Properties

Label 325.6.b.i.274.2
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.2
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.i.274.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.1023i q^{2} +24.5176i q^{3} -70.0572 q^{4} +247.685 q^{6} -72.1186i q^{7} +384.466i q^{8} -358.110 q^{9} +O(q^{10})\) \(q-10.1023i q^{2} +24.5176i q^{3} -70.0572 q^{4} +247.685 q^{6} -72.1186i q^{7} +384.466i q^{8} -358.110 q^{9} +127.428 q^{11} -1717.63i q^{12} -169.000i q^{13} -728.566 q^{14} +1642.18 q^{16} +2152.48i q^{17} +3617.75i q^{18} -2726.20 q^{19} +1768.17 q^{21} -1287.32i q^{22} -2658.77i q^{23} -9426.17 q^{24} -1707.29 q^{26} -2822.22i q^{27} +5052.43i q^{28} +5885.60 q^{29} +1366.14 q^{31} -4286.91i q^{32} +3124.23i q^{33} +21745.0 q^{34} +25088.2 q^{36} -481.670i q^{37} +27541.0i q^{38} +4143.47 q^{39} +7385.44 q^{41} -17862.7i q^{42} -10167.0i q^{43} -8927.26 q^{44} -26859.8 q^{46} -16361.7i q^{47} +40262.2i q^{48} +11605.9 q^{49} -52773.4 q^{51} +11839.7i q^{52} +9061.97i q^{53} -28511.0 q^{54} +27727.2 q^{56} -66839.8i q^{57} -59458.3i q^{58} -29585.4 q^{59} +16410.0 q^{61} -13801.2i q^{62} +25826.4i q^{63} +9241.89 q^{64} +31562.0 q^{66} -61557.7i q^{67} -150796. i q^{68} +65186.5 q^{69} -5229.46 q^{71} -137681. i q^{72} -67851.0i q^{73} -4865.99 q^{74} +190990. q^{76} -9189.95i q^{77} -41858.7i q^{78} +89505.0 q^{79} -17826.8 q^{81} -74610.2i q^{82} -78989.9i q^{83} -123873. q^{84} -102711. q^{86} +144300. i q^{87} +48991.9i q^{88} -111252. q^{89} -12188.0 q^{91} +186266. i q^{92} +33494.5i q^{93} -165292. q^{94} +105105. q^{96} -71553.7i q^{97} -117247. i q^{98} -45633.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9} + 2552 q^{11} - 1156 q^{14} + 11414 q^{16} - 7040 q^{19} + 3412 q^{21} - 15446 q^{24} + 1690 q^{26} - 36850 q^{29} + 18136 q^{31} + 28910 q^{34} + 75368 q^{36} - 3718 q^{39} - 20020 q^{41} - 121302 q^{44} - 19716 q^{46} - 146626 q^{49} + 73212 q^{51} - 96026 q^{54} - 2524 q^{56} - 263284 q^{59} - 86730 q^{61} - 360142 q^{64} - 117214 q^{66} - 118690 q^{69} + 136840 q^{71} - 742792 q^{74} + 45034 q^{76} - 104478 q^{79} + 215014 q^{81} - 1705432 q^{84} + 404492 q^{86} - 655424 q^{89} + 70304 q^{91} - 1299948 q^{94} + 1799326 q^{96} - 853396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 10.1023i − 1.78586i −0.450198 0.892929i \(-0.648647\pi\)
0.450198 0.892929i \(-0.351353\pi\)
\(3\) 24.5176i 1.57280i 0.617717 + 0.786401i \(0.288058\pi\)
−0.617717 + 0.786401i \(0.711942\pi\)
\(4\) −70.0572 −2.18929
\(5\) 0 0
\(6\) 247.685 2.80880
\(7\) − 72.1186i − 0.556291i −0.960539 0.278146i \(-0.910280\pi\)
0.960539 0.278146i \(-0.0897198\pi\)
\(8\) 384.466i 2.12390i
\(9\) −358.110 −1.47370
\(10\) 0 0
\(11\) 127.428 0.317529 0.158765 0.987316i \(-0.449249\pi\)
0.158765 + 0.987316i \(0.449249\pi\)
\(12\) − 1717.63i − 3.44331i
\(13\) − 169.000i − 0.277350i
\(14\) −728.566 −0.993457
\(15\) 0 0
\(16\) 1642.18 1.60369
\(17\) 2152.48i 1.80641i 0.429211 + 0.903204i \(0.358792\pi\)
−0.429211 + 0.903204i \(0.641208\pi\)
\(18\) 3617.75i 2.63183i
\(19\) −2726.20 −1.73250 −0.866252 0.499608i \(-0.833477\pi\)
−0.866252 + 0.499608i \(0.833477\pi\)
\(20\) 0 0
\(21\) 1768.17 0.874936
\(22\) − 1287.32i − 0.567062i
\(23\) − 2658.77i − 1.04800i −0.851719 0.524000i \(-0.824439\pi\)
0.851719 0.524000i \(-0.175561\pi\)
\(24\) −9426.17 −3.34047
\(25\) 0 0
\(26\) −1707.29 −0.495308
\(27\) − 2822.22i − 0.745044i
\(28\) 5052.43i 1.21788i
\(29\) 5885.60 1.29956 0.649779 0.760123i \(-0.274861\pi\)
0.649779 + 0.760123i \(0.274861\pi\)
\(30\) 0 0
\(31\) 1366.14 0.255324 0.127662 0.991818i \(-0.459253\pi\)
0.127662 + 0.991818i \(0.459253\pi\)
\(32\) − 4286.91i − 0.740064i
\(33\) 3124.23i 0.499411i
\(34\) 21745.0 3.22599
\(35\) 0 0
\(36\) 25088.2 3.22636
\(37\) − 481.670i − 0.0578423i −0.999582 0.0289211i \(-0.990793\pi\)
0.999582 0.0289211i \(-0.00920717\pi\)
\(38\) 27541.0i 3.09400i
\(39\) 4143.47 0.436217
\(40\) 0 0
\(41\) 7385.44 0.686146 0.343073 0.939309i \(-0.388532\pi\)
0.343073 + 0.939309i \(0.388532\pi\)
\(42\) − 17862.7i − 1.56251i
\(43\) − 10167.0i − 0.838538i −0.907862 0.419269i \(-0.862286\pi\)
0.907862 0.419269i \(-0.137714\pi\)
\(44\) −8927.26 −0.695163
\(45\) 0 0
\(46\) −26859.8 −1.87158
\(47\) − 16361.7i − 1.08040i −0.841537 0.540200i \(-0.818349\pi\)
0.841537 0.540200i \(-0.181651\pi\)
\(48\) 40262.2i 2.52229i
\(49\) 11605.9 0.690540
\(50\) 0 0
\(51\) −52773.4 −2.84112
\(52\) 11839.7i 0.607199i
\(53\) 9061.97i 0.443132i 0.975145 + 0.221566i \(0.0711168\pi\)
−0.975145 + 0.221566i \(0.928883\pi\)
\(54\) −28511.0 −1.33054
\(55\) 0 0
\(56\) 27727.2 1.18151
\(57\) − 66839.8i − 2.72488i
\(58\) − 59458.3i − 2.32082i
\(59\) −29585.4 −1.10649 −0.553245 0.833019i \(-0.686611\pi\)
−0.553245 + 0.833019i \(0.686611\pi\)
