Properties

Label 325.6.b.i.274.20
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.20
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.i.274.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.60154i q^{2} +25.9222i q^{3} -60.1895 q^{4} -248.893 q^{6} -181.554i q^{7} -270.662i q^{8} -428.963 q^{9} +O(q^{10})\) \(q+9.60154i q^{2} +25.9222i q^{3} -60.1895 q^{4} -248.893 q^{6} -181.554i q^{7} -270.662i q^{8} -428.963 q^{9} +512.944 q^{11} -1560.25i q^{12} +169.000i q^{13} +1743.19 q^{14} +672.710 q^{16} -1668.15i q^{17} -4118.70i q^{18} +464.071 q^{19} +4706.28 q^{21} +4925.05i q^{22} -2095.04i q^{23} +7016.17 q^{24} -1622.66 q^{26} -4820.57i q^{27} +10927.6i q^{28} -5935.75 q^{29} +8397.76 q^{31} -2202.14i q^{32} +13296.7i q^{33} +16016.8 q^{34} +25819.0 q^{36} +8909.35i q^{37} +4455.79i q^{38} -4380.86 q^{39} +3256.85 q^{41} +45187.5i q^{42} -5951.12i q^{43} -30873.8 q^{44} +20115.6 q^{46} +10741.1i q^{47} +17438.1i q^{48} -16154.7 q^{49} +43242.3 q^{51} -10172.0i q^{52} -39344.1i q^{53} +46284.9 q^{54} -49139.7 q^{56} +12029.8i q^{57} -56992.4i q^{58} +3940.20 q^{59} -41477.5 q^{61} +80631.4i q^{62} +77879.7i q^{63} +42670.7 q^{64} -127668. q^{66} -18589.7i q^{67} +100405. i q^{68} +54308.1 q^{69} +70348.8 q^{71} +116104. i q^{72} -78602.6i q^{73} -85543.4 q^{74} -27932.2 q^{76} -93126.8i q^{77} -42063.0i q^{78} +71703.3 q^{79} +20722.1 q^{81} +31270.8i q^{82} +208.877i q^{83} -283268. q^{84} +57139.9 q^{86} -153868. i q^{87} -138835. i q^{88} +43537.5 q^{89} +30682.6 q^{91} +126099. i q^{92} +217689. i q^{93} -103131. q^{94} +57084.5 q^{96} -15298.0i q^{97} -155110. i q^{98} -220034. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9} + 2552 q^{11} - 1156 q^{14} + 11414 q^{16} - 7040 q^{19} + 3412 q^{21} - 15446 q^{24} + 1690 q^{26} - 36850 q^{29} + 18136 q^{31} + 28910 q^{34} + 75368 q^{36} - 3718 q^{39} - 20020 q^{41} - 121302 q^{44} - 19716 q^{46} - 146626 q^{49} + 73212 q^{51} - 96026 q^{54} - 2524 q^{56} - 263284 q^{59} - 86730 q^{61} - 360142 q^{64} - 117214 q^{66} - 118690 q^{69} + 136840 q^{71} - 742792 q^{74} + 45034 q^{76} - 104478 q^{79} + 215014 q^{81} - 1705432 q^{84} + 404492 q^{86} - 655424 q^{89} + 70304 q^{91} - 1299948 q^{94} + 1799326 q^{96} - 853396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.60154i 1.69733i 0.528933 + 0.848664i \(0.322592\pi\)
−0.528933 + 0.848664i \(0.677408\pi\)
\(3\) 25.9222i 1.66291i 0.555590 + 0.831456i \(0.312492\pi\)
−0.555590 + 0.831456i \(0.687508\pi\)
\(4\) −60.1895 −1.88092
\(5\) 0 0
\(6\) −248.893 −2.82251
\(7\) − 181.554i − 1.40042i −0.713935 0.700212i \(-0.753089\pi\)
0.713935 0.700212i \(-0.246911\pi\)
\(8\) − 270.662i − 1.49521i
\(9\) −428.963 −1.76528
\(10\) 0 0
\(11\) 512.944 1.27817 0.639084 0.769137i \(-0.279313\pi\)
0.639084 + 0.769137i \(0.279313\pi\)
\(12\) − 1560.25i − 3.12781i
\(13\) 169.000i 0.277350i
\(14\) 1743.19 2.37698
\(15\) 0 0
\(16\) 672.710 0.656943
\(17\) − 1668.15i − 1.39995i −0.714165 0.699977i \(-0.753193\pi\)
0.714165 0.699977i \(-0.246807\pi\)
\(18\) − 4118.70i − 2.99626i
\(19\) 464.071 0.294917 0.147459 0.989068i \(-0.452891\pi\)
0.147459 + 0.989068i \(0.452891\pi\)
\(20\) 0 0
\(21\) 4706.28 2.32878
\(22\) 4925.05i 2.16947i
\(23\) − 2095.04i − 0.825795i −0.910778 0.412897i \(-0.864517\pi\)
0.910778 0.412897i \(-0.135483\pi\)
\(24\) 7016.17 2.48641
\(25\) 0 0
\(26\) −1622.66 −0.470754
\(27\) − 4820.57i − 1.27259i
\(28\) 10927.6i 2.63409i
\(29\) −5935.75 −1.31063 −0.655316 0.755355i \(-0.727465\pi\)
−0.655316 + 0.755355i \(0.727465\pi\)
\(30\) 0 0
\(31\) 8397.76 1.56949 0.784746 0.619817i \(-0.212793\pi\)
0.784746 + 0.619817i \(0.212793\pi\)
\(32\) − 2202.14i − 0.380164i
\(33\) 13296.7i 2.12548i
\(34\) 16016.8 2.37618
\(35\) 0 0
\(36\) 25819.0 3.32035
\(37\) 8909.35i 1.06990i 0.844885 + 0.534948i \(0.179669\pi\)
−0.844885 + 0.534948i \(0.820331\pi\)
\(38\) 4455.79i 0.500571i
\(39\) −4380.86 −0.461209
\(40\) 0 0
\(41\) 3256.85 0.302579 0.151289 0.988490i \(-0.451657\pi\)
0.151289 + 0.988490i \(0.451657\pi\)
\(42\) 45187.5i 3.95271i
\(43\) − 5951.12i − 0.490826i −0.969419 0.245413i \(-0.921076\pi\)
0.969419 0.245413i \(-0.0789236\pi\)
\(44\) −30873.8 −2.40413
\(45\) 0 0
\(46\) 20115.6 1.40164
\(47\) 10741.1i 0.709255i 0.935008 + 0.354628i \(0.115392\pi\)
−0.935008 + 0.354628i \(0.884608\pi\)
\(48\) 17438.1i 1.09244i
\(49\) −16154.7 −0.961190
\(50\) 0 0
\(51\) 43242.3 2.32800
\(52\) − 10172.0i − 0.521674i
\(53\) − 39344.1i − 1.92393i −0.273167 0.961967i \(-0.588071\pi\)
0.273167 0.961967i \(-0.411929\pi\)
\(54\) 46284.9 2.16001
\(55\) 0 0
\(56\) −49139.7 −2.09393
\(57\) 12029.8i 0.490422i
\(58\) − 56992.4i − 2.22457i
\(59\) 3940.20 0.147363 0.0736815 0.997282i \(-0.476525\pi\)
0.0736815 + 0.997282i \(0.476525\pi\)
\(60\) 0 0
\(61\) −41477.5 −1.42721 −0.713605 0.700548i \(-0.752939\pi\)
−0.713605 + 0.700548i \(0.752939\pi\)
\(62\) 80631.4i 2.66394i
\(63\) 77879.7i 2.47214i
\(64\) 42670.7 1.30221
\(65\) 0 0
\(66\) −127668. −3.60764
\(67\) − 18589.7i − 0.505923i −0.967476 0.252961i \(-0.918595\pi\)
