.673385\pi\)
\(444\) −265963. −0.0640271
\(445\) 0 0
\(446\) −3.31908e6 −0.790097
\(447\) − 3.16895e6i − 0.750147i
\(448\) 4.09678e6i 0.964378i
\(449\) 6.28802e6 1.47197 0.735984 0.676999i \(-0.236720\pi\)
0.735984 + 0.676999i \(0.236720\pi\)
\(450\) 0 0
\(451\) −1.01365e7 −2.34664
\(452\) 18015.0i 0.00414752i
\(453\) − 1.37629e6i − 0.315112i
\(454\) 5.82731e6 1.32687
\(455\) 0 0
\(456\) 1.14418e6 0.257681
\(457\) 3.10589e6i 0.695657i 0.937558 + 0.347829i \(0.113081\pi\)
−0.937558 + 0.347829i \(0.886919\pi\)
\(458\) − 959104.i − 0.213650i
\(459\) 5.97024e6 1.32270
\(460\) 0 0
\(461\) 2.98228e6 0.653575 0.326788 0.945098i \(-0.394034\pi\)
0.326788 + 0.945098i \(0.394034\pi\)
\(462\) − 5.49973e6i − 1.19877i
\(463\) 450492.i 0.0976641i 0.998807 + 0.0488320i \(0.0155499\pi\)
−0.998807 + 0.0488320i \(0.984450\pi\)
\(464\) 3.61105e6 0.778643
\(465\) 0 0
\(466\) −6.35702e6 −1.35609
\(467\) − 8.15375e6i − 1.73008i −0.501707 0.865038i \(-0.667294\pi\)
0.501707 0.865038i \(-0.332706\pi\)
\(468\) 32143.6i 0.00678392i
\(469\) −9.44660e6 −1.98309
\(470\) 0 0
\(471\) 1.29633e6 0.269256
\(472\) − 7.93042e6i − 1.63848i
\(473\) 4.26783e6i 0.877111i
\(474\) −3.49929e6 −0.715376
\(475\) 0 0
\(476\) 412200. 0.0833856
\(477\) − 496529.i − 0.0999192i
\(478\) 1.34457e6i 0.269161i
\(479\) 6.60072e6 1.31448 0.657238 0.753683i \(-0.271725\pi\)
0.657238 + 0.753683i \(0.271725\pi\)
\(480\) 0 0
\(481\) −1.72751e6 −0.340454
\(482\) 2.81628e6i 0.552152i
\(483\) 7.86780e6i 1.53456i
\(484\) −331615. −0.0643459
\(485\) 0 0
\(486\) 3.75639e6 0.721407
\(487\) 7.74626e6i 1.48003i 0.672592 + 0.740014i \(0.265181\pi\)
−0.672592 + 0.740014i \(0.734819\pi\)
\(488\) − 5.12332e6i − 0.973873i
\(489\) −1.97118e6 −0.372781
\(490\) 0 0
\(491\) 9.71168e6 1.81799 0.908994 0.416810i \(-0.136852\pi\)
0.908994 + 0.416810i \(0.136852\pi\)
\(492\) 467302.i 0.0870332i
\(493\) 4.81575e6i 0.892373i
\(494\) −523491. −0.0965143
\(495\) 0 0
\(496\) −2.02526e6 −0.369637
\(497\) − 6.63696e6i − 1.20525i
\(498\) − 7.65347e6i − 1.38288i
\(499\) −6.38167e6 −1.14732 −0.573658 0.819095i \(-0.694476\pi\)
−0.573658 + 0.819095i \(0.694476\pi\)
\(500\) 0 0
\(501\) −8.50033e6 −1.51301
\(502\) − 6.36380e6i − 1.12709i
\(503\) 899505.i 0.158520i 0.996854 + 0.0792600i \(0.0252557\pi\)
−0.996854 + 0.0792600i \(0.974744\pi\)
\(504\) −2.12948e6 −0.373419
\(505\) 0 0
\(506\) 1.55415e7 2.69847
\(507\) − 352905.i − 0.0609731i
\(508\) − 429511.i − 0.0738439i
\(509\) −5.90487e6 −1.01022 −0.505110 0.863055i \(-0.668548\pi\)
−0.505110 + 0.863055i \(0.668548\pi\)
\(510\) 0 0
\(511\) −5.58288e6 −0.945815
\(512\) 5.24508e6i 0.884255i