\(60\) 0 0
\(61\) 16410.0 0.564656 0.282328 0.959318i \(-0.408893\pi\)
0.282328 + 0.959318i \(0.408893\pi\)
\(62\) − 13801.2i − 0.455972i
\(63\) 25826.4i 0.819809i
\(64\) 9241.89 0.282040
\(65\) 0 0
\(66\) 31562.0 0.891876
\(67\) − 61557.7i − 1.67531i −0.546198 0.837656i \(-0.683926\pi\)
0.546198 0.837656i \(-0.316074\pi\)
\(68\) − 150796.i − 3.95475i
\(69\) 65186.5 1.64829
\(70\) 0 0
\(71\) −5229.46 −0.123115 −0.0615575 0.998104i \(-0.519607\pi\)
−0.0615575 + 0.998104i \(0.519607\pi\)
\(72\) − 137681.i − 3.13000i
\(73\) − 67851.0i − 1.49021i −0.666944 0.745107i \(-0.732398\pi\)
0.666944 0.745107i \(-0.267602\pi\)
\(74\) −4865.99 −0.103298
\(75\) 0 0
\(76\) 190990. 3.79295
\(77\) − 9189.95i − 0.176639i
\(78\) − 41858.7i − 0.779021i
\(79\) 89505.0 1.61354 0.806769 0.590867i \(-0.201214\pi\)
0.806769 + 0.590867i \(0.201214\pi\)
\(80\) 0 0
\(81\) −17826.8 −0.301899
\(82\) − 74610.2i − 1.22536i
\(83\) − 78989.9i − 1.25857i −0.777176 0.629283i \(-0.783348\pi\)
0.777176 0.629283i \(-0.216652\pi\)
\(84\) −123873. −1.91549
\(85\) 0 0
\(86\) −102711. −1.49751
\(87\) 144300.i 2.04395i
\(88\) 48991.9i 0.674399i
\(89\) −111252. −1.48879 −0.744394 0.667741i \(-0.767262\pi\)
−0.744394 + 0.667741i \(0.767262\pi\)
\(90\) 0 0
\(91\) −12188.0 −0.154287
\(92\) 186266.i 2.29437i
\(93\) 33494.5i 0.401574i
\(94\) −165292. −1.92944
\(95\) 0 0
\(96\) 105105. 1.16397
\(97\) − 71553.7i − 0.772151i −0.922467 0.386076i \(-0.873830\pi\)
0.922467 0.386076i \(-0.126170\pi\)
\(98\) − 117247.i − 1.23321i
\(99\) −45633.3 −0.467945
\(100\) 0 0
\(101\) 150676. 1.46974 0.734868 0.678210i \(-0.237244\pi\)
0.734868 + 0.678210i \(0.237244\pi\)
\(102\) 533135.i 5.07384i
\(103\) − 160191.i − 1.48781i −0.668288 0.743903i \(-0.732973\pi\)
0.668288 0.743903i \(-0.267027\pi\)
\(104\) 64974.8 0.589063
\(105\) 0 0
\(106\) 91547.1 0.791371
\(107\) 78017.7i 0.658769i 0.944196 + 0.329385i \(0.106841\pi\)
−0.944196 + 0.329385i \(0.893159\pi\)
\(108\) 197717.i 1.63111i
\(109\) 219872. 1.77257 0.886284 0.463141i \(-0.153278\pi\)
0.886284 + 0.463141i \(0.153278\pi\)
\(110\) 0 0
\(111\) 11809.4 0.0909745
\(112\) − 118432.i − 0.892118i
\(113\) 171300.i 1.26201i 0.775780 + 0.631004i \(0.217357\pi\)
−0.775780 + 0.631004i \(0.782643\pi\)
\(114\) −675238. −4.86625
\(115\) 0 0
\(116\) −412328. −2.84510
\(117\) 60520.6i 0.408732i
\(118\) 298882.i 1.97603i
\(119\) 155234. 1.00489
\(120\) 0 0
\(121\) −144813. −0.899175
\(122\) − 165779.i − 1.00839i
\(123\) 181073.i 1.07917i
\(124\) −95708.0 −0.558977
\(125\) 0 0
\(126\) 260907. 1.46406
\(127\) − 98906.0i − 0.544143i −0.962277 0.272072i \(-0.912291\pi\)
0.962277 0.272072i \(-0.0877088\pi\)
\(128\) − 230546.i − 1.24375i
\(129\) 249271. 1.31885
\(130\) 0 0
\(131\) 266465. 1.35663 0.678317 0.734769i \(-0.262710\pi\)
0.678317 + 0.734769i \(0.262710\pi\)
\(132\) − 218875.i − 1.09335i
\(133\) 196610.i 0.963777i
\(134\) −621877. −2.99187
\(135\) 0 0
\(136\) −827554. −3.83662
\(137\) 35452.7i 0.161379i 0.996739 + 0.0806896i \(0.0257122\pi\)
−0.996739 + 0.0806896i \(0.974288\pi\)
\(138\) − 658536.i − 2.94362i
\(139\) 63698.3 0.279635 0.139817 0.990177i \(-0.455348\pi\)
0.139817 + 0.990177i \(0.455348\pi\)
\(140\) 0 0
\(141\) 401150. 1.69926
\(142\) 52829.7i 0.219866i
\(143\) − 21535.4i − 0.0880668i
\(144\) −588081. −2.36336
\(145\) 0 0
\(146\) −685453. −2.66131
\(147\) 284548.i 1.08608i
\(148\) 33744.5i 0.126633i
\(149\) 26631.1 0.0982707 0.0491353 0.998792i \(-0.484353\pi\)
0.0491353 + 0.998792i \(0.484353\pi\)
\(150\) 0 0
\(151\) 448794. 1.60179 0.800893 0.598808i \(-0.204359\pi\)
0.800893 + 0.598808i \(0.204359\pi\)
\(152\) − 1.04813e6i − 3.67966i
\(153\) − 770824.i − 2.66211i
\(154\) −92839.9 −0.315452
\(155\) 0 0
\(156\) −290280. −0.955003
\(157\) − 16497.9i − 0.0534170i −0.999643 0.0267085i \(-0.991497\pi\)
0.999643 0.0267085i \(-0.00850260\pi\)
\(158\) − 904209.i − 2.88155i
\(159\) −222177. −0.696959
\(160\) 0 0
\(161\) −191747. −0.582993
\(162\) 180093.i 0.539149i
\(163\) − 83354.3i − 0.245731i −0.992423 0.122865i \(-0.960792\pi\)
0.992423 0.122865i \(-0.0392083\pi\)
\(164\) −517403. −1.50217
\(165\) 0 0
\(166\) −797982. −2.24762
\(167\) 215768.i 0.598680i 0.954146 + 0.299340i \(0.0967665\pi\)
−0.954146 + 0.299340i \(0.903233\pi\)
\(168\) 679802.i 1.85827i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 976281. 2.55320
\(172\) 712273.i 1.83580i
\(173\) − 42375.0i − 0.107645i −0.998551 0.0538225i \(-0.982859\pi\)
0.998551 0.0538225i \(-0.0171405\pi\)
\(174\) 1.45777e6 3.65020
\(175\) 0 0
\(176\) 209260. 0.509218
\(177\) − 725362.i − 1.74029i
\(178\) 1.12391e6i 2.65876i
\(179\) −147708. −0.344566 −0.172283 0.985047i \(-0.555114\pi\)
−0.172283 + 0.985047i \(0.555114\pi\)
\(180\) 0 0
\(181\) −742092. −1.68369 −0.841843 0.539722i \(-0.818529\pi\)