0.967476 0.252961i \(-0.0814046\pi\)
\(68\) 100405.i 2.63320i
\(69\) 54308.1 1.37322
\(70\) 0 0
\(71\) 70348.8 1.65619 0.828096 0.560586i \(-0.189424\pi\)
0.828096 + 0.560586i \(0.189424\pi\)
\(72\) 116104.i 2.63947i
\(73\) − 78602.6i − 1.72635i −0.504902 0.863176i \(-0.668471\pi\)
0.504902 0.863176i \(-0.331529\pi\)
\(74\) −85543.4 −1.81596
\(75\) 0 0
\(76\) −27932.2 −0.554716
\(77\) − 93126.8i − 1.78998i
\(78\) − 42063.0i − 0.782823i
\(79\) 71703.3 1.29262 0.646310 0.763075i \(-0.276311\pi\)
0.646310 + 0.763075i \(0.276311\pi\)
\(80\) 0 0
\(81\) 20722.1 0.350931
\(82\) 31270.8i 0.513575i
\(83\) 208.877i 0.00332808i 0.999999 + 0.00166404i \(0.000529681\pi\)
−0.999999 + 0.00166404i \(0.999470\pi\)
\(84\) −283268. −4.38026
\(85\) 0 0
\(86\) 57139.9 0.833093
\(87\) − 153868.i − 2.17947i
\(88\) − 138835.i − 1.91113i
\(89\) 43537.5 0.582624 0.291312 0.956628i \(-0.405908\pi\)
0.291312 + 0.956628i \(0.405908\pi\)
\(90\) 0 0
\(91\) 30682.6 0.388408
\(92\) 126099.i 1.55325i
\(93\) 217689.i 2.60993i
\(94\) −103131. −1.20384
\(95\) 0 0
\(96\) 57084.5 0.632179
\(97\) − 15298.0i − 0.165084i −0.996588 0.0825419i \(-0.973696\pi\)
0.996588 0.0825419i \(-0.0263038\pi\)
\(98\) − 155110.i − 1.63145i
\(99\) −220034. −2.25632
\(100\) 0 0
\(101\) 2600.25 0.0253636 0.0126818 0.999920i \(-0.495963\pi\)
0.0126818 + 0.999920i \(0.495963\pi\)
\(102\) 415193.i 3.95138i
\(103\) − 210878.i − 1.95857i −0.202497 0.979283i \(-0.564906\pi\)
0.202497 0.979283i \(-0.435094\pi\)
\(104\) 45741.9 0.414697
\(105\) 0 0
\(106\) 377764. 3.26555
\(107\) − 107005.i − 0.903531i −0.892137 0.451765i \(-0.850794\pi\)
0.892137 0.451765i \(-0.149206\pi\)
\(108\) 290148.i 2.39365i
\(109\) −151212. −1.21904 −0.609522 0.792769i \(-0.708638\pi\)
−0.609522 + 0.792769i \(0.708638\pi\)
\(110\) 0 0
\(111\) −230950. −1.77914
\(112\) − 122133.i − 0.920000i
\(113\) 176779.i 1.30237i 0.758918 + 0.651186i \(0.225728\pi\)
−0.758918 + 0.651186i \(0.774272\pi\)
\(114\) −115504. −0.832407
\(115\) 0 0
\(116\) 357270. 2.46520
\(117\) − 72494.7i − 0.489600i
\(118\) 37832.0i 0.250123i
\(119\) −302860. −1.96053
\(120\) 0 0
\(121\) 102060. 0.633715
\(122\) − 398248.i − 2.42244i
\(123\) 84424.9i 0.503162i
\(124\) −505457. −2.95209
\(125\) 0 0
\(126\) −747765. −4.19603
\(127\) 3379.52i 0.0185929i 0.999957 + 0.00929643i \(0.00295919\pi\)
−0.999957 + 0.00929643i \(0.997041\pi\)
\(128\) 339235.i 1.83011i
\(129\) 154266. 0.816201
\(130\) 0 0
\(131\) −165563. −0.842915 −0.421458 0.906848i \(-0.638481\pi\)
−0.421458 + 0.906848i \(0.638481\pi\)
\(132\) − 800319.i − 3.99787i
\(133\) − 84253.8i − 0.413010i
\(134\) 178489. 0.858717
\(135\) 0 0
\(136\) −451507. −2.09323
\(137\) − 54105.0i − 0.246284i −0.992389 0.123142i \(-0.960703\pi\)
0.992389 0.123142i \(-0.0392970\pi\)
\(138\) 521441.i 2.33081i
\(139\) 248178. 1.08950 0.544749 0.838599i \(-0.316625\pi\)
0.544749 + 0.838599i \(0.316625\pi\)
\(140\) 0 0
\(141\) −278432. −1.17943
\(142\) 675457.i 2.81110i
\(143\) 86687.5i 0.354500i
\(144\) −288567. −1.15969
\(145\) 0 0
\(146\) 754705. 2.93019
\(147\) − 418767.i − 1.59838i
\(148\) − 536249.i − 2.01239i
\(149\) −102637. −0.378736 −0.189368 0.981906i \(-0.560644\pi\)
−0.189368 + 0.981906i \(0.560644\pi\)
\(150\) 0 0
\(151\) 513812. 1.83384 0.916921 0.399068i \(-0.130666\pi\)
0.916921 + 0.399068i \(0.130666\pi\)
\(152\) − 125606.i − 0.440964i
\(153\) 715576.i 2.47131i
\(154\) 894161. 3.03818
\(155\) 0 0
\(156\) 263682. 0.867498
\(157\) 276514.i 0.895300i 0.894209 + 0.447650i \(0.147739\pi\)
−0.894209 + 0.447650i \(0.852261\pi\)
\(158\) 688461.i 2.19400i
\(159\) 1.01989e6 3.19933
\(160\) 0 0
\(161\) −380362. −1.15646
\(162\) 198964.i 0.595644i
\(163\) 278424.i 0.820801i 0.911905 + 0.410401i \(0.134611\pi\)
−0.911905 + 0.410401i \(0.865389\pi\)
\(164\) −196028. −0.569127
\(165\) 0 0
\(166\) −2005.54 −0.00564885
\(167\) 407177.i 1.12978i 0.825167 + 0.564888i \(0.191081\pi\)
−0.825167 + 0.564888i \(0.808919\pi\)
\(168\) − 1.27381e6i − 3.48203i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −199069. −0.520611
\(172\) 358195.i 0.923206i
\(173\) 49123.8i 0.124789i 0.998052 + 0.0623946i \(0.0198737\pi\)
−0.998052 + 0.0623946i \(0.980126\pi\)
\(174\) 1.47737e6 3.69927
\(175\) 0 0
\(176\) 345062. 0.839684
\(177\) 102139.i 0.245052i
\(178\) 418026.i 0.988903i
\(179\) −386317. −0.901179 −0.450590 0.892731i \(-0.648786\pi\)
−0.450590 + 0.892731i \(0.648786\pi\)
\(180\) 0 0
\(181\) −218966. −0.496799 −0.248400 0.968658i \(-0.579905\pi\)
−0.248400 + 0.968658i \(0.579905\pi\)
\(182\) 294600.i 0.659256i
\(183\) − 1.07519e6i − 2.37333i
\(184\) −567047. −1.23474
\(185\) 0 0
\(186\) −2.09015e6 −4.42991
\(187\) − 855670.i − 1.78938i
\(188\) − 646499.i − 1.33405i
\(189\) −875192. −1.78217
\(190\) 0 0
\(191\) 277244. 0.549894 0.274947 0.961459i \(-0.411340\pi\)
0.274947 + 0.961459i \(0.411340\pi\)
\(192\) 1.10612e6i 2.16545i
\(193\) 310407.i 0.599844i 0.953964 + 0.299922i \(0.0969606\pi\)
−0.953964 + 0.299922i \(0.903039\pi\)
\(194\) 146884. 0.280201
\(195\) 0 0
\(196\) 972344. 1.80792
\(197\) − 516120.i − 0.947513i −0.880656 0.473757i \(-0.842898\pi\)