\(513\) 2.18454e6i 0.366494i
\(514\) 5.19084e6 0.866622
\(515\) 0 0
\(516\) 196751. 0.0325307
\(517\) − 1.35709e7i − 2.23297i
\(518\) 8.06146e6i 1.32005i
\(519\) 2.41986e6 0.394341
\(520\) 0 0
\(521\) 3.84063e6 0.619880 0.309940 0.950756i \(-0.399691\pi\)
0.309940 + 0.950756i \(0.399691\pi\)
\(522\) 1.75244e6i 0.281493i
\(523\) − 2.64332e6i − 0.422567i −0.977425 0.211283i \(-0.932236\pi\)
0.977425 0.211283i \(-0.0677643\pi\)
\(524\) 254905. 0.0405556
\(525\) 0 0
\(526\) −5.32087e6 −0.838529
\(527\) − 2.70091e6i − 0.423627i
\(528\) − 7.58004e6i − 1.18328i
\(529\) −1.57970e7 −2.45435
\(530\) 0 0
\(531\) 4.10299e6 0.631486
\(532\) 150826.i 0.0231046i
\(533\) 3.03527e6i 0.462785i
\(534\) 1.68574e6 0.255822
\(535\) 0 0
\(536\) −1.22127e7 −1.83611
\(537\) 5.49532e6i 0.822351i
\(538\) − 7.10898e6i − 1.05889i
\(539\) −806554. −0.119581
\(540\) 0 0
\(541\) −6.61133e6 −0.971171 −0.485585 0.874189i \(-0.661393\pi\)
−0.485585 + 0.874189i \(0.661393\pi\)
\(542\) 1.00712e7i 1.47260i
\(543\) 3.74499e6i 0.545069i
\(544\) 1.10333e6 0.159849
\(545\) 0 0
\(546\) −1.64684e6 −0.236412
\(547\) 6.74890e6i 0.964416i 0.876057 + 0.482208i \(0.160165\pi\)
−0.876057 + 0.482208i \(0.839835\pi\)
\(548\) 660489.i 0.0939538i
\(549\) 2.65067e6 0.375340
\(550\) 0 0
\(551\) −1.76211e6 −0.247260
\(552\) 1.01716e7i 1.42083i
\(553\) 6.54859e6i 0.910615i
\(554\) −6.66049e6 −0.922002
\(555\) 0 0
\(556\) −421690. −0.0578504
\(557\) 2.65890e6i 0.363132i 0.983379 + 0.181566i \(0.0581165\pi\)
−0.983379 + 0.181566i \(0.941883\pi\)
\(558\) − 982857.i − 0.133630i
\(559\) 1.27796e6 0.172976
\(560\) 0 0
\(561\) 1.01089e7 1.35611
\(562\) 247303.i 0.0330284i
\(563\) − 6.17659e6i − 0.821254i −0.911803 0.410627i \(-0.865310\pi\)
0.911803 0.410627i \(-0.134690\pi\)
\(564\) −625632. −0.0828173
\(565\) 0 0
\(566\) −1.01156e7 −1.32724
\(567\) 3.90830e6i 0.510541i
\(568\) − 8.58035e6i − 1.11592i
\(569\) 5.90074e6 0.764056 0.382028 0.924151i \(-0.375226\pi\)
0.382028 + 0.924151i \(0.375226\pi\)
\(570\) 0 0
\(571\) 2.88636e6 0.370476 0.185238 0.982694i \(-0.440694\pi\)
0.185238 + 0.982694i \(0.440694\pi\)
\(572\) 200848.i 0.0256671i
\(573\) 2.00086e6i 0.254584i
\(574\) 1.41641e7 1.79436
\(575\) 0 0
\(576\) −2.74020e6 −0.344133
\(577\) − 6.83624e6i − 0.854826i −0.904057 0.427413i \(-0.859425\pi\)
0.904057 0.427413i \(-0.140575\pi\)
\(578\) 3.97941e6i 0.495449i
\(579\) 458310. 0.0568150
\(580\) 0 0
\(581\) −1.43227e7 −1.76029
\(582\) 5.59483e6i 0.684667i
\(583\) − 3.10253e6i − 0.378046i
\(584\) −7.21762e6 −0.875714
\(585\) 0 0
\(586\) 6.36640e6 0.765861
\(587\) 6.16627e6i 0.738630i 0.929304 + 0.369315i \(0.120408\pi\)