−0.841843 + 0.539722i \(0.818529\pi\)
\(182\) 123128.i 0.275535i
\(183\) 402333.i 0.888092i
\(184\) 1.02221e6 2.22584
\(185\) 0 0
\(186\) 338372. 0.717154
\(187\) 274286.i 0.573588i
\(188\) 1.14626e6i 2.36531i
\(189\) −203535. −0.414461
\(190\) 0 0
\(191\) 698156. 1.38474 0.692372 0.721541i \(-0.256566\pi\)
0.692372 + 0.721541i \(0.256566\pi\)
\(192\) 226589.i 0.443593i
\(193\) − 190607.i − 0.368338i −0.982895 0.184169i \(-0.941041\pi\)
0.982895 0.184169i \(-0.0589594\pi\)
\(194\) −722859. −1.37895
\(195\) 0 0
\(196\) −813077. −1.51179
\(197\) − 817552.i − 1.50089i −0.660931 0.750447i \(-0.729838\pi\)
0.660931 0.750447i \(-0.270162\pi\)
\(198\) 461003.i 0.835682i
\(199\) 288709. 0.516806 0.258403 0.966037i \(-0.416804\pi\)
0.258403 + 0.966037i \(0.416804\pi\)
\(200\) 0 0
\(201\) 1.50924e6 2.63493
\(202\) − 1.52218e6i − 2.62474i
\(203\) − 424461.i − 0.722933i
\(204\) 3.69716e6 6.22003
\(205\) 0 0
\(206\) −1.61831e6 −2.65701
\(207\) 952132.i 1.54444i
\(208\) − 277528.i − 0.444783i
\(209\) −347395. −0.550121
\(210\) 0 0
\(211\) 134806. 0.208451 0.104225 0.994554i \(-0.466764\pi\)
0.104225 + 0.994554i \(0.466764\pi\)
\(212\) − 634856.i − 0.970143i
\(213\) − 128213.i − 0.193635i
\(214\) 788161. 1.17647
\(215\) 0 0
\(216\) 1.08505e6 1.58240
\(217\) − 98524.3i − 0.142035i
\(218\) − 2.22122e6i − 3.16556i
\(219\) 1.66354e6 2.34381
\(220\) 0 0
\(221\) 363768. 0.501007
\(222\) − 119302.i − 0.162467i
\(223\) 320971.i 0.432218i 0.976369 + 0.216109i \(0.0693367\pi\)
−0.976369 + 0.216109i \(0.930663\pi\)
\(224\) −309166. −0.411691
\(225\) 0 0
\(226\) 1.73053e6 2.25377
\(227\) 28722.2i 0.0369958i 0.999829 + 0.0184979i \(0.00588841\pi\)
−0.999829 + 0.0184979i \(0.994112\pi\)
\(228\) 4.68261e6i 5.96555i
\(229\) −850808. −1.07212 −0.536059 0.844180i \(-0.680088\pi\)
−0.536059 + 0.844180i \(0.680088\pi\)
\(230\) 0 0
\(231\) 225315. 0.277818
\(232\) 2.26281e6i 2.76013i
\(233\) 432423.i 0.521818i 0.965363 + 0.260909i \(0.0840222\pi\)
−0.965363 + 0.260909i \(0.915978\pi\)
\(234\) 611400. 0.729937
\(235\) 0 0
\(236\) 2.07267e6 2.42242
\(237\) 2.19444e6i 2.53778i
\(238\) − 1.56822e6i − 1.79459i
\(239\) −530968. −0.601276 −0.300638 0.953738i \(-0.597200\pi\)
−0.300638 + 0.953738i \(0.597200\pi\)
\(240\) 0 0
\(241\) −741085. −0.821912 −0.410956 0.911655i \(-0.634805\pi\)
−0.410956 + 0.911655i \(0.634805\pi\)
\(242\) 1.46295e6i 1.60580i
\(243\) − 1.12287e6i − 1.21987i
\(244\) −1.14964e6 −1.23619
\(245\) 0 0
\(246\) 1.82926e6 1.92725
\(247\) 460728.i 0.480510i
\(248\) 525236.i 0.542282i
\(249\) 1.93664e6 1.97948
\(250\) 0 0
\(251\) 1.09761e6 1.09968 0.549839 0.835271i \(-0.314689\pi\)
0.549839 + 0.835271i \(0.314689\pi\)
\(252\) − 1.80933e6i − 1.79480i
\(253\) − 338802.i − 0.332770i
\(254\) −999182. −0.971762
\(255\) 0 0
\(256\) −2.03331e6 −1.93912
\(257\) − 379916.i − 0.358802i −0.983776 0.179401i \(-0.942584\pi\)
0.983776 0.179401i \(-0.0574160\pi\)
\(258\) − 2.51822e6i − 2.35529i
\(259\) −34737.4 −0.0321772
\(260\) 0 0
\(261\) −2.10769e6 −1.91516
\(262\) − 2.69192e6i − 2.42275i
\(263\) − 261845.i − 0.233429i −0.993166 0.116714i \(-0.962764\pi\)
0.993166 0.116714i \(-0.0372362\pi\)
\(264\) −1.20116e6 −1.06070
\(265\) 0 0
\(266\) 1.98622e6 1.72117
\(267\) − 2.72763e6i − 2.34157i
\(268\) 4.31256e6i 3.66774i
\(269\) 892153. 0.751724 0.375862 0.926676i \(-0.377347\pi\)
0.375862 + 0.926676i \(0.377347\pi\)
\(270\) 0 0
\(271\) −1.54998e6 −1.28204 −0.641021 0.767524i \(-0.721489\pi\)
−0.641021 + 0.767524i \(0.721489\pi\)
\(272\) 3.53475e6i 2.89692i
\(273\) − 298821.i − 0.242664i
\(274\) 358155. 0.288200
\(275\) 0 0
\(276\) −4.56678e6 −3.60859
\(277\) 797920.i 0.624828i 0.949946 + 0.312414i \(0.101138\pi\)
−0.949946 + 0.312414i \(0.898862\pi\)
\(278\) − 643502.i − 0.499388i
\(279\) −489229. −0.376272
\(280\) 0 0
\(281\) 1.16864e6 0.882907 0.441453 0.897284i \(-0.354463\pi\)
0.441453 + 0.897284i \(0.354463\pi\)
\(282\) − 4.05255e6i − 3.03463i
\(283\) − 1.09370e6i − 0.811771i −0.913924 0.405886i \(-0.866963\pi\)
0.913924 0.405886i \(-0.133037\pi\)
\(284\) 366361. 0.269534
\(285\) 0 0
\(286\) −217557. −0.157275
\(287\) − 532628.i − 0.381697i
\(288\) 1.53519e6i 1.09064i
\(289\) −3.21329e6 −2.26311
\(290\) 0 0
\(291\) 1.75432e6 1.21444
\(292\) 4.75345e6i 3.26251i
\(293\) − 1.02050e6i − 0.694451i −0.937782 0.347226i \(-0.887124\pi\)
0.937782 0.347226i \(-0.112876\pi\)
\(294\) 2.87460e6 1.93959
\(295\) 0 0
\(296\) 185186. 0.122851
\(297\) − 359631.i − 0.236573i
\(298\) − 269037.i − 0.175497i
\(299\) −449332. −0.290663
\(300\) 0 0
\(301\) −733232. −0.466472
\(302\) − 4.53386e6i − 2.86056i
\(303\) 3.69420e6i 2.31160i
\(304\) −4.47691e6 −2.77840
\(305\) 0 0
\(306\) −7.78712e6 −4.75415
\(307\) 3.21266e6i 1.94544i 0.231975 + 0.972722i \(0.425481\pi\)