0.880656 0.473757i \(-0.157102\pi\)
\(198\) − 2.11266e6i − 3.82972i
\(199\) −647020. −1.15820 −0.579102 0.815255i \(-0.696597\pi\)
−0.579102 + 0.815255i \(0.696597\pi\)
\(200\) 0 0
\(201\) 481886. 0.841306
\(202\) 24966.4i 0.0430504i
\(203\) 1.07766e6i 1.83544i
\(204\) −2.60273e6 −4.37879
\(205\) 0 0
\(206\) 2.02475e6 3.32433
\(207\) 898693.i 1.45776i
\(208\) 113688.i 0.182203i
\(209\) 238042. 0.376954
\(210\) 0 0
\(211\) 132130. 0.204312 0.102156 0.994768i \(-0.467426\pi\)
0.102156 + 0.994768i \(0.467426\pi\)
\(212\) 2.36810e6i 3.61877i
\(213\) 1.82360e6i 2.75410i
\(214\) 1.02741e6 1.53359
\(215\) 0 0
\(216\) −1.30475e6 −1.90279
\(217\) − 1.52464e6i − 2.19796i
\(218\) − 1.45186e6i − 2.06912i
\(219\) 2.03756e6 2.87077
\(220\) 0 0
\(221\) 281918. 0.388278
\(222\) − 2.21748e6i − 3.01979i
\(223\) − 919984.i − 1.23885i −0.785057 0.619424i \(-0.787366\pi\)
0.785057 0.619424i \(-0.212634\pi\)
\(224\) −399807. −0.532391
\(225\) 0 0
\(226\) −1.69735e6 −2.21055
\(227\) 30962.8i 0.0398819i 0.999801 + 0.0199409i \(0.00634781\pi\)
−0.999801 + 0.0199409i \(0.993652\pi\)
\(228\) − 724065.i − 0.922445i
\(229\) −163086. −0.205508 −0.102754 0.994707i \(-0.532765\pi\)
−0.102754 + 0.994707i \(0.532765\pi\)
\(230\) 0 0
\(231\) 2.41406e6 2.97658
\(232\) 1.60658e6i 1.95967i
\(233\) 1.19712e6i 1.44460i 0.691582 + 0.722298i \(0.256914\pi\)
−0.691582 + 0.722298i \(0.743086\pi\)
\(234\) 696060. 0.831012
\(235\) 0 0
\(236\) −237159. −0.277178
\(237\) 1.85871e6i 2.14952i
\(238\) − 2.90792e6i − 3.32766i
\(239\) 769561. 0.871462 0.435731 0.900077i \(-0.356490\pi\)
0.435731 + 0.900077i \(0.356490\pi\)
\(240\) 0 0
\(241\) −850451. −0.943206 −0.471603 0.881811i \(-0.656324\pi\)
−0.471603 + 0.881811i \(0.656324\pi\)
\(242\) 979937.i 1.07562i
\(243\) − 634236.i − 0.689025i
\(244\) 2.49651e6 2.68447
\(245\) 0 0
\(246\) −810609. −0.854031
\(247\) 78428.0i 0.0817954i
\(248\) − 2.27296e6i − 2.34672i
\(249\) −5414.55 −0.00553431
\(250\) 0 0
\(251\) 992979. 0.994846 0.497423 0.867508i \(-0.334280\pi\)
0.497423 + 0.867508i \(0.334280\pi\)
\(252\) − 4.68754e6i − 4.64990i
\(253\) − 1.07464e6i − 1.05550i
\(254\) −32448.6 −0.0315582
\(255\) 0 0
\(256\) −1.89172e6 −1.80408
\(257\) − 1.29318e6i − 1.22131i −0.791897 0.610655i \(-0.790906\pi\)
0.791897 0.610655i \(-0.209094\pi\)
\(258\) 1.48120e6i 1.38536i
\(259\) 1.61752e6 1.49831
\(260\) 0 0
\(261\) 2.54622e6 2.31363
\(262\) − 1.58965e6i − 1.43070i
\(263\) − 1.69375e6i − 1.50994i −0.655757 0.754972i \(-0.727650\pi\)
0.655757 0.754972i \(-0.272350\pi\)
\(264\) 3.59890e6 3.17805
\(265\) 0 0
\(266\) 808966. 0.701013
\(267\) 1.12859e6i 0.968852i
\(268\) 1.11890e6i 0.951601i
\(269\) 857080. 0.722172 0.361086 0.932532i \(-0.382406\pi\)
0.361086 + 0.932532i \(0.382406\pi\)
\(270\) 0 0
\(271\) 1.66147e6 1.37426 0.687130 0.726534i \(-0.258870\pi\)
0.687130 + 0.726534i \(0.258870\pi\)
\(272\) − 1.12218e6i − 0.919691i
\(273\) 795361.i 0.645889i
\(274\) 519491. 0.418024
\(275\) 0 0
\(276\) −3.26877e6 −2.58293
\(277\) − 2.15375e6i − 1.68654i −0.537491 0.843269i \(-0.680628\pi\)
0.537491 0.843269i \(-0.319372\pi\)
\(278\) 2.38289e6i 1.84924i
\(279\) −3.60233e6 −2.77059
\(280\) 0 0
\(281\) −547631. −0.413735 −0.206868 0.978369i \(-0.566327\pi\)
−0.206868 + 0.978369i \(0.566327\pi\)
\(282\) − 2.67338e6i − 2.00188i
\(283\) − 609080.i − 0.452073i −0.974119 0.226036i \(-0.927423\pi\)
0.974119 0.226036i \(-0.0725768\pi\)
\(284\) −4.23426e6 −3.11517
\(285\) 0 0
\(286\) −832333. −0.601703
\(287\) − 591293.i − 0.423739i
\(288\) 944638.i 0.671095i
\(289\) −1.36288e6 −0.959874
\(290\) 0 0
\(291\) 396558. 0.274520
\(292\) 4.73105e6i 3.24713i
\(293\) 927787.i 0.631363i 0.948865 + 0.315682i \(0.102233\pi\)
−0.948865 + 0.315682i \(0.897767\pi\)
\(294\) 4.02080e6 2.71297
\(295\) 0 0
\(296\) 2.41142e6 1.59972
\(297\) − 2.47268e6i − 1.62659i
\(298\) − 985469.i − 0.642839i
\(299\) 354061. 0.229034
\(300\) 0 0
\(301\) −1.08045e6 −0.687365
\(302\) 4.93339e6i 3.11263i
\(303\) 67404.3i 0.0421775i
\(304\) 312185. 0.193744
\(305\) 0 0
\(306\) −6.87063e6 −4.19462
\(307\) 2.39073e6i 1.44772i 0.689948 + 0.723859i \(0.257633\pi\)
−0.689948 + 0.723859i \(0.742367\pi\)
\(308\) 5.60526e6i 3.36681i
\(309\) 5.46643e6 3.25692
\(310\) 0 0
\(311\) −1.27080e6 −0.745032 −0.372516 0.928026i \(-0.621505\pi\)
−0.372516 + 0.928026i \(0.621505\pi\)
\(312\) 1.18573e6i 0.689605i
\(313\) − 1.69293e6i − 0.976738i −0.872637 0.488369i \(-0.837592\pi\)
0.872637 0.488369i \(-0.162408\pi\)
\(314\) −2.65496e6 −1.51962
\(315\) 0 0
\(316\) −4.31578e6 −2.43132
\(317\) 958135.i 0.535523i 0.963485 + 0.267762i \(0.0862840\pi\)
−0.963485 + 0.267762i \(0.913716\pi\)
\(318\) 9.79249e6i 5.43032i
\(319\) −3.04471e6 −1.67521
\(320\) 0 0
\(321\) 2.77380e6 1.50249
\(322\) − 3.65205e6i − 1.96290i
\(323\) − 774142.i − 0.412871i
\(324\) −1.24725e6 −0.660073
\(325\) 0 0
\(326\) −2.67330e6 −1.39317
\(327\) − 3.91975e6i − 2.02716i
\(328\) − 881507.i − 0.452419i
\(329\) 1.95008e6 0.993259
\(330\) 0 0
\(331\) 2.29139e6 1.14955 0.574777 0.818310i \(-0.305089\pi\)