−0.929304 + 0.369315i \(0.879592\pi\)
\(588\) 37182.9i 0.00443507i
\(589\) 988279. 0.117379
\(590\) 0 0
\(591\) 7.95218e6 0.936521
\(592\) 1.11107e7i 1.30298i
\(593\) 1.14506e7i 1.33718i 0.743630 + 0.668591i \(0.233102\pi\)
−0.743630 + 0.668591i \(0.766898\pi\)
\(594\) 1.35751e7 1.57862
\(595\) 0 0
\(596\) 540049. 0.0622756
\(597\) 4.25746e6i 0.488894i
\(598\) − 4.65375e6i − 0.532170i
\(599\) −1.97315e6 −0.224695 −0.112347 0.993669i \(-0.535837\pi\)
−0.112347 + 0.993669i \(0.535837\pi\)
\(600\) 0 0
\(601\) 1.47387e7 1.66446 0.832228 0.554433i \(-0.187065\pi\)
0.832228 + 0.554433i \(0.187065\pi\)
\(602\) − 5.96361e6i − 0.670684i
\(603\) − 6.31852e6i − 0.707656i
\(604\) 234546. 0.0261599
\(605\) 0 0
\(606\) −6.52691e6 −0.721982
\(607\) 788080.i 0.0868158i 0.999057 + 0.0434079i \(0.0138215\pi\)
−0.999057 + 0.0434079i \(0.986178\pi\)
\(608\) 403716.i 0.0442911i
\(609\) −5.54337e6 −0.605663
\(610\) 0 0
\(611\) −4.06367e6 −0.440368
\(612\) 275707.i 0.0297557i
\(613\) 4.78326e6i 0.514130i 0.966394 + 0.257065i \(0.0827554\pi\)
−0.966394 + 0.257065i \(0.917245\pi\)
\(614\) 6.14743e6 0.658071
\(615\) 0 0
\(616\) −1.33059e7 −1.41284
\(617\) 1.00768e7i 1.06563i 0.846230 + 0.532817i \(0.178867\pi\)
−0.846230 + 0.532817i \(0.821133\pi\)
\(618\) 3.74001e6i 0.393914i
\(619\) 7.36866e6 0.772968 0.386484 0.922296i \(-0.373689\pi\)
0.386484 + 0.922296i \(0.373689\pi\)
\(620\) 0 0
\(621\) −1.94202e7 −2.02081
\(622\) − 8.74657e6i − 0.906487i
\(623\) − 3.15471e6i − 0.325641i
\(624\) −2.26976e6 −0.233356
\(625\) 0 0
\(626\) 1.16757e7 1.19082
\(627\) 3.69889e6i 0.375753i
\(628\) 220920.i 0.0223530i
\(629\) −1.48175e7 −1.49330
\(630\) 0 0
\(631\) −1.06769e7 −1.06751 −0.533755 0.845639i \(-0.679219\pi\)
−0.533755 + 0.845639i \(0.679219\pi\)
\(632\) 8.46611e6i 0.843123i
\(633\) − 8.41447e6i − 0.834675i
\(634\) 9.16667e6 0.905708
\(635\) 0 0
\(636\) −143030. −0.0140211
\(637\) 241514.i 0.0235827i
\(638\) 1.09500e7i 1.06503i
\(639\) 4.43925e6 0.430088
\(640\) 0 0
\(641\) 9.72701e6 0.935049 0.467524 0.883980i \(-0.345146\pi\)
0.467524 + 0.883980i \(0.345146\pi\)
\(642\) 1.03624e7i 0.992250i
\(643\) 8.57219e6i 0.817644i 0.912614 + 0.408822i \(0.134060\pi\)
−0.912614 + 0.408822i \(0.865940\pi\)
\(644\) −1.34082e6 −0.127396
\(645\) 0 0
\(646\) −4.49017e6 −0.423332
\(647\) 5.95965e6i 0.559706i 0.960043 + 0.279853i \(0.0902857\pi\)
−0.960043 + 0.279853i \(0.909714\pi\)
\(648\) 5.05271e6i 0.472701i
\(649\) 2.56373e7 2.38924
\(650\) 0 0
\(651\) 3.10900e6 0.287520
\(652\) − 335927.i − 0.0309475i
\(653\) 1.27099e7i 1.16644i 0.812316 + 0.583218i \(0.198207\pi\)