−0.231975 + 0.972722i \(0.574519\pi\)
\(308\) 643822.i 0.386713i
\(309\) 3.92750e6 2.34002
\(310\) 0 0
\(311\) −2.57875e6 −1.51185 −0.755924 0.654659i \(-0.772812\pi\)
−0.755924 + 0.654659i \(0.772812\pi\)
\(312\) 1.59302e6i 0.926479i
\(313\) 2.26878e6i 1.30898i 0.756072 + 0.654488i \(0.227116\pi\)
−0.756072 + 0.654488i \(0.772884\pi\)
\(314\) −166667. −0.0953952
\(315\) 0 0
\(316\) −6.27046e6 −3.53250
\(317\) − 200774.i − 0.112217i −0.998425 0.0561086i \(-0.982131\pi\)
0.998425 0.0561086i \(-0.0178693\pi\)
\(318\) 2.24451e6i 1.24467i
\(319\) 749991. 0.412648
\(320\) 0 0
\(321\) −1.91280e6 −1.03611
\(322\) 1.93709e6i 1.04114i
\(323\) − 5.86808e6i − 3.12961i
\(324\) 1.24890e6 0.660943
\(325\) 0 0
\(326\) −842073. −0.438840
\(327\) 5.39072e6i 2.78790i
\(328\) 2.83945e6i 1.45730i
\(329\) −1.17999e6 −0.601017
\(330\) 0 0
\(331\) −1.31065e6 −0.657530 −0.328765 0.944412i \(-0.606632\pi\)
−0.328765 + 0.944412i \(0.606632\pi\)
\(332\) 5.53381e6i 2.75536i
\(333\) 172491.i 0.0852425i
\(334\) 2.17976e6 1.06916
\(335\) 0 0
\(336\) 2.90365e6 1.40313
\(337\) 1.35360e6i 0.649255i 0.945842 + 0.324628i \(0.105239\pi\)
−0.945842 + 0.324628i \(0.894761\pi\)
\(338\) 288533.i 0.137374i
\(339\) −4.19986e6 −1.98489
\(340\) 0 0
\(341\) 174085. 0.0810729
\(342\) − 9.86272e6i − 4.55965i
\(343\) − 2.04910e6i − 0.940433i
\(344\) 3.90888e6 1.78097
\(345\) 0 0
\(346\) −428086. −0.192239
\(347\) − 231416.i − 0.103174i −0.998669 0.0515869i \(-0.983572\pi\)
0.998669 0.0515869i \(-0.0164279\pi\)
\(348\) − 1.01093e7i − 4.47478i
\(349\) −112062. −0.0492486 −0.0246243 0.999697i \(-0.507839\pi\)
−0.0246243 + 0.999697i \(0.507839\pi\)
\(350\) 0 0
\(351\) −476955. −0.206638
\(352\) − 546273.i − 0.234992i
\(353\) 1.64207e6i 0.701383i 0.936491 + 0.350692i \(0.114053\pi\)
−0.936491 + 0.350692i \(0.885947\pi\)
\(354\) −7.32785e6 −3.10791
\(355\) 0 0
\(356\) 7.79400e6 3.25938
\(357\) 3.80595e6i 1.58049i
\(358\) 1.49220e6i 0.615346i
\(359\) 1.14212e6 0.467708 0.233854 0.972272i \(-0.424866\pi\)
0.233854 + 0.972272i \(0.424866\pi\)
\(360\) 0 0
\(361\) 4.95608e6 2.00157
\(362\) 7.49686e6i 3.00682i
\(363\) − 3.55046e6i − 1.41422i
\(364\) 853860. 0.337779
\(365\) 0 0
\(366\) 4.06450e6 1.58600
\(367\) − 3.01075e6i − 1.16683i −0.812173 0.583417i \(-0.801715\pi\)
0.812173 0.583417i \(-0.198285\pi\)
\(368\) − 4.36617e6i − 1.68067i
\(369\) −2.64480e6 −1.01118
\(370\) 0 0
\(371\) 653537. 0.246510
\(372\) − 2.34653e6i − 0.879161i
\(373\) 2.87230e6i 1.06895i 0.845183 + 0.534476i \(0.179491\pi\)
−0.845183 + 0.534476i \(0.820509\pi\)
\(374\) 2.77093e6 1.02435
\(375\) 0 0
\(376\) 6.29054e6 2.29466
\(377\) − 994666.i − 0.360432i
\(378\) 2.05618e6i 0.740169i
\(379\) −382184. −0.136670 −0.0683352 0.997662i \(-0.521769\pi\)
−0.0683352 + 0.997662i \(0.521769\pi\)
\(380\) 0 0
\(381\) 2.42493e6 0.855830
\(382\) − 7.05301e6i − 2.47295i
\(383\) 789967.i 0.275177i 0.990489 + 0.137588i \(0.0439351\pi\)
−0.990489 + 0.137588i \(0.956065\pi\)
\(384\) 5.65242e6 1.95617
\(385\) 0 0
\(386\) −1.92558e6 −0.657799
\(387\) 3.64092e6i 1.23576i
\(388\) 5.01285e6i 1.69046i
\(389\) −4.32009e6 −1.44750 −0.723751 0.690061i \(-0.757584\pi\)
−0.723751 + 0.690061i \(0.757584\pi\)
\(390\) 0 0
\(391\) 5.72293e6 1.89311
\(392\) 4.46208e6i 1.46664i
\(393\) 6.53308e6i 2.13372i
\(394\) −8.25919e6 −2.68038
\(395\) 0 0
\(396\) 3.19694e6 1.02446
\(397\) − 3.54302e6i − 1.12823i −0.825696 0.564115i \(-0.809217\pi\)
0.825696 0.564115i \(-0.190783\pi\)
\(398\) − 2.91664e6i − 0.922943i
\(399\) −4.82039e6 −1.51583
\(400\) 0 0
\(401\) 3.78071e6 1.17412 0.587060 0.809543i \(-0.300285\pi\)
0.587060 + 0.809543i \(0.300285\pi\)
\(402\) − 1.52469e7i − 4.70561i
\(403\) − 230878.i − 0.0708141i
\(404\) −1.05559e7 −3.21768
\(405\) 0 0
\(406\) −4.28805e6 −1.29105
\(407\) − 61378.4i − 0.0183666i
\(408\) − 2.02896e7i − 6.03425i
\(409\) −5.36133e6 −1.58476 −0.792381 0.610026i \(-0.791159\pi\)
−0.792381 + 0.610026i \(0.791159\pi\)
\(410\) 0 0
\(411\) −869212. −0.253817
\(412\) 1.12226e7i 3.25723i
\(413\) 2.13366e6i 0.615531i
\(414\) 9.61876e6 2.75815
\(415\) 0 0
\(416\) −724488. −0.205257
\(417\) 1.56173e6i 0.439810i
\(418\) 3.50950e6i 0.982437i
\(419\) 4.19124e6 1.16629 0.583146 0.812368i \(-0.301822\pi\)
0.583146 + 0.812368i \(0.301822\pi\)
\(420\) 0 0
\(421\) −1.98109e6 −0.544752 −0.272376 0.962191i \(-0.587809\pi\)
−0.272376 + 0.962191i \(0.587809\pi\)
\(422\) − 1.36186e6i − 0.372264i
\(423\) 5.85930e6i 1.59219i
\(424\) −3.48402e6 −0.941166
\(425\) 0 0
\(426\) −1.29526e6 −0.345805
\(427\) − 1.18347e6i − 0.314113i
\(428\) − 5.46570e6i − 1.44224i
\(429\) 527994. 0.138512
\(430\) 0 0
\(431\) 4.49072e6 1.16446 0.582228 0.813026i \(-0.302181\pi\)
0.582228 + 0.813026i \(0.302181\pi\)
\(432\) − 4.63459e6i − 1.19482i
\(433\) 1.75380e6i 0.449531i 0.974413 + 0.224765i \(0.0721616\pi\)