0.574777 + 0.818310i \(0.305089\pi\)
\(332\) − 12572.2i − 0.00625986i
\(333\) − 3.82178e6i − 1.88866i
\(334\) −3.90953e6 −1.91760
\(335\) 0 0
\(336\) 3.16596e6 1.52988
\(337\) 1.20806e6i 0.579446i 0.957110 + 0.289723i \(0.0935632\pi\)
−0.957110 + 0.289723i \(0.906437\pi\)
\(338\) − 274229.i − 0.130564i
\(339\) −4.58251e6 −2.16573
\(340\) 0 0
\(341\) 4.30758e6 2.00608
\(342\) − 1.91137e6i − 0.883648i
\(343\) − 118424.i − 0.0543505i
\(344\) −1.61074e6 −0.733889
\(345\) 0 0
\(346\) −471664. −0.211808
\(347\) 4.27369e6i 1.90537i 0.303962 + 0.952684i \(0.401690\pi\)
−0.303962 + 0.952684i \(0.598310\pi\)
\(348\) 9.26124e6i 4.09941i
\(349\) 1.49638e6 0.657625 0.328812 0.944395i \(-0.393352\pi\)
0.328812 + 0.944395i \(0.393352\pi\)
\(350\) 0 0
\(351\) 814677. 0.352954
\(352\) − 1.12958e6i − 0.485914i
\(353\) 730249.i 0.311914i 0.987764 + 0.155957i \(0.0498461\pi\)
−0.987764 + 0.155957i \(0.950154\pi\)
\(354\) −980690. −0.415933
\(355\) 0 0
\(356\) −2.62050e6 −1.09587
\(357\) − 7.85080e6i − 3.26019i
\(358\) − 3.70924e6i − 1.52960i
\(359\) −1.04399e6 −0.427522 −0.213761 0.976886i \(-0.568571\pi\)
−0.213761 + 0.976886i \(0.568571\pi\)
\(360\) 0 0
\(361\) −2.26074e6 −0.913024
\(362\) − 2.10241e6i − 0.843231i
\(363\) 2.64564e6i 1.05381i
\(364\) −1.84677e6 −0.730565
\(365\) 0 0
\(366\) 1.03235e7 4.02831
\(367\) 75157.4i 0.0291277i 0.999894 + 0.0145639i \(0.00463598\pi\)
−0.999894 + 0.0145639i \(0.995364\pi\)
\(368\) − 1.40935e6i − 0.542500i
\(369\) −1.39707e6 −0.534136
\(370\) 0 0
\(371\) −7.14307e6 −2.69432
\(372\) − 1.31026e7i − 4.90907i
\(373\) − 1.44619e6i − 0.538212i −0.963111 0.269106i \(-0.913272\pi\)
0.963111 0.269106i \(-0.0867283\pi\)
\(374\) 8.21574e6 3.03716
\(375\) 0 0
\(376\) 2.90720e6 1.06049
\(377\) − 1.00314e6i − 0.363504i
\(378\) − 8.40319e6i − 3.02493i
\(379\) −291357. −0.104190 −0.0520951 0.998642i \(-0.516590\pi\)
−0.0520951 + 0.998642i \(0.516590\pi\)
\(380\) 0 0
\(381\) −87604.8 −0.0309183
\(382\) 2.66197e6i 0.933350i
\(383\) − 3.40227e6i − 1.18515i −0.805517 0.592573i \(-0.798112\pi\)
0.805517 0.592573i \(-0.201888\pi\)
\(384\) −8.79374e6 −3.04331
\(385\) 0 0
\(386\) −2.98038e6 −1.01813
\(387\) 2.55281e6i 0.866445i
\(388\) 920777.i 0.310510i
\(389\) −1.64309e6 −0.550537 −0.275268 0.961367i \(-0.588767\pi\)
−0.275268 + 0.961367i \(0.588767\pi\)
\(390\) 0 0
\(391\) −3.49485e6 −1.15608
\(392\) 4.37247e6i 1.43718i
\(393\) − 4.29175e6i − 1.40169i
\(394\) 4.95555e6 1.60824
\(395\) 0 0
\(396\) 1.32437e7 4.24397
\(397\) 2.47328e6i 0.787585i 0.919199 + 0.393792i \(0.128837\pi\)
−0.919199 + 0.393792i \(0.871163\pi\)
\(398\) − 6.21239e6i − 1.96585i
\(399\) 2.18405e6 0.686799
\(400\) 0 0
\(401\) 4.41469e6 1.37100 0.685502 0.728071i \(-0.259583\pi\)
0.685502 + 0.728071i \(0.259583\pi\)
\(402\) 4.62684e6i 1.42797i
\(403\) 1.41922e6i 0.435299i
\(404\) −156508. −0.0477070
\(405\) 0 0
\(406\) −1.03472e7 −3.11535
\(407\) 4.56999e6i 1.36751i
\(408\) − 1.17041e7i − 3.48086i
\(409\) 2.67344e6 0.790244 0.395122 0.918629i \(-0.370702\pi\)
0.395122 + 0.918629i \(0.370702\pi\)
\(410\) 0 0
\(411\) 1.40252e6 0.409549
\(412\) 1.26926e7i 3.68391i
\(413\) − 715358.i − 0.206371i
\(414\) −8.62883e6 −2.47429
\(415\) 0 0
\(416\) 372162. 0.105439
\(417\) 6.43334e6i 1.81174i
\(418\) 2.28557e6i 0.639815i
\(419\) −2.27577e6 −0.633277 −0.316639 0.948546i \(-0.602554\pi\)
−0.316639 + 0.948546i \(0.602554\pi\)
\(420\) 0 0
\(421\) 4.79147e6 1.31754 0.658770 0.752345i \(-0.271077\pi\)
0.658770 + 0.752345i \(0.271077\pi\)
\(422\) 1.26865e6i 0.346785i
\(423\) − 4.60751e6i − 1.25203i
\(424\) −1.06490e7 −2.87669
\(425\) 0 0
\(426\) −1.75093e7 −4.67462
\(427\) 7.53039e6i 1.99870i
\(428\) 6.44055e6i 1.69947i
\(429\) −2.24714e6 −0.589503
\(430\) 0 0
\(431\) −2.09885e6 −0.544238 −0.272119 0.962264i \(-0.587725\pi\)
−0.272119 + 0.962264i \(0.587725\pi\)
\(432\) − 3.24285e6i − 0.836021i
\(433\) − 2.53735e6i − 0.650370i −0.945650 0.325185i \(-0.894573\pi\)
0.945650 0.325185i \(-0.105427\pi\)
\(434\) 1.46389e7 3.73065
\(435\) 0 0
\(436\) 9.10135e6 2.29292
\(437\) − 972246.i − 0.243541i
\(438\) 1.95637e7i 4.87264i
\(439\) −3.67042e6 −0.908979 −0.454490 0.890752i \(-0.650178\pi\)
−0.454490 + 0.890752i \(0.650178\pi\)
\(440\) 0 0
\(441\) 6.92977e6 1.69677
\(442\) 2.70685e6i 0.659034i
\(443\) 2.32270e6i 0.562321i 0.959661 + 0.281161i \(0.0907193\pi\)
−0.959661 + 0.281161i \(0.909281\pi\)
\(444\) 1.39008e7 3.34643
\(445\) 0 0
\(446\) 8.83325e6 2.10273
\(447\) − 2.66057e6i − 0.629805i
\(448\) − 7.74702e6i − 1.82364i
\(449\) 4.30759e6 1.00837 0.504183 0.863597i \(-0.331794\pi\)
0.504183 + 0.863597i \(0.331794\pi\)
\(450\) 0 0
\(451\) 1.67058e6 0.386747
\(452\) − 1.06403e7i − 2.44966i
\(453\) 1.33192e7i 3.04952i
\(454\) −297290. −0.0676926
\(455\) 0 0
\(456\) 3.25600e6 0.733285
\(457\) 1.14361e6i 0.256145i 0.991765 + 0.128073i \(0.0408791\pi\)
−0.991765 + 0.128073i \(0.959121\pi\)
\(458\) − 1.56588e6i − 0.348814i
\(459\) −8.04146e6 −1.78157
\(460\) 0 0
\(461\) −3.73288e6 −0.818071 −0.409036 0.912518i \(-0.634135\pi\)
−0.409036 + 0.912518i \(0.634135\pi\)