−0.812316 + 0.583218i \(0.801793\pi\)
\(654\) −4.85116e6 −0.443508
\(655\) 0 0
\(656\) 1.95218e7 1.77117
\(657\) − 3.73421e6i − 0.337509i
\(658\) 1.89632e7i 1.70744i
\(659\) 1.81505e7 1.62808 0.814038 0.580811i \(-0.197265\pi\)
0.814038 + 0.580811i \(0.197265\pi\)
\(660\) 0 0
\(661\) −9.11641e6 −0.811559 −0.405779 0.913971i \(-0.633000\pi\)
−0.405779 + 0.913971i \(0.633000\pi\)
\(662\) − 8.75885e6i − 0.776787i
\(663\) − 3.02699e6i − 0.267441i
\(664\) −1.85166e7 −1.62983
\(665\) 0 0
\(666\) −5.39205e6 −0.471051
\(667\) − 1.56649e7i − 1.36336i
\(668\) − 1.44862e6i − 0.125607i
\(669\) 7.02245e6 0.606629
\(670\) 0 0
\(671\) 1.65626e7 1.42011
\(672\) 1.27004e6i 0.108491i
\(673\) − 1.85348e7i − 1.57743i −0.614758 0.788716i \(-0.710746\pi\)
0.614758 0.788716i \(-0.289254\pi\)
\(674\) 9.94844e6 0.843539
\(675\) 0 0
\(676\) 60141.7 0.00506185
\(677\) 2.22101e7i 1.86242i 0.364481 + 0.931211i \(0.381247\pi\)
−0.364481 + 0.931211i \(0.618753\pi\)
\(678\) − 617348.i − 0.0515770i
\(679\) 1.04702e7 0.871524
\(680\) 0 0
\(681\) −1.23293e7 −1.01876
\(682\) − 6.14132e6i − 0.505593i
\(683\) − 1.86642e7i − 1.53094i −0.643473 0.765469i \(-0.722507\pi\)
0.643473 0.765469i \(-0.277493\pi\)
\(684\) −100883. −0.00824474
\(685\) 0 0
\(686\) −1.21277e7 −0.983936
\(687\) 2.02926e6i 0.164038i
\(688\) − 8.21938e6i − 0.662015i
\(689\) −929021. −0.0745551
\(690\) 0 0
\(691\) −2.75399e6 −0.219415 −0.109708 0.993964i \(-0.534991\pi\)
−0.109708 + 0.993964i \(0.534991\pi\)
\(692\) 412390.i 0.0327373i
\(693\) − 6.88413e6i − 0.544523i
\(694\) 9.19691e6 0.724842
\(695\) 0 0
\(696\) −7.16655e6 −0.560773
\(697\) 2.60346e7i 2.02987i
\(698\) − 511884.i − 0.0397679i
\(699\) 1.34501e7 1.04119
\(700\) 0 0
\(701\) −1.15791e7 −0.889976 −0.444988 0.895536i \(-0.646792\pi\)
−0.444988 + 0.895536i \(0.646792\pi\)
\(702\) − 4.06492e6i − 0.311322i
\(703\) − 5.42179e6i − 0.413766i
\(704\) −1.71220e7 −1.30203
\(705\) 0 0
\(706\) 1.86477e7 1.40804
\(707\) 1.22145e7i 0.919024i
\(708\) − 1.18190e6i − 0.0886132i
\(709\) −708197. −0.0529101 −0.0264551 0.999650i \(-0.508422\pi\)
−0.0264551 + 0.999650i \(0.508422\pi\)
\(710\) 0 0
\(711\) −4.38014e6 −0.324948
\(712\) − 4.07845e6i − 0.301505i
\(713\) 8.78564e6i 0.647217i
\(714\) −1.41255e7 −1.03695
\(715\) 0 0
\(716\) −936506. −0.0682697
\(717\) − 2.84481e6i − 0.206659i
\(718\) 7.20130e6i 0.521315i
\(719\) 1.23580e7 0.891513 0.445757 0.895154i \(-0.352935\pi\)
0.445757 + 0.895154i \(0.352935\pi\)
\(720\) 0 0
\(721\) 6.99907e6 0.501420
\(722\) 1.28175e7i 0.915080i
\(723\) − 5.95864e6i − 0.423937i
\(724\) −638218. −0.0452504
\(725\) 0 0
\(726\) 1.13640e7 0.800181