−0.974413 + 0.224765i \(0.927838\pi\)
\(434\) −995325. −0.253653
\(435\) 0 0
\(436\) −1.54036e7 −3.88066
\(437\) 7.24834e6i 1.81566i
\(438\) − 1.68056e7i − 4.18571i
\(439\) 5.04733e6 1.24997 0.624987 0.780635i \(-0.285104\pi\)
0.624987 + 0.780635i \(0.285104\pi\)
\(440\) 0 0
\(441\) −4.15619e6 −1.01765
\(442\) − 3.67491e6i − 0.894728i
\(443\) 3.47296e6i 0.840795i 0.907340 + 0.420398i \(0.138109\pi\)
−0.907340 + 0.420398i \(0.861891\pi\)
\(444\) −827331. −0.199169
\(445\) 0 0
\(446\) 3.24255e6 0.771880
\(447\) 652930.i 0.154560i
\(448\) − 666513.i − 0.156897i
\(449\) −298830. −0.0699533 −0.0349767 0.999388i \(-0.511136\pi\)
−0.0349767 + 0.999388i \(0.511136\pi\)
\(450\) 0 0
\(451\) 941114. 0.217872
\(452\) − 1.20008e7i − 2.76290i
\(453\) 1.10033e7i 2.51929i
\(454\) 290161. 0.0660693
\(455\) 0 0
\(456\) 2.56977e7 5.78737
\(457\) − 4.62298e6i − 1.03546i −0.855545 0.517728i \(-0.826778\pi\)
0.855545 0.517728i \(-0.173222\pi\)
\(458\) 8.59515e6i 1.91465i
\(459\) 6.07476e6 1.34585
\(460\) 0 0
\(461\) 1.73228e6 0.379634 0.189817 0.981820i \(-0.439211\pi\)
0.189817 + 0.981820i \(0.439211\pi\)
\(462\) − 2.27621e6i − 0.496143i
\(463\) − 3.98725e6i − 0.864412i −0.901775 0.432206i \(-0.857735\pi\)
0.901775 0.432206i \(-0.142265\pi\)
\(464\) 9.66520e6 2.08409
\(465\) 0 0
\(466\) 4.36848e6 0.931892
\(467\) − 4.73552e6i − 1.00479i −0.864638 0.502395i \(-0.832452\pi\)
0.864638 0.502395i \(-0.167548\pi\)
\(468\) − 4.23990e6i − 0.894832i
\(469\) −4.43946e6 −0.931961
\(470\) 0 0
\(471\) 404488. 0.0840144
\(472\) − 1.13746e7i − 2.35007i
\(473\) − 1.29557e6i − 0.266261i
\(474\) 2.21690e7 4.53211
\(475\) 0 0
\(476\) −1.08752e7 −2.19999
\(477\) − 3.24519e6i − 0.653046i
\(478\) 5.36402e6i 1.07379i
\(479\) −974320. −0.194027 −0.0970137 0.995283i \(-0.530929\pi\)
−0.0970137 + 0.995283i \(0.530929\pi\)
\(480\) 0 0
\(481\) −81402.3 −0.0160426
\(482\) 7.48669e6i 1.46782i
\(483\) − 4.70116e6i − 0.916932i
\(484\) 1.01452e7 1.96855
\(485\) 0 0
\(486\) −1.13436e7 −2.17852
\(487\) 834741.i 0.159489i 0.996815 + 0.0797443i \(0.0254104\pi\)
−0.996815 + 0.0797443i \(0.974590\pi\)
\(488\) 6.30909e6i 1.19927i
\(489\) 2.04364e6 0.386485
\(490\) 0 0
\(491\) 829646. 0.155306 0.0776532 0.996980i \(-0.475257\pi\)
0.0776532 + 0.996980i \(0.475257\pi\)
\(492\) − 1.26855e7i − 2.36262i
\(493\) 1.26686e7i 2.34753i
\(494\) 4.65443e6 0.858122
\(495\) 0 0
\(496\) 2.24345e6 0.409460
\(497\) 377141.i 0.0684878i
\(498\) − 1.95646e7i − 3.53506i
\(499\) −8.32784e6 −1.49720 −0.748602 0.663019i \(-0.769275\pi\)
−0.748602 + 0.663019i \(0.769275\pi\)
\(500\) 0 0
\(501\) −5.29009e6 −0.941605
\(502\) − 1.10885e7i − 1.96387i
\(503\) 6.37207e6i 1.12295i 0.827493 + 0.561475i \(0.189766\pi\)
−0.827493 + 0.561475i \(0.810234\pi\)
\(504\) −9.92939e6 −1.74119
\(505\) 0 0
\(506\) −3.42269e6 −0.594281
\(507\) − 700246.i − 0.120985i
\(508\) 6.92907e6i 1.19129i
\(509\) −3.38691e6 −0.579441 −0.289721 0.957111i \(-0.593562\pi\)
−0.289721 + 0.957111i \(0.593562\pi\)
\(510\) 0 0
\(511\) −4.89332e6 −0.828994
\(512\) 1.31637e7i 2.21924i
\(513\) 7.69395e6i 1.29079i
\(514\) −3.83804e6 −0.640769
\(515\) 0 0
\(516\) −1.74632e7 −2.88735
\(517\) − 2.08495e6i − 0.343059i
\(518\) 350929.i 0.0574638i
\(519\) 1.03893e6 0.169304
\(520\) 0 0
\(521\) 8.84049e6 1.42686 0.713431 0.700725i \(-0.247140\pi\)
0.713431 + 0.700725i \(0.247140\pi\)
\(522\) 2.12926e7i 3.42021i
\(523\) 975493.i 0.155944i 0.996956 + 0.0779722i \(0.0248446\pi\)
−0.996956 + 0.0779722i \(0.975155\pi\)
\(524\) −1.86678e7 −2.97006
\(525\) 0 0
\(526\) −2.64524e6 −0.416870
\(527\) 2.94059e6i 0.461219i
\(528\) 5.13054e6i 0.800900i
\(529\) −632708. −0.0983024
\(530\) 0 0
\(531\) 1.05948e7 1.63064
\(532\) − 1.37739e7i − 2.10998i
\(533\) − 1.24814e6i − 0.190303i
\(534\) −2.75554e7 −4.18171
\(535\) 0 0
\(536\) 2.36669e7 3.55819
\(537\) − 3.62145e6i − 0.541934i
\(538\) − 9.01283e6i − 1.34247i
\(539\) 1.47892e6 0.219267
\(540\) 0 0
\(541\) −2.36388e6 −0.347242 −0.173621 0.984813i \(-0.555547\pi\)
−0.173621 + 0.984813i \(0.555547\pi\)
\(542\) 1.56584e7i 2.28954i
\(543\) − 1.81943e7i − 2.64811i
\(544\) 9.22747e6 1.33686
\(545\) 0 0
\(546\) −3.01879e6 −0.433362
\(547\) − 4.75103e6i − 0.678922i −0.940620 0.339461i \(-0.889755\pi\)
0.940620 0.339461i \(-0.110245\pi\)
\(548\) − 2.48371e6i − 0.353305i
\(549\) −5.87659e6 −0.832136
\(550\) 0 0
\(551\) −1.60453e7 −2.25149
\(552\) 2.50620e7i 3.50081i
\(553\) − 6.45497e6i − 0.897597i
\(554\) 8.06086e6 1.11585
\(555\) 0 0
\(556\) −4.46252e6 −0.612200
\(557\) − 8.56354e6i − 1.16954i −0.811199 0.584770i \(-0.801185\pi\)
0.811199 0.584770i \(-0.198815\pi\)
\(558\) 4.94236e6i 0.671968i
\(559\) −1.71823e6 −0.232569
\(560\) 0 0
\(561\) −6.72482e6 −0.902139
\(562\) − 1.18060e7i − 1.57675i