\(462\) 2.31786e7i 5.05223i
\(463\) − 4.46756e6i − 0.968540i −0.874919 0.484270i \(-0.839085\pi\)
0.874919 0.484270i \(-0.160915\pi\)
\(464\) −3.99304e6 −0.861011
\(465\) 0 0
\(466\) −1.14942e7 −2.45195
\(467\) − 5.73689e6i − 1.21726i −0.793453 0.608632i \(-0.791719\pi\)
0.793453 0.608632i \(-0.208281\pi\)
\(468\) 4.36342e6i 0.920900i
\(469\) −3.37502e6 −0.708507
\(470\) 0 0
\(471\) −7.16787e6 −1.48881
\(472\) − 1.06646e6i − 0.220339i
\(473\) − 3.05259e6i − 0.627359i
\(474\) −1.78465e7 −3.64843
\(475\) 0 0
\(476\) 1.82290e7 3.68761
\(477\) 1.68772e7i 3.39628i
\(478\) 7.38897e6i 1.47916i
\(479\) 8.44282e6 1.68131 0.840657 0.541567i \(-0.182169\pi\)
0.840657 + 0.541567i \(0.182169\pi\)
\(480\) 0 0
\(481\) −1.50568e6 −0.296736
\(482\) − 8.16563e6i − 1.60093i
\(483\) − 9.85982e6i − 1.92310i
\(484\) −6.14297e6 −1.19197
\(485\) 0 0
\(486\) 6.08964e6 1.16950
\(487\) − 2.30080e6i − 0.439599i −0.975545 0.219799i \(-0.929460\pi\)
0.975545 0.219799i \(-0.0705403\pi\)
\(488\) 1.12264e7i 2.13398i
\(489\) −7.21738e6 −1.36492
\(490\) 0 0
\(491\) −1.83374e6 −0.343269 −0.171635 0.985161i \(-0.554905\pi\)
−0.171635 + 0.985161i \(0.554905\pi\)
\(492\) − 5.08149e6i − 0.946408i
\(493\) 9.90176e6i 1.83483i
\(494\) −753029. −0.138834
\(495\) 0 0
\(496\) 5.64926e6 1.03107
\(497\) − 1.27721e7i − 2.31937i
\(498\) − 51988.0i − 0.00939354i
\(499\) 1.65708e6 0.297916 0.148958 0.988844i \(-0.452408\pi\)
0.148958 + 0.988844i \(0.452408\pi\)
\(500\) 0 0
\(501\) −1.05550e7 −1.87872
\(502\) 9.53412e6i 1.68858i
\(503\) − 674839.i − 0.118927i −0.998230 0.0594634i \(-0.981061\pi\)
0.998230 0.0594634i \(-0.0189390\pi\)
\(504\) 2.10791e7 3.69637
\(505\) 0 0
\(506\) 1.03182e7 1.79154
\(507\) − 740365.i − 0.127916i
\(508\) − 203412.i − 0.0349717i
\(509\) −214603. −0.0367148 −0.0183574 0.999831i \(-0.505844\pi\)
−0.0183574 + 0.999831i \(0.505844\pi\)
\(510\) 0 0
\(511\) −1.42706e7 −2.41763
\(512\) − 7.30787e6i − 1.23202i
\(513\) − 2.23709e6i − 0.375310i
\(514\) 1.24165e7 2.07296
\(515\) 0 0
\(516\) −9.28522e6 −1.53521
\(517\) 5.50956e6i 0.906548i
\(518\) 1.55307e7i 2.54312i
\(519\) −1.27340e6 −0.207513
\(520\) 0 0
\(521\) 9.75675e6 1.57475 0.787373 0.616476i \(-0.211440\pi\)
0.787373 + 0.616476i \(0.211440\pi\)
\(522\) 2.44476e7i 3.92699i
\(523\) 1.41439e6i 0.226107i 0.993589 + 0.113054i \(0.0360632\pi\)
−0.993589 + 0.113054i \(0.963937\pi\)
\(524\) 9.96512e6 1.58546
\(525\) 0 0
\(526\) 1.62626e7 2.56287
\(527\) − 1.40088e7i − 2.19722i
\(528\) 8.94479e6i 1.39632i
\(529\) 2.04716e6 0.318063
\(530\) 0 0
\(531\) −1.69020e6 −0.260137
\(532\) 5.07119e6i 0.776839i
\(533\) 550408.i 0.0839203i
\(534\) −1.08362e7 −1.64446
\(535\) 0 0
\(536\) −5.03152e6 −0.756462
\(537\) − 1.00142e7i − 1.49858i
\(538\) 8.22929e6i 1.22576i
\(539\) −8.28647e6 −1.22856
\(540\) 0 0
\(541\) 6.38226e6 0.937522 0.468761 0.883325i \(-0.344700\pi\)
0.468761 + 0.883325i \(0.344700\pi\)
\(542\) 1.59527e7i 2.33257i
\(543\) − 5.67610e6i − 0.826134i
\(544\) −3.67352e6 −0.532212
\(545\) 0 0
\(546\) −7.63669e6 −1.09628
\(547\) − 6.98550e6i − 0.998227i −0.866537 0.499113i \(-0.833659\pi\)
0.866537 0.499113i \(-0.166341\pi\)
\(548\) 3.25655e6i 0.463241i
\(549\) 1.77923e7 2.51943
\(550\) 0 0
\(551\) −2.75461e6 −0.386528
\(552\) − 1.46991e7i − 2.05326i
\(553\) − 1.30180e7i − 1.81022i
\(554\) 2.06793e7 2.86261
\(555\) 0 0
\(556\) −1.49377e7 −2.04926
\(557\) − 8.50622e6i − 1.16171i −0.814006 0.580856i \(-0.802718\pi\)
0.814006 0.580856i \(-0.197282\pi\)
\(558\) − 3.45879e7i − 4.70260i
\(559\) 1.00574e6 0.136131
\(560\) 0 0
\(561\) 2.21809e7 2.97558
\(562\) − 5.25810e6i − 0.702244i
\(563\) − 5.22994e6i − 0.695386i −0.937608 0.347693i \(-0.886965\pi\)
0.937608 0.347693i \(-0.113035\pi\)
\(564\) 1.67587e7 2.21841
\(565\) 0 0
\(566\) 5.84810e6 0.767315
\(567\) − 3.76217e6i − 0.491452i
\(568\) − 1.90408e7i − 2.47636i
\(569\) −1.12412e7 −1.45556 −0.727781 0.685809i \(-0.759448\pi\)
−0.727781 + 0.685809i \(0.759448\pi\)
\(570\) 0 0
\(571\) −3.42903e6 −0.440130 −0.220065 0.975485i \(-0.570627\pi\)
−0.220065 + 0.975485i \(0.570627\pi\)
\(572\) − 5.21768e6i − 0.666787i
\(573\) 7.18679e6i 0.914426i
\(574\) 5.67732e6 0.719224
\(575\) 0 0
\(576\) −1.83041e7 −2.29876
\(577\) − 1.39888e7i − 1.74920i −0.484845 0.874600i \(-0.661124\pi\)
0.484845 0.874600i \(-0.338876\pi\)
\(578\) − 1.30858e7i − 1.62922i
\(579\) −8.04645e6 −0.997488
\(580\) 0 0
\(581\) 37922.3 0.00466073
\(582\) 3.80756e6i 0.465950i
\(583\) − 2.01813e7i − 2.45911i
\(584\) −2.12747e7 −2.58126
\(585\) 0 0
\(586\) −8.90818e6 −1.07163
\(587\) 2.19504e6i 0.262934i 0.991321 + 0.131467i \(0.0419687\pi\)
−0.991321 + 0.131467i \(0.958031\pi\)
\(588\) 2.52053e7i 3.00642i
\(589\) 3.89716e6 0.462871
\(590\) 0 0
\(591\) 1.33790e7 1.57563
\(592\) 5.99340e6i 0.702861i
\(593\) − 1.41425e6i − 0.165154i −0.996585 0.0825772i \(-0.973685\pi\)
0.996585 0.0825772i \(-0.0263151\pi\)
\(594\) 2.37416e7 2.76085
\(595\) 0 0
\(596\) 6.17765e6 0.712373
\(597\) − 1.67722e7i − 1.92599i
\(598\) 3.39953e6i 0.388746i
\(599\) 9.66661e6 1.10080 0.550398 0.834902i \(-0.314476\pi\)