\(727\) − 1.87595e7i − 1.31639i −0.752847 0.658196i \(-0.771320\pi\)
0.752847 0.658196i \(-0.228680\pi\)
\(728\) 3.98432e6i 0.278629i
\(729\) −1.49805e7 −1.04402
\(730\) 0 0
\(731\) 1.09615e7 0.758711
\(732\) − 763550.i − 0.0526696i
\(733\) 8.72767e6i 0.599982i 0.953942 + 0.299991i \(0.0969838\pi\)
−0.953942 + 0.299991i \(0.903016\pi\)
\(734\) 1.34421e7 0.920929
\(735\) 0 0
\(736\) −3.58897e6 −0.244216
\(737\) − 3.94809e7i − 2.67743i
\(738\) 9.47392e6i 0.640308i
\(739\) −1.00941e7 −0.679915 −0.339958 0.940441i \(-0.610413\pi\)
−0.339958 + 0.940441i \(0.610413\pi\)
\(740\) 0 0
\(741\) 1.10759e6 0.0741028
\(742\) 4.33529e6i 0.289074i
\(743\) 1.04314e7i 0.693220i 0.938009 + 0.346610i \(0.112667\pi\)
−0.938009 + 0.346610i \(0.887333\pi\)
\(744\) 4.01936e6 0.266210
\(745\) 0 0
\(746\) 9.49264e6 0.624511
\(747\) − 9.58000e6i − 0.628151i
\(748\) 1.72274e6i 0.112581i
\(749\) 1.93922e7 1.26305
\(750\) 0 0
\(751\) −2.12033e7 −1.37184 −0.685920 0.727677i \(-0.740600\pi\)
−0.685920 + 0.727677i \(0.740600\pi\)
\(752\) 2.61361e7i 1.68537i
\(753\) 1.34644e7i 0.865366i
\(754\) 3.27887e6 0.210037
\(755\) 0 0
\(756\) −1.17117e6 −0.0745274
\(757\) − 1.08555e7i − 0.688510i −0.938876 0.344255i \(-0.888131\pi\)
0.938876 0.344255i \(-0.111869\pi\)
\(758\) 2.11676e7i 1.33813i
\(759\) −3.28825e7 −2.07186
\(760\) 0 0
\(761\) 9.82464e6 0.614971 0.307486 0.951553i \(-0.400512\pi\)
0.307486 + 0.951553i \(0.400512\pi\)
\(762\) 1.47187e7i 0.918295i
\(763\) 9.07847e6i 0.564549i
\(764\) −340985. −0.0211350
\(765\) 0 0
\(766\) −1.58401e6 −0.0975404
\(767\) − 7.67681e6i − 0.471186i
\(768\) 2.54692e6i 0.155816i
\(769\) 2.66376e7 1.62435 0.812175 0.583414i \(-0.198283\pi\)
0.812175 + 0.583414i \(0.198283\pi\)
\(770\) 0 0
\(771\) −1.09827e7 −0.665384
\(772\) 78104.8i 0.00471666i
\(773\) − 2.30179e6i − 0.138553i −0.997597 0.0692767i \(-0.977931\pi\)
0.997597 0.0692767i \(-0.0220691\pi\)
\(774\) 3.98886e6 0.239330
\(775\) 0 0
\(776\) 1.35360e7 0.806930
\(777\) − 1.70563e7i − 1.01352i
\(778\) − 9.35600e6i − 0.554168i
\(779\) −9.52619e6 −0.562439
\(780\) 0 0
\(781\) 2.77384e7 1.62725
\(782\) − 3.99169e7i − 2.33421i
\(783\) − 1.36828e7i − 0.797575i
\(784\) 1.55334e6 0.0902558
\(785\) 0 0
\(786\) −8.73523e6 −0.504334
\(787\) 4.31784e6i 0.248502i 0.992251 + 0.124251i \(0.0396528\pi\)
−0.992251 + 0.124251i \(0.960347\pi\)
\(788\) 1.35520e6i 0.0777479i
\(789\) 1.12578e7 0.643815
\(790\) 0 0
\(791\) −1.15531e6 −0.0656533
\(792\) − 8.89989e6i − 0.504164i
\(793\) − 4.95949e6i − 0.280062i
\(794\) 337961. 0.0190246
\(795\) 0 0
\(796\) −725553. −0.0405869
\(797\) 855962.i 0.0477319i 0.999715 + 0.0238659i \(0.00759749\pi\)