\(563\) − 3.06139e6i − 0.407049i −0.979070 0.203525i \(-0.934760\pi\)
0.979070 0.203525i \(-0.0652397\pi\)
\(564\) −2.81034e7 −3.72016
\(565\) 0 0
\(566\) −1.10490e7 −1.44971
\(567\) 1.28565e6i 0.167944i
\(568\) − 2.01055e6i − 0.261483i
\(569\) −1.01121e6 −0.130937 −0.0654685 0.997855i \(-0.520854\pi\)
−0.0654685 + 0.997855i \(0.520854\pi\)
\(570\) 0 0
\(571\) 4.63373e6 0.594759 0.297379 0.954759i \(-0.403887\pi\)
0.297379 + 0.954759i \(0.403887\pi\)
\(572\) 1.50871e6i 0.192803i
\(573\) 1.71171e7i 2.17793i
\(574\) −5.38078e6 −0.681657
\(575\) 0 0
\(576\) −3.30962e6 −0.415644
\(577\) − 328589.i − 0.0410879i −0.999789 0.0205439i \(-0.993460\pi\)
0.999789 0.0205439i \(-0.00653980\pi\)
\(578\) 3.24618e7i 4.04159i
\(579\) 4.67323e6 0.579323
\(580\) 0 0
\(581\) −5.69664e6 −0.700130
\(582\) − 1.77227e7i − 2.16882i
\(583\) 1.15475e6i 0.140707i
\(584\) 2.60864e7 3.16506
\(585\) 0 0
\(586\) −1.03094e7 −1.24019
\(587\) 1.02498e7i 1.22778i 0.789393 + 0.613888i \(0.210395\pi\)
−0.789393 + 0.613888i \(0.789605\pi\)
\(588\) − 1.99347e7i − 2.37775i
\(589\) −3.72438e6 −0.442350
\(590\) 0 0
\(591\) 2.00444e7 2.36061
\(592\) − 790988.i − 0.0927611i
\(593\) − 2.82390e6i − 0.329771i −0.986313 0.164886i \(-0.947275\pi\)
0.986313 0.164886i \(-0.0527255\pi\)
\(594\) −3.63311e6 −0.422486
\(595\) 0 0
\(596\) −1.86570e6 −0.215143
\(597\) 7.07844e6i 0.812834i
\(598\) 4.53930e6i 0.519082i
\(599\) 1.52502e7 1.73664 0.868318 0.496007i \(-0.165201\pi\)
0.868318 + 0.496007i \(0.165201\pi\)
\(600\) 0 0
\(601\) −6.06769e6 −0.685231 −0.342616 0.939476i \(-0.611313\pi\)
−0.342616 + 0.939476i \(0.611313\pi\)
\(602\) 7.40735e6i 0.833052i
\(603\) 2.20445e7i 2.46891i
\(604\) −3.14412e7 −3.50677
\(605\) 0 0
\(606\) 3.73200e7 4.12820
\(607\) − 2.77430e6i − 0.305620i −0.988256 0.152810i \(-0.951168\pi\)
0.988256 0.152810i \(-0.0488323\pi\)
\(608\) 1.16870e7i 1.28216i
\(609\) 1.04067e7 1.13703
\(610\) 0 0
\(611\) −2.76513e6 −0.299649
\(612\) 5.40017e7i 5.82813i
\(613\) − 694666.i − 0.0746664i −0.999303 0.0373332i \(-0.988114\pi\)
0.999303 0.0373332i \(-0.0118863\pi\)
\(614\) 3.24554e7 3.47428
\(615\) 0 0
\(616\) 3.53322e6 0.375163
\(617\) − 6.78058e6i − 0.717057i −0.933519 0.358529i \(-0.883279\pi\)
0.933519 0.358529i \(-0.116721\pi\)
\(618\) − 3.96769e7i − 4.17895i
\(619\) 2.60889e6 0.273671 0.136835 0.990594i \(-0.456307\pi\)
0.136835 + 0.990594i \(0.456307\pi\)
\(620\) 0 0
\(621\) −7.50363e6 −0.780805
\(622\) 2.60514e7i 2.69994i
\(623\) 8.02334e6i 0.828200i
\(624\) 6.80431e6 0.699556
\(625\) 0 0
\(626\) 2.29200e7 2.33765
\(627\) − 8.51728e6i − 0.865231i
\(628\) 1.15580e6i 0.116945i
\(629\) 1.03678e6 0.104487
\(630\) 0 0
\(631\) 1.81425e7 1.81395 0.906973 0.421190i \(-0.138387\pi\)
0.906973 + 0.421190i \(0.138387\pi\)
\(632\) 3.44116e7i 3.42699i
\(633\) 3.30512e6i 0.327852i
\(634\) −2.02829e6 −0.200404
\(635\) 0 0
\(636\) 1.55651e7 1.52584
\(637\) − 1.96140e6i − 0.191521i
\(638\) − 7.57666e6i − 0.736930i
\(639\) 1.87272e6 0.181435
\(640\) 0 0
\(641\) −2.04257e7 −1.96350 −0.981750 0.190174i \(-0.939095\pi\)
−0.981750 + 0.190174i \(0.939095\pi\)
\(642\) 1.93238e7i 1.85035i
\(643\) − 1.26717e7i − 1.20867i −0.796730 0.604335i \(-0.793439\pi\)
0.796730 0.604335i \(-0.206561\pi\)
\(644\) 1.34332e7 1.27634
\(645\) 0 0
\(646\) −5.92813e7 −5.58903
\(647\) − 8.01621e6i − 0.752850i −0.926447 0.376425i \(-0.877153\pi\)
0.926447 0.376425i \(-0.122847\pi\)
\(648\) − 6.85382e6i − 0.641202i
\(649\) −3.77002e6 −0.351343
\(650\) 0 0
\(651\) 2.41557e6 0.223392
\(652\) 5.83957e6i 0.537975i
\(653\) − 1.98662e7i − 1.82319i −0.411086 0.911597i \(-0.634850\pi\)
0.411086 0.911597i \(-0.365150\pi\)
\(654\) 5.44588e7 4.97879
\(655\) 0 0
\(656\) 1.21282e7 1.10037
\(657\) 2.42981e7i 2.19614i
\(658\) 1.19206e7i 1.07333i
\(659\) −1.33714e6 −0.119940 −0.0599699 0.998200i \(-0.519100\pi\)
−0.0599699 + 0.998200i \(0.519100\pi\)
\(660\) 0 0
\(661\) −9.97249e6 −0.887769 −0.443884 0.896084i \(-0.646400\pi\)
−0.443884 + 0.896084i \(0.646400\pi\)
\(662\) 1.32406e7i 1.17426i
\(663\) 8.91871e6i 0.787985i
\(664\) 3.03690e7 2.67307
\(665\) 0 0
\(666\) 1.74256e6 0.152231
\(667\) − 1.56484e7i − 1.36194i
\(668\) − 1.51161e7i − 1.31068i
\(669\) −7.86941e6 −0.679793
\(670\) 0 0
\(671\) 2.09110e6 0.179295
\(672\) − 7.57999e6i − 0.647509i
\(673\) − 1.31355e7i − 1.11792i −0.829196 0.558958i \(-0.811201\pi\)
0.829196 0.558958i \(-0.188799\pi\)
\(674\) 1.36745e7 1.15948
\(675\) 0 0
\(676\) 2.00090e6 0.168407
\(677\) − 1.58935e7i − 1.33275i −0.745616 0.666376i \(-0.767845\pi\)
0.745616 0.666376i \(-0.232155\pi\)
\(678\) 4.24284e7i 3.54473i
\(679\) −5.16035e6 −0.429541
\(680\) 0 0
\(681\) −704198. −0.0581871
\(682\) − 1.75867e6i − 0.144785i
\(683\) − 1.90939e7i − 1.56618i −0.621905 0.783092i \(-0.713641\pi\)