0.550398 + 0.834902i \(0.314476\pi\)
\(600\) 0 0
\(601\) −8.23263e6 −0.929721 −0.464860 0.885384i \(-0.653895\pi\)
−0.464860 + 0.885384i \(0.653895\pi\)
\(602\) − 1.03740e7i − 1.16668i
\(603\) 7.97427e6i 0.893095i
\(604\) −3.09261e7 −3.44931
\(605\) 0 0
\(606\) −647185. −0.0715891
\(607\) 7.61203e6i 0.838549i 0.907859 + 0.419275i \(0.137716\pi\)
−0.907859 + 0.419275i \(0.862284\pi\)
\(608\) − 1.02195e6i − 0.112117i
\(609\) −2.79353e7 −3.05218
\(610\) 0 0
\(611\) −1.81524e6 −0.196712
\(612\) − 4.30702e7i − 4.64834i
\(613\) − 1.04544e7i − 1.12369i −0.827243 0.561844i \(-0.810092\pi\)
0.827243 0.561844i \(-0.189908\pi\)
\(614\) −2.29546e7 −2.45725
\(615\) 0 0
\(616\) −2.52059e7 −2.67640
\(617\) − 8.78600e6i − 0.929134i −0.885538 0.464567i \(-0.846210\pi\)
0.885538 0.464567i \(-0.153790\pi\)
\(618\) 5.24861e7i 5.52807i
\(619\) −8.05994e6 −0.845484 −0.422742 0.906250i \(-0.638932\pi\)
−0.422742 + 0.906250i \(0.638932\pi\)
\(620\) 0 0
\(621\) −1.00993e7 −1.05090
\(622\) − 1.22016e7i − 1.26456i
\(623\) − 7.90438e6i − 0.815921i
\(624\) −2.94705e6 −0.302988
\(625\) 0 0
\(626\) 1.62547e7 1.65784
\(627\) 6.17059e6i 0.626842i
\(628\) − 1.66433e7i − 1.68399i
\(629\) 1.48622e7 1.49781
\(630\) 0 0
\(631\) 1.42505e6 0.142481 0.0712404 0.997459i \(-0.477304\pi\)
0.0712404 + 0.997459i \(0.477304\pi\)
\(632\) − 1.94074e7i − 1.93274i
\(633\) 3.42510e6i 0.339754i
\(634\) −9.19956e6 −0.908959
\(635\) 0 0
\(636\) −6.13865e7 −6.01769
\(637\) − 2.73015e6i − 0.266586i
\(638\) − 2.92339e7i − 2.84338i
\(639\) −3.01770e7 −2.92364
\(640\) 0 0
\(641\) 1.11250e6 0.106944 0.0534718 0.998569i \(-0.482971\pi\)
0.0534718 + 0.998569i \(0.482971\pi\)
\(642\) 2.66327e7i 2.55022i
\(643\) 9.07113e6i 0.865235i 0.901578 + 0.432617i \(0.142410\pi\)
−0.901578 + 0.432617i \(0.857590\pi\)
\(644\) 2.28938e7 2.17522
\(645\) 0 0
\(646\) 7.43295e6 0.700777
\(647\) 2.19842e6i 0.206467i 0.994657 + 0.103234i \(0.0329189\pi\)
−0.994657 + 0.103234i \(0.967081\pi\)
\(648\) − 5.60869e6i − 0.524716i
\(649\) 2.02110e6 0.188355
\(650\) 0 0
\(651\) 3.95222e7 3.65501
\(652\) − 1.67582e7i − 1.54386i
\(653\) 1.42857e7i 1.31105i 0.755173 + 0.655525i \(0.227553\pi\)
−0.755173 + 0.655525i \(0.772447\pi\)
\(654\) 3.76356e7 3.44076
\(655\) 0 0
\(656\) 2.19092e6 0.198777
\(657\) 3.37176e7i 3.04749i
\(658\) 1.87237e7i 1.68589i
\(659\) −1.54265e7 −1.38374 −0.691869 0.722023i \(-0.743213\pi\)
−0.691869 + 0.722023i \(0.743213\pi\)
\(660\) 0 0
\(661\) 1.65514e7 1.47344 0.736719 0.676199i \(-0.236374\pi\)
0.736719 + 0.676199i \(0.236374\pi\)
\(662\) 2.20009e7i 1.95117i
\(663\) 7.30795e6i 0.645672i
\(664\) 56535.0 0.00497619
\(665\) 0 0
\(666\) 3.66949e7 3.20568
\(667\) 1.24356e7i 1.08231i
\(668\) − 2.45078e7i − 2.12502i
\(669\) 2.38480e7 2.06010
\(670\) 0 0
\(671\) −2.12756e7 −1.82422
\(672\) − 1.03639e7i − 0.885320i
\(673\) − 8.91603e6i − 0.758811i −0.925230 0.379406i \(-0.876129\pi\)
0.925230 0.379406i \(-0.123871\pi\)
\(674\) −1.15992e7 −0.983510
\(675\) 0 0
\(676\) 1.71907e6 0.144686
\(677\) − 8.15442e6i − 0.683788i −0.939739 0.341894i \(-0.888932\pi\)
0.939739 0.341894i \(-0.111068\pi\)
\(678\) − 4.39992e7i − 3.67596i
\(679\) −2.77740e6 −0.231187
\(680\) 0 0
\(681\) −802625. −0.0663200
\(682\) 4.13594e7i 3.40497i
\(683\) − 2.02314e6i − 0.165948i −0.996552 0.0829742i \(-0.973558\pi\)
0.996552 0.0829742i \(-0.0264419\pi\)
\(684\) 1.19819e7 0.979229
\(685\) 0 0
\(686\) 1.13705e6 0.0922507
\(687\) − 4.22756e6i − 0.341742i
\(688\) − 4.00338e6i − 0.322445i
\(689\) 6.64915e6 0.533603
\(690\) 0 0
\(691\) −5.61163e6 −0.447089 −0.223545 0.974694i \(-0.571763\pi\)
−0.223545 + 0.974694i \(0.571763\pi\)
\(692\) − 2.95674e6i − 0.234719i
\(693\) 3.99479e7i 3.15981i
\(694\) −4.10339e7 −3.23403
\(695\) 0 0
\(696\) −4.16463e7 −3.25877
\(697\) − 5.43293e6i − 0.423597i
\(698\) 1.43675e7i 1.11620i
\(699\) −3.10319e7 −2.40224
\(700\) 0 0
\(701\) −5.09127e6 −0.391319 −0.195660 0.980672i \(-0.562685\pi\)
−0.195660 + 0.980672i \(0.562685\pi\)
\(702\) 7.82215e6i 0.599078i
\(703\) 4.13457e6i 0.315531i
\(704\) 2.18877e7 1.66444
\(705\) 0 0
\(706\) −7.01152e6 −0.529420
\(707\) − 472085.i − 0.0355199i
\(708\) − 6.14769e6i − 0.460923i
\(709\) −1.54906e7 −1.15732 −0.578658 0.815570i \(-0.696423\pi\)
−0.578658 + 0.815570i \(0.696423\pi\)
\(710\) 0 0
\(711\) −3.07580e7 −2.28184
\(712\) − 1.17839e7i − 0.871146i
\(713\) − 1.75936e7i − 1.29608i
\(714\) 7.53797e7 5.53362
\(715\) 0 0
\(716\) 2.32522e7 1.69505
\(717\) 1.99488e7i 1.44916i
\(718\) − 1.00239e7i − 0.725645i
\(719\) 1.12604e7 0.812328 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(720\) 0 0
\(721\) −3.82857e7 −2.74282
\(722\) − 2.17065e7i − 1.54970i
\(723\) − 2.20456e7i − 1.56847i
\(724\) 1.31795e7 0.934440
\(725\) 0 0
\(726\) −2.54022e7 −1.78867
\(727\) − 8.14136e6i − 0.571296i −0.958335 0.285648i \(-0.907791\pi\)
0.958335 0.285648i \(-0.0922088\pi\)
\(728\) − 8.30461e6i − 0.580752i
\(729\) 2.14763e7 1.49672
\(730\) 0 0
\(731\) −9.92740e6 −0.687135
\(732\) 6.47151e7i 4.46404i
\(733\) − 1.30341e7i − 0.896025i −0.894027 0.448013i \(-0.852132\pi\)