−0.999715 + 0.0238659i \(0.992403\pi\)
\(798\) − 5.16860e6i − 0.287320i
\(799\) −3.48555e7 −1.93154
\(800\) 0 0
\(801\) 2.11008e6 0.116203
\(802\) − 3.35537e7i − 1.84207i
\(803\) − 2.33330e7i − 1.27697i
\(804\) −1.82011e6 −0.0993017
\(805\) 0 0
\(806\) −1.83895e6 −0.0997088
\(807\) 1.50410e7i 0.813007i
\(808\) 1.57911e7i 0.850908i
\(809\) −1.27474e7 −0.684780 −0.342390 0.939558i \(-0.611236\pi\)
−0.342390 + 0.939558i \(0.611236\pi\)
\(810\) 0 0
\(811\) 864775. 0.0461690 0.0230845 0.999734i \(-0.492651\pi\)
0.0230845 + 0.999734i \(0.492651\pi\)
\(812\) − 944696.i − 0.0502808i
\(813\) − 2.13086e7i − 1.13065i
\(814\) −3.36919e7 −1.78223
\(815\) 0 0
\(816\) −1.94686e7 −1.02355
\(817\) 4.01087e6i 0.210225i
\(818\) − 2.02474e6i − 0.105800i
\(819\) −2.06138e6 −0.107386
\(820\) 0 0
\(821\) 1.81218e7 0.938304 0.469152 0.883118i \(-0.344560\pi\)
0.469152 + 0.883118i \(0.344560\pi\)
\(822\) − 2.26340e7i − 1.16837i
\(823\) 3.51363e7i 1.80824i 0.427277 + 0.904121i \(0.359473\pi\)
−0.427277 + 0.904121i \(0.640527\pi\)
\(824\) 9.04849e6 0.464256
\(825\) 0 0
\(826\) −3.58240e7 −1.82694
\(827\) − 6.09168e6i − 0.309723i −0.987936 0.154861i \(-0.950507\pi\)
0.987936 0.154861i \(-0.0494931\pi\)
\(828\) − 896832.i − 0.0454606i
\(829\) 1.41349e7 0.714341 0.357171 0.934039i \(-0.383741\pi\)
0.357171 + 0.934039i \(0.383741\pi\)
\(830\) 0 0
\(831\) 1.40922e7 0.707905
\(832\) 5.12700e6i 0.256776i
\(833\) 2.07155e6i 0.103439i
\(834\) 1.44507e7 0.719406
\(835\) 0 0
\(836\) −630360. −0.0311942
\(837\) 7.67401e6i 0.378625i
\(838\) 3.04925e7i 1.49997i
\(839\) −8.32022e6 −0.408066 −0.204033 0.978964i \(-0.565405\pi\)
−0.204033 + 0.978964i \(0.565405\pi\)
\(840\) 0 0
\(841\) −9.47423e6 −0.461906
\(842\) − 4.61457e6i − 0.224311i
\(843\) − 523239.i − 0.0253589i
\(844\) 1.43399e6 0.0692929
\(845\) 0 0
\(846\) −1.26839e7 −0.609292
\(847\) − 2.12666e7i − 1.01856i
\(848\) 5.97514e6i 0.285337i
\(849\) 2.14024e7 1.01904
\(850\) 0 0
\(851\) 4.81989e7 2.28146
\(852\) − 1.27877e6i − 0.0603520i
\(853\) 3.61621e6i 0.170169i 0.996374 + 0.0850846i \(0.0271161\pi\)
−0.996374 + 0.0850846i \(0.972884\pi\)
\(854\) −2.31435e7 −1.08589
\(855\) 0 0
\(856\) 2.50704e7 1.16944
\(857\) 1.82373e7i 0.848219i 0.905611 + 0.424110i \(0.139413\pi\)
−0.905611 + 0.424110i \(0.860587\pi\)
\(858\) − 6.88276e6i − 0.319186i
\(859\) 1.61982e7 0.749005 0.374502 0.927226i \(-0.377814\pi\)
0.374502 + 0.927226i \(0.377814\pi\)
\(860\) 0 0
\(861\) −2.99682e7 −1.37769
\(862\) − 3.70345e7i − 1.69761i
\(863\) − 3.38931e7i − 1.54912i −0.632502 0.774559i \(-0.717972\pi\)
0.632502 0.774559i \(-0.282028\pi\)