0.621905 0.783092i \(-0.286359\pi\)
\(684\) −6.83955e7 −5.58968
\(685\) 0 0
\(686\) −2.07007e7 −1.67948
\(687\) − 2.08597e7i − 1.68623i
\(688\) − 1.66961e7i − 1.34475i
\(689\) 1.53147e6 0.122903
\(690\) 0 0
\(691\) 2.12588e7 1.69373 0.846863 0.531810i \(-0.178488\pi\)
0.846863 + 0.531810i \(0.178488\pi\)
\(692\) 2.96867e6i 0.235666i
\(693\) 3.29101e6i 0.260313i
\(694\) −2.33784e6 −0.184254
\(695\) 0 0
\(696\) −5.54787e7 −4.34113
\(697\) 1.58970e7i 1.23946i
\(698\) 1.13209e6i 0.0879510i
\(699\) −1.06020e7 −0.820716
\(700\) 0 0
\(701\) 9.34437e6 0.718216 0.359108 0.933296i \(-0.383081\pi\)
0.359108 + 0.933296i \(0.383081\pi\)
\(702\) 4.81836e6i 0.369026i
\(703\) 1.31313e6i 0.100212i
\(704\) 1.17768e6 0.0895560
\(705\) 0 0
\(706\) 1.65888e7 1.25257
\(707\) − 1.08665e7i − 0.817602i
\(708\) 5.08168e7i 3.80999i
\(709\) −2.84238e6 −0.212357 −0.106178 0.994347i \(-0.533861\pi\)
−0.106178 + 0.994347i \(0.533861\pi\)
\(710\) 0 0
\(711\) −3.20526e7 −2.37788
\(712\) − 4.27727e7i − 3.16203i
\(713\) − 3.63226e6i − 0.267579i
\(714\) 3.84489e7 2.82253
\(715\) 0 0
\(716\) 1.03480e7 0.754354
\(717\) − 1.30180e7i − 0.945687i
\(718\) − 1.15381e7i − 0.835260i
\(719\) −1.63490e6 −0.117942 −0.0589712 0.998260i \(-0.518782\pi\)
−0.0589712 + 0.998260i \(0.518782\pi\)
\(720\) 0 0
\(721\) −1.15528e7 −0.827653
\(722\) − 5.00680e7i − 3.57451i
\(723\) − 1.81696e7i − 1.29270i
\(724\) 5.19889e7 3.68607
\(725\) 0 0
\(726\) −3.58679e7 −2.52560
\(727\) 1.60243e7i 1.12446i 0.826981 + 0.562230i \(0.190057\pi\)
−0.826981 + 0.562230i \(0.809943\pi\)
\(728\) − 4.68589e6i − 0.327691i
\(729\) 2.31981e7 1.61672
\(730\) 0 0
\(731\) 2.18843e7 1.51474
\(732\) − 2.81863e7i − 1.94429i
\(733\) 1.85018e7i 1.27190i 0.771730 + 0.635951i \(0.219392\pi\)
−0.771730 + 0.635951i \(0.780608\pi\)
\(734\) −3.04156e7 −2.08380
\(735\) 0 0
\(736\) −1.13979e7 −0.775587
\(737\) − 7.84419e6i − 0.531961i
\(738\) 2.67187e7i 1.80582i
\(739\) −8.93389e6 −0.601769 −0.300884 0.953661i \(-0.597282\pi\)
−0.300884 + 0.953661i \(0.597282\pi\)
\(740\) 0 0
\(741\) −1.12959e7 −0.755747
\(742\) − 6.60225e6i − 0.440233i
\(743\) − 1.81525e7i − 1.20633i −0.797617 0.603164i \(-0.793907\pi\)
0.797617 0.603164i \(-0.206093\pi\)
\(744\) −1.28775e7 −0.852901
\(745\) 0 0
\(746\) 2.90170e7 1.90900
\(747\) 2.82871e7i 1.85476i
\(748\) − 1.92157e7i − 1.25575i
\(749\) 5.62653e6 0.366468
\(750\) 0 0
\(751\) −4.74200e6 −0.306805 −0.153402 0.988164i \(-0.549023\pi\)
−0.153402 + 0.988164i \(0.549023\pi\)
\(752\) − 2.68689e7i − 1.73263i
\(753\) 2.69108e7i 1.72958i
\(754\) −1.00484e7 −0.643681
\(755\) 0 0
\(756\) 1.42591e7 0.907375
\(757\) 1.70743e6i 0.108294i 0.998533 + 0.0541469i \(0.0172439\pi\)
−0.998533 + 0.0541469i \(0.982756\pi\)
\(758\) 3.86095e6i 0.244074i
\(759\) 8.30660e6 0.523382
\(760\) 0 0
\(761\) 1.53942e7 0.963596 0.481798 0.876282i \(-0.339984\pi\)
0.481798 + 0.876282i \(0.339984\pi\)
\(762\) − 2.44975e7i − 1.52839i
\(763\) − 1.58568e7i − 0.986065i
\(764\) −4.89109e7 −3.03160
\(765\) 0 0
\(766\) 7.98051e6 0.491427
\(767\) 4.99993e6i 0.306885i
\(768\) − 4.98518e7i − 3.04984i
\(769\) −2.79442e7 −1.70402 −0.852012 0.523522i \(-0.824618\pi\)
−0.852012 + 0.523522i \(0.824618\pi\)
\(770\) 0 0
\(771\) 9.31461e6 0.564325
\(772\) 1.33534e7i 0.806398i
\(773\) − 2.09934e6i − 0.126367i −0.998002 0.0631834i \(-0.979875\pi\)
0.998002 0.0631834i \(-0.0201253\pi\)
\(774\) 3.67818e7 2.20689
\(775\) 0 0
\(776\) 2.75100e7 1.63997
\(777\) − 851676.i − 0.0506083i
\(778\) 4.36430e7i 2.58503i
\(779\) −2.01342e7 −1.18875
\(780\) 0 0
\(781\) −666380. −0.0390926
\(782\) − 5.78150e7i − 3.38083i
\(783\) − 1.66105e7i − 0.968227i
\(784\) 1.90590e7 1.10741
\(785\) 0 0
\(786\) 6.59994e7 3.81051
\(787\) 2.97406e7i 1.71164i 0.517274 + 0.855820i \(0.326947\pi\)
−0.517274 + 0.855820i \(0.673053\pi\)
\(788\) 5.72754e7i 3.28589i
\(789\) 6.41979e6 0.367137
\(790\) 0 0
\(791\) 1.23539e7 0.702044
\(792\) − 1.75445e7i − 0.993866i
\(793\) − 2.77329e6i − 0.156607i
\(794\) −3.57928e7 −2.01486
\(795\) 0 0
\(796\) −2.02261e7 −1.13144
\(797\) 1.67730e7i 0.935329i 0.883906 + 0.467664i \(0.154904\pi\)
−0.883906 + 0.467664i \(0.845096\pi\)
\(798\) 4.86972e7i 2.70705i
\(799\) 3.52182e7 1.95164
\(800\) 0 0
\(801\) 3.98405e7 2.19403
\(802\) − 3.81940e7i − 2.09681i
\(803\) − 8.64613e6i − 0.473187i
\(804\) −1.05733e8 −5.76862
\(805\) 0 0
\(806\) −2.33241e6 −0.126464
\(807\) 2.18734e7i 1.18231i
\(808\) 5.79297e7i 3.12157i
\(809\) 2.01463e7 1.08224 0.541120 0.840945i \(-0.318000\pi\)
0.541120 + 0.840945i \(0.318000\pi\)
\(810\) 0 0
\(811\) 3.28200e6 0.175221 0.0876105 0.996155i \(-0.472077\pi\)
0.0876105 + 0.996155i \(0.472077\pi\)
\(812\) 2.97365e7i 1.58271i
\(813\) − 3.80016e7i − 2.01640i
\(814\) −620065. −0.0328002
\(815\) 0 0
\(816\) −8.66634e7 −4.55628
\(817\) 2.77174e7i 1.45277i