0.894027 0.448013i \(-0.147868\pi\)
\(734\) −721626. −0.0494393
\(735\) 0 0
\(736\) −4.61357e6 −0.313937
\(737\) − 9.53545e6i − 0.646655i
\(738\) − 1.34140e7i − 0.906604i
\(739\) 1.95666e7 1.31796 0.658981 0.752159i \(-0.270988\pi\)
0.658981 + 0.752159i \(0.270988\pi\)
\(740\) 0 0
\(741\) −2.03303e6 −0.136019
\(742\) − 6.85844e7i − 4.57315i
\(743\) − 1.78971e6i − 0.118935i −0.998230 0.0594675i \(-0.981060\pi\)
0.998230 0.0594675i \(-0.0189403\pi\)
\(744\) 5.89201e7 3.90240
\(745\) 0 0
\(746\) 1.38857e7 0.913523
\(747\) − 89600.2i − 0.00587500i
\(748\) 5.15023e7i 3.36568i
\(749\) −1.94271e7 −1.26533
\(750\) 0 0
\(751\) −2.13528e7 −1.38151 −0.690755 0.723089i \(-0.742722\pi\)
−0.690755 + 0.723089i \(0.742722\pi\)
\(752\) 7.22562e6i 0.465940i
\(753\) 2.57402e7i 1.65434i
\(754\) 9.63171e6 0.616985
\(755\) 0 0
\(756\) 5.26774e7 3.35212
\(757\) 7.21618e6i 0.457686i 0.973463 + 0.228843i \(0.0734942\pi\)
−0.973463 + 0.228843i \(0.926506\pi\)
\(758\) − 2.79747e6i − 0.176845i
\(759\) 2.78570e7 1.75521
\(760\) 0 0
\(761\) −1.18696e7 −0.742974 −0.371487 0.928438i \(-0.621152\pi\)
−0.371487 + 0.928438i \(0.621152\pi\)
\(762\) − 841141.i − 0.0524785i
\(763\) 2.74530e7i 1.70718i
\(764\) −1.66872e7 −1.03431
\(765\) 0 0
\(766\) 3.26670e7 2.01158
\(767\) 665894.i 0.0408711i
\(768\) − 4.90376e7i − 3.00003i
\(769\) 2.02111e7 1.23247 0.616233 0.787564i \(-0.288658\pi\)
0.616233 + 0.787564i \(0.288658\pi\)
\(770\) 0 0
\(771\) 3.35221e7 2.03093
\(772\) − 1.86832e7i − 1.12826i
\(773\) − 4.38847e6i − 0.264158i −0.991239 0.132079i \(-0.957835\pi\)
0.991239 0.132079i \(-0.0421653\pi\)
\(774\) −2.45109e7 −1.47064
\(775\) 0 0
\(776\) −4.14058e6 −0.246835
\(777\) 4.19299e7i 2.49156i
\(778\) − 1.57762e7i − 0.934442i
\(779\) 1.51141e6 0.0892357
\(780\) 0 0
\(781\) 3.60850e7 2.11689
\(782\) − 3.35559e7i − 1.96224i
\(783\) 2.86137e7i 1.66790i
\(784\) −1.08674e7 −0.631447
\(785\) 0 0
\(786\) 4.12074e7 2.37913
\(787\) − 4.56154e6i − 0.262527i −0.991347 0.131264i \(-0.958097\pi\)
0.991347 0.131264i \(-0.0419034\pi\)
\(788\) 3.10650e7i 1.78220i
\(789\) 4.39059e7 2.51090
\(790\) 0 0
\(791\) 3.20949e7 1.82387
\(792\) 5.95549e7i 3.37368i
\(793\) − 7.00970e6i − 0.395837i
\(794\) −2.37473e7 −1.33679
\(795\) 0 0
\(796\) 3.89438e7 2.17849
\(797\) 1.86077e7i 1.03764i 0.854883 + 0.518820i \(0.173629\pi\)
−0.854883 + 0.518820i \(0.826371\pi\)
\(798\) 2.09702e7i 1.16572i
\(799\) 1.79177e7 0.992925
\(800\) 0 0
\(801\) −1.86759e7 −1.02849
\(802\) 4.23878e7i 2.32704i
\(803\) − 4.03187e7i − 2.20657i
\(804\) −2.90044e7 −1.58243
\(805\) 0 0
\(806\) −1.36267e7 −0.738845
\(807\) 2.22175e7i 1.20091i
\(808\) − 703789.i − 0.0379240i
\(809\) 1.95576e7 1.05062 0.525309 0.850911i \(-0.323950\pi\)
0.525309 + 0.850911i \(0.323950\pi\)
\(810\) 0 0
\(811\) −1.88885e7 −1.00843 −0.504214 0.863579i \(-0.668218\pi\)
−0.504214 + 0.863579i \(0.668218\pi\)
\(812\) − 6.48637e7i − 3.45232i
\(813\) 4.30690e7i 2.28528i
\(814\) −4.38790e7 −2.32111
\(815\) 0 0
\(816\) 2.90895e7 1.52937
\(817\) − 2.76174e6i − 0.144753i
\(818\) 2.56691e7i 1.34130i
\(819\) −1.31617e7 −0.685648
\(820\) 0 0
\(821\) 7.00926e6 0.362923 0.181461 0.983398i \(-0.441917\pi\)
0.181461 + 0.983398i \(0.441917\pi\)
\(822\) 1.34664e7i 0.695138i
\(823\) 2.33685e7i 1.20263i 0.799014 + 0.601313i \(0.205355\pi\)
−0.799014 + 0.601313i \(0.794645\pi\)
\(824\) −5.70767e7 −2.92847
\(825\) 0 0
\(826\) 6.86853e6 0.350279
\(827\) 2.84662e7i 1.44732i 0.690155 + 0.723662i \(0.257542\pi\)
−0.690155 + 0.723662i \(0.742458\pi\)
\(828\) − 5.40918e7i − 2.74193i
\(829\) 1.37621e7 0.695503 0.347752 0.937587i \(-0.386945\pi\)
0.347752 + 0.937587i \(0.386945\pi\)
\(830\) 0 0
\(831\) 5.58301e7 2.80457
\(832\) 7.21135e6i 0.361167i
\(833\) 2.69486e7i 1.34562i
\(834\) −6.17699e7 −3.07512
\(835\) 0 0
\(836\) −1.43276e7 −0.709021
\(837\) − 4.04820e7i − 1.99732i
\(838\) − 2.18509e7i − 1.07488i
\(839\) 3.18392e7 1.56155 0.780776 0.624811i \(-0.214824\pi\)
0.780776 + 0.624811i \(0.214824\pi\)
\(840\) 0 0
\(841\) 1.47220e7 0.717757
\(842\) 4.60055e7i 2.23630i
\(843\) − 1.41958e7i − 0.688006i
\(844\) −7.95282e6 −0.384295
\(845\) 0 0
\(846\) 4.42392e7 2.12511
\(847\) − 1.85294e7i − 0.887471i
\(848\) − 2.64672e7i − 1.26392i
\(849\) 1.57887e7 0.751757
\(850\) 0 0
\(851\) 1.86654e7 0.883514
\(852\) − 1.09761e8i − 5.18025i
\(853\) − 2.97955e6i − 0.140210i −0.997540 0.0701049i \(-0.977667\pi\)
0.997540 0.0701049i \(-0.0223334\pi\)
\(854\) −7.23033e7 −3.39245
\(855\) 0 0
\(856\) −2.89621e7 −1.35097
\(857\) − 1.00599e7i − 0.467886i −0.972250 0.233943i \(-0.924837\pi\)
0.972250 0.233943i \(-0.0751630\pi\)
\(858\) − 2.15759e7i − 1.00058i
\(859\) −1.59873e7 −0.739252 −0.369626 0.929181i \(-0.620514\pi\)
−0.369626 + 0.929181i \(0.620514\pi\)
\(860\) 0 0
\(861\) 1.53277e7 0.704641
\(862\) − 2.01522e7i − 0.923751i
\(863\) − 9.59580e6i − 0.438586i −0.975659 0.219293i \(-0.929625\pi\)
0.975659 0.219293i \(-0.0703750\pi\)
\(864\) −1.06156e7 −0.483794
\(865\) 0 0
\(866\) 2.43624e7 1.10389
\(867\) − 3.53290e7i − 1.59619i
\(868\) 9.17675e7i 4.13418i
\(869\) 3.67797e7 1.65219