\(864\) −3.13486e6 −0.142868
\(865\) 0 0
\(866\) 2.14368e7 0.971327
\(867\) − 8.41955e6i − 0.380401i
\(868\) 529833.i 0.0238693i
\(869\) −2.73690e7 −1.22945
\(870\) 0 0
\(871\) −1.18221e7 −0.528021
\(872\) 1.17368e7i 0.522706i
\(873\) 7.00316e6i 0.310999i
\(874\) 1.46058e7 0.646765
\(875\) 0 0
\(876\) −1.07567e6 −0.0473609
\(877\) 2.80787e7i 1.23276i 0.787450 + 0.616379i \(0.211401\pi\)
−0.787450 + 0.616379i \(0.788599\pi\)
\(878\) 1.54345e7i 0.675702i
\(879\) −1.34699e7 −0.588021
\(880\) 0 0
\(881\) 1.18418e7 0.514017 0.257009 0.966409i \(-0.417263\pi\)
0.257009 + 0.966409i \(0.417263\pi\)
\(882\) 753834.i 0.0326290i
\(883\) − 1.69484e6i − 0.0731523i −0.999331 0.0365761i \(-0.988355\pi\)
0.999331 0.0365761i \(-0.0116451\pi\)
\(884\) 515857. 0.0222023
\(885\) 0 0
\(886\) 4.12631e7 1.76595
\(887\) − 2.51794e7i − 1.07458i −0.843399 0.537288i \(-0.819449\pi\)
0.843399 0.537288i \(-0.180551\pi\)
\(888\) − 2.20506e7i − 0.938400i
\(889\) 2.75446e7 1.16891
\(890\) 0 0
\(891\) −1.63343e7 −0.689296
\(892\) 1.19676e6i 0.0503610i
\(893\) − 1.27538e7i − 0.535195i
\(894\) −1.85067e7 −0.774436
\(895\) 0 0
\(896\) 2.72144e7 1.13247
\(897\) 9.84632e6i 0.408595i
\(898\) − 3.67221e7i − 1.51963i
\(899\) −6.19006e6 −0.255444
\(900\) 0 0
\(901\) −7.96854e6 −0.327014
\(902\) 5.91972e7i 2.42262i
\(903\) 1.26177e7i 0.514945i
\(904\) −1.49360e6 −0.0607872
\(905\) 0 0
\(906\) −8.03755e6 −0.325314
\(907\) 3.96582e7i 1.60072i 0.599522 + 0.800359i \(0.295358\pi\)
−0.599522 + 0.800359i \(0.704642\pi\)
\(908\) − 2.10115e6i − 0.0845751i
\(909\) −8.16987e6 −0.327949
\(910\) 0 0
\(911\) −1.52269e7 −0.607879 −0.303939 0.952691i \(-0.598302\pi\)
−0.303939 + 0.952691i \(0.598302\pi\)
\(912\) − 7.12365e6i − 0.283606i
\(913\) − 5.98601e7i − 2.37662i
\(914\) 1.81384e7 0.718181
\(915\) 0 0
\(916\) −345824. −0.0136181
\(917\) 1.63471e7i 0.641975i
\(918\) − 3.48663e7i − 1.36552i
\(919\) −1.07946e7 −0.421615 −0.210808 0.977528i \(-0.567609\pi\)
−0.210808 + 0.977528i \(0.567609\pi\)
\(920\) 0 0
\(921\) −1.30066e7 −0.505260
\(922\) − 1.74165e7i − 0.674737i
\(923\) − 8.30597e6i − 0.320912i
\(924\) −1.98303e6 −0.0764100
\(925\) 0 0
\(926\) 2.63088e6 0.100826
\(927\) 4.68145e6i 0.178929i
\(928\) − 2.52866e6i − 0.0963875i
\(929\) −2.43276e7 −0.924826 −0.462413 0.886665i \(-0.653016\pi\)
−0.462413 + 0.886665i \(0.653016\pi\)
\(930\) 0 0
\(931\) −757993. −0.0286610
\(932\) 2.29215e6i 0.0864376i
\(933\) 1.85058e7i 0.695993i
\(934\) −4.76180e7 −1.78609
\(935\) 0 0
\(936\) −2.66498e6 −0.0994270
\(937\) 1.68889e7i 0.628423i 0.949353 + 0.314211i \(0.101740\pi\)
−0.949353 + 0.314211i \(0.898260\pi\)
\(938\) 5.51682e7i 2.04730i