\(870\) 0 0
\(871\) 3.14165e6 0.140318
\(872\) 4.09273e7i 1.82273i
\(873\) 6.56226e6i 0.291419i
\(874\) 9.33505e6 0.413369
\(875\) 0 0
\(876\) −1.22639e8 −5.39970
\(877\) 1.09080e7i 0.478902i 0.970908 + 0.239451i \(0.0769675\pi\)
−0.970908 + 0.239451i \(0.923033\pi\)
\(878\) − 3.52416e7i − 1.54284i
\(879\) −2.40503e7 −1.04990
\(880\) 0 0
\(881\) −897407. −0.0389538 −0.0194769 0.999810i \(-0.506200\pi\)
−0.0194769 + 0.999810i \(0.506200\pi\)
\(882\) 6.65365e7i 2.87997i
\(883\) 3.37890e7i 1.45839i 0.684306 + 0.729195i \(0.260105\pi\)
−0.684306 + 0.729195i \(0.739895\pi\)
\(884\) −1.69685e7 −0.730320
\(885\) 0 0
\(886\) −2.23015e7 −0.954443
\(887\) 2.26350e7i 0.965989i 0.875623 + 0.482994i \(0.160451\pi\)
−0.875623 + 0.482994i \(0.839549\pi\)
\(888\) 6.25095e7i 2.66020i
\(889\) 613565. 0.0260379
\(890\) 0 0
\(891\) 1.06293e7 0.448549
\(892\) 5.53733e7i 2.33017i
\(893\) 4.98461e6i 0.209172i
\(894\) 2.55456e7 1.06899
\(895\) 0 0
\(896\) 6.15894e7 2.56293
\(897\) 9.17806e6i 0.380864i
\(898\) 4.13594e7i 1.71153i
\(899\) −4.98470e7 −2.05703
\(900\) 0 0
\(901\) −6.56321e7 −2.69342
\(902\) 1.60402e7i 0.656436i
\(903\) − 2.80076e7i − 1.14303i
\(904\) 4.78475e7 1.94732
\(905\) 0 0
\(906\) −1.27884e8 −5.17604
\(907\) − 3.13826e7i − 1.26669i −0.773870 0.633345i \(-0.781681\pi\)
0.773870 0.633345i \(-0.218319\pi\)
\(908\) − 1.86363e6i − 0.0750146i
\(909\) −1.11541e6 −0.0447739
\(910\) 0 0
\(911\) −2.54672e7 −1.01668 −0.508341 0.861156i \(-0.669741\pi\)
−0.508341 + 0.861156i \(0.669741\pi\)
\(912\) 8.09254e6i 0.322179i
\(913\) 107142.i 0.00425385i
\(914\) −1.09804e7 −0.434763
\(915\) 0 0
\(916\) 9.81608e6 0.386544
\(917\) 3.00585e7i 1.18044i
\(918\) − 7.72104e7i − 3.02391i
\(919\) 2.19820e7 0.858577 0.429288 0.903167i \(-0.358764\pi\)
0.429288 + 0.903167i \(0.358764\pi\)
\(920\) 0 0
\(921\) −6.19730e7 −2.40743
\(922\) − 3.58413e7i − 1.38854i
\(923\) 1.18889e7i 0.459345i
\(924\) −1.45301e8 −5.59871
\(925\) 0 0
\(926\) 4.28954e7 1.64393
\(927\) 9.04588e7i 3.45741i
\(928\) 1.30714e7i 0.498255i
\(929\) −2.75340e7 −1.04672 −0.523359 0.852112i \(-0.675321\pi\)
−0.523359 + 0.852112i \(0.675321\pi\)
\(930\) 0 0
\(931\) −7.49694e6 −0.283472
\(932\) − 7.20538e7i − 2.71717i
\(933\) − 3.29419e7i − 1.23892i
\(934\) 5.50830e7 2.06610
\(935\) 0 0
\(936\) −1.96216e7 −0.732056
\(937\) − 117742.i − 0.00438111i −0.999998 0.00219055i \(-0.999303\pi\)
0.999998 0.00219055i \(-0.000697275\pi\)
\(938\) − 3.24054e7i − 1.20257i
\(939\) 4.38845e7 1.62423
\(940\) 0 0
\(941\) 1.19282e7 0.439136 0.219568 0.975597i \(-0.429535\pi\)
0.219568 + 0.975597i \(0.429535\pi\)
\(942\) − 6.88226e7i − 2.52699i
\(943\) − 6.82323e6i − 0.249868i
\(944\) 2.65061e6 0.0968091
\(945\) 0 0
\(946\) 2.93096e7 1.06483
\(947\) 4.67856e7i 1.69526i 0.530585 + 0.847632i \(0.321972\pi\)
−0.530585 + 0.847632i \(0.678028\pi\)
\(948\) − 1.11875e8i − 4.04307i
\(949\) 1.32838e7 0.478804
\(950\) 0 0
\(951\) −2.48370e7 −0.890529
\(952\) 8.19727e7i 2.93141i
\(953\) − 1.84653e6i − 0.0658603i −0.999458 0.0329301i \(-0.989516\pi\)
0.999458 0.0329301i \(-0.0104839\pi\)
\(954\) −1.62047e8 −5.76460
\(955\) 0 0
\(956\) −4.63195e7 −1.63915
\(957\) − 7.89257e7i − 2.78573i
\(958\) 8.10641e7i 2.85374i
\(959\) −9.82296e6 −0.344902
\(960\) 0 0
\(961\) 4.18932e7 1.46331
\(962\) − 1.44568e7i − 0.503658i
\(963\) 4.59010e7i 1.59498i
\(964\) 5.11882e7 1.77410
\(965\) 0 0
\(966\) 9.46694e7 3.26413
\(967\) − 3.47395e7i − 1.19470i −0.801982 0.597349i \(-0.796221\pi\)
0.801982 0.597349i \(-0.203779\pi\)
\(968\) − 2.76239e7i − 0.947538i
\(969\) 2.00675e7 0.686569
\(970\) 0 0
\(971\) 1.02513e7 0.348923 0.174462 0.984664i \(-0.444182\pi\)
0.174462 + 0.984664i \(0.444182\pi\)
\(972\) 3.81743e7i 1.29600i
\(973\) − 4.50577e7i − 1.52576i
\(974\) 2.20912e7 0.746143
\(975\) 0 0
\(976\) −2.79023e7 −0.937597
\(977\) 1.54408e6i 0.0517528i 0.999665 + 0.0258764i \(0.00823763\pi\)
−0.999665 + 0.0258764i \(0.991762\pi\)
\(978\) − 6.92980e7i − 2.31672i
\(979\) 2.23323e7 0.744691
\(980\) 0 0
\(981\) 6.48642e7 2.15195
\(982\) − 1.76068e7i − 0.582640i
\(983\) 3.24347e7i 1.07060i 0.844663 + 0.535299i \(0.179801\pi\)
−0.844663 + 0.535299i \(0.820199\pi\)
\(984\) 2.28506e7 0.752334
\(985\) 0 0
\(986\) −9.50721e7 −3.11430
\(987\) 5.05504e7i 1.65170i
\(988\) − 4.72054e6i − 0.153851i
\(989\) −1.24678e7 −0.405322
\(990\) 0 0
\(991\) −3.76595e7 −1.21812 −0.609060 0.793124i \(-0.708453\pi\)
−0.609060 + 0.793124i \(0.708453\pi\)
\(992\) − 1.84931e7i − 0.596664i
\(993\) 5.93980e7i 1.91161i
\(994\) 1.22632e8 3.93674
\(995\) 0 0
\(996\) 325899. 0.0104096
\(997\) − 3.72285e7i − 1.18614i −0.805149 0.593072i \(-0.797915\pi\)
0.805149 0.593072i \(-0.202085\pi\)
\(998\) 1.59106e7i 0.505661i
\(999\) 4.29481e7 1.36154
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.i.274.20 22
5.2 odd 4 325.6.a.k.1.2 yes 11
5.3 odd 4 325.6.a.j.1.10 11
5.4 even 2 inner 325.6.b.i.274.3 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.10 11 5.3 odd 4
325.6.a.k.1.2 yes 11 5.2 odd 4
325.6.b.i.274.3 22 5.4 even 2 inner
325.6.b.i.274.20 22 1.1 even 1 trivial