\(939\) −2.47032e7 −0.914302
\(940\) 0 0
\(941\) −3.14827e7 −1.15904 −0.579519 0.814959i \(-0.696759\pi\)
−0.579519 + 0.814959i \(0.696759\pi\)
\(942\) − 7.57061e6i − 0.277974i
\(943\) − 8.46863e7i − 3.10123i
\(944\) −4.93746e7 −1.80332
\(945\) 0 0
\(946\) 2.49242e7 0.905510
\(947\) 8.67071e6i 0.314181i 0.987584 + 0.157090i \(0.0502114\pi\)
−0.987584 + 0.157090i \(0.949789\pi\)
\(948\) 1.26174e6i 0.0455983i
\(949\) −6.98682e6 −0.251834
\(950\) 0 0
\(951\) −1.93947e7 −0.695394
\(952\) 3.41749e7i 1.22212i
\(953\) − 190552.i − 0.00679645i −0.999994 0.00339823i \(-0.998918\pi\)
0.999994 0.00339823i \(-0.00108169\pi\)
\(954\) −2.89974e6 −0.103154
\(955\) 0 0
\(956\) 484810. 0.0171564
\(957\) − 2.31679e7i − 0.817723i
\(958\) − 3.85483e7i − 1.35704i
\(959\) −4.23574e7 −1.48724
\(960\) 0 0
\(961\) −2.51575e7 −0.878736
\(962\) 1.00887e7i 0.351477i
\(963\) 1.29708e7i 0.450714i
\(964\) 1.01547e6 0.0351943
\(965\) 0 0
\(966\) 4.59480e7 1.58425
\(967\) − 4.15794e7i − 1.42992i −0.699166 0.714960i \(-0.746445\pi\)
0.699166 0.714960i \(-0.253555\pi\)
\(968\) − 2.74937e7i − 0.943072i
\(969\) 9.50022e6 0.325030
\(970\) 0 0
\(971\) 2.33633e7 0.795219 0.397609 0.917555i \(-0.369840\pi\)
0.397609 + 0.917555i \(0.369840\pi\)
\(972\) − 1.35444e6i − 0.0459827i
\(973\) − 2.70431e7i − 0.915745i
\(974\) 4.52383e7 1.52795
\(975\) 0 0
\(976\) −3.18977e7 −1.07185
\(977\) − 3.30710e7i − 1.10844i −0.832371 0.554219i \(-0.813017\pi\)
0.832371 0.554219i \(-0.186983\pi\)
\(978\) 1.15117e7i 0.384851i
\(979\) 1.31847e7 0.439657
\(980\) 0 0
\(981\) −6.07230e6 −0.201456
\(982\) − 5.67163e7i − 1.87685i
\(983\) − 2.20784e7i − 0.728759i −0.931251 0.364379i \(-0.881281\pi\)
0.931251 0.364379i \(-0.118719\pi\)
\(984\) −3.87433e7 −1.27558
\(985\) 0 0
\(986\) 2.81240e7 0.921266
\(987\) − 4.01220e7i − 1.31096i
\(988\) 188755.i 0.00615185i
\(989\) −3.56560e7 −1.15916
\(990\) 0 0
\(991\) 3.54322e6 0.114608 0.0573039 0.998357i \(-0.481750\pi\)
0.0573039 + 0.998357i \(0.481750\pi\)
\(992\) 1.41820e6i 0.0457571i
\(993\) 1.85318e7i 0.596410i
\(994\) −3.87599e7 −1.24428
\(995\) 0 0
\(996\) −2.75961e6 −0.0881452
\(997\) 2.82295e7i 0.899426i 0.893173 + 0.449713i \(0.148474\pi\)
−0.893173 + 0.449713i \(0.851526\pi\)
\(998\) 3.72690e7i 1.18446i
\(999\) 4.21004e7 1.33466
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.i.274.6 22
5.2 odd 4 325.6.a.j.1.9 11
5.3 odd 4 325.6.a.k.1.3 yes 11
5.4 even 2 inner 325.6.b.i.274.17 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.9 11 5.2 odd 4
325.6.a.k.1.3 yes 11 5.3 odd 4
325.6.b.i.274.6 22 1.1 even 1 trivial
325.6.b.i.274.17 22 5.4 even 2 inner