\(818\) 5.41619e7i 2.83016i
\(819\) 4.36466e6 0.227374
\(820\) 0 0
\(821\) 698069. 0.0361444 0.0180722 0.999837i \(-0.494247\pi\)
0.0180722 + 0.999837i \(0.494247\pi\)
\(822\) 8.78107e6i 0.453282i
\(823\) − 2.24014e7i − 1.15286i −0.817148 0.576428i \(-0.804446\pi\)
0.817148 0.576428i \(-0.195554\pi\)
\(824\) 6.15882e7 3.15994
\(825\) 0 0
\(826\) 2.15549e7 1.09925
\(827\) 1.30401e7i 0.663005i 0.943454 + 0.331503i \(0.107556\pi\)
−0.943454 + 0.331503i \(0.892444\pi\)
\(828\) − 6.67037e7i − 3.38123i
\(829\) 3.65981e7 1.84958 0.924788 0.380483i \(-0.124242\pi\)
0.924788 + 0.380483i \(0.124242\pi\)
\(830\) 0 0
\(831\) −1.95631e7 −0.982730
\(832\) − 1.56188e6i − 0.0782239i
\(833\) 2.49814e7i 1.24740i
\(834\) 1.57771e7 0.785438
\(835\) 0 0
\(836\) 2.43375e7 1.20437
\(837\) − 3.85556e6i − 0.190228i
\(838\) − 4.23413e7i − 2.08283i
\(839\) −2.56393e7 −1.25748 −0.628740 0.777616i \(-0.716429\pi\)
−0.628740 + 0.777616i \(0.716429\pi\)
\(840\) 0 0
\(841\) 1.41291e7 0.688850
\(842\) 2.00136e7i 0.972849i
\(843\) 2.86522e7i 1.38864i
\(844\) −9.44414e6 −0.456359
\(845\) 0 0
\(846\) 5.91927e7 2.84343
\(847\) 1.04437e7i 0.500203i
\(848\) 1.48814e7i 0.710646i
\(849\) 2.68149e7 1.27675
\(850\) 0 0
\(851\) −1.28065e6 −0.0606187
\(852\) 8.98227e6i 0.423923i
\(853\) − 1.27542e7i − 0.600178i −0.953911 0.300089i \(-0.902984\pi\)
0.953911 0.300089i \(-0.0970164\pi\)
\(854\) −1.19558e7 −0.560961
\(855\) 0 0
\(856\) −2.99952e7 −1.39916
\(857\) − 3.05245e7i − 1.41970i −0.704353 0.709850i \(-0.748763\pi\)
0.704353 0.709850i \(-0.251237\pi\)
\(858\) − 5.33398e6i − 0.247362i
\(859\) −3.68731e7 −1.70501 −0.852504 0.522721i \(-0.824917\pi\)
−0.852504 + 0.522721i \(0.824917\pi\)
\(860\) 0 0
\(861\) 1.30587e7 0.600334
\(862\) − 4.53668e7i − 2.07955i
\(863\) 2.27261e7i 1.03872i 0.854555 + 0.519360i \(0.173830\pi\)
−0.854555 + 0.519360i \(0.826170\pi\)
\(864\) −1.20986e7 −0.551380
\(865\) 0 0
\(866\) 1.77174e7 0.802798
\(867\) − 7.87821e7i − 3.55942i
\(868\) 6.90233e6i 0.310954i
\(869\) 1.14055e7 0.512346
\(870\) 0 0
\(871\) −1.04033e7 −0.464648
\(872\) 8.45333e7i 3.76475i
\(873\) 2.56241e7i 1.13792i
\(874\) 7.32252e7 3.24251
\(875\) 0 0
\(876\) −1.16543e8 −5.13128
\(877\) − 471311.i − 0.0206923i −0.999946 0.0103461i \(-0.996707\pi\)
0.999946 0.0103461i \(-0.00329334\pi\)
\(878\) − 5.09899e7i − 2.23227i
\(879\) 2.50200e7 1.09223
\(880\) 0 0
\(881\) 3.32241e7 1.44216 0.721080 0.692852i \(-0.243646\pi\)
0.721080 + 0.692852i \(0.243646\pi\)
\(882\) 4.19873e7i 1.81738i
\(883\) − 1.34686e6i − 0.0581328i −0.999577 0.0290664i \(-0.990747\pi\)
0.999577 0.0290664i \(-0.00925343\pi\)
\(884\) −2.54846e7 −1.09685
\(885\) 0 0
\(886\) 3.50850e7 1.50154
\(887\) 4.53882e7i 1.93702i 0.248980 + 0.968509i \(0.419905\pi\)
−0.248980 + 0.968509i \(0.580095\pi\)
\(888\) 4.54031e6i 0.193220i
\(889\) −7.13296e6 −0.302702
\(890\) 0 0
\(891\) −2.27164e6 −0.0958618
\(892\) − 2.24863e7i − 0.946249i
\(893\) 4.46054e7i 1.87180i
\(894\) 6.59612e6 0.276023
\(895\) 0 0
\(896\) −1.66266e7 −0.691886
\(897\) − 1.10165e7i − 0.457155i
\(898\) 3.01888e6i 0.124927i
\(899\) 8.04056e6 0.331808
\(900\) 0 0
\(901\) −1.95057e7 −0.800477
\(902\) − 9.50744e6i − 0.389088i
\(903\) − 1.79771e7i − 0.733667i
\(904\) −6.58592e7 −2.68037
\(905\) 0 0
\(906\) 1.11159e8 4.49909
\(907\) 5.01481e6i 0.202412i 0.994865 + 0.101206i \(0.0322701\pi\)
−0.994865 + 0.101206i \(0.967730\pi\)
\(908\) − 2.01219e6i − 0.0809945i
\(909\) −5.39585e7 −2.16596
\(910\) 0 0
\(911\) 2.48880e7 0.993560 0.496780 0.867877i \(-0.334516\pi\)
0.496780 + 0.867877i \(0.334516\pi\)
\(912\) − 1.09763e8i − 4.36987i
\(913\) − 1.00655e7i − 0.399632i
\(914\) −4.67029e7 −1.84918
\(915\) 0 0
\(916\) 5.96052e7 2.34717
\(917\) − 1.92171e7i − 0.754684i
\(918\) − 6.13693e7i − 2.40350i
\(919\) 3.35944e7 1.31213 0.656067 0.754703i \(-0.272219\pi\)
0.656067 + 0.754703i \(0.272219\pi\)
\(920\) 0 0
\(921\) −7.87665e7 −3.05980
\(922\) − 1.75000e7i − 0.677972i
\(923\) 883778.i 0.0341459i
\(924\) −1.57849e7 −0.608223
\(925\) 0 0
\(926\) −4.02805e7 −1.54372
\(927\) 5.73662e7i 2.19259i
\(928\) − 2.52310e7i − 0.961756i
\(929\) −2.73986e7 −1.04157 −0.520785 0.853688i \(-0.674361\pi\)
−0.520785 + 0.853688i \(0.674361\pi\)
\(930\) 0 0
\(931\) −3.16400e7 −1.19636
\(932\) − 3.02943e7i − 1.14241i
\(933\) − 6.32246e7i − 2.37784i
\(934\) −4.78398e7 −1.79441
\(935\) 0 0
\(936\) −2.32681e7 −0.868105
\(937\) 4.73279e7i 1.76104i 0.474011 + 0.880519i \(0.342806\pi\)
−0.474011 + 0.880519i \(0.657194\pi\)
\(938\) 4.48489e7i 1.66435i
\(939\) −5.56250e7 −2.05876
\(940\) 0 0
\(941\) −2.81830e7 −1.03756 −0.518780 0.854908i \(-0.673614\pi\)
−0.518780 + 0.854908i \(0.673614\pi\)
\(942\) − 4.08628e6i − 0.150038i
\(943\) − 1.96362e7i − 0.719081i
\(944\) −4.85845e7 −1.77447
\(945\) 0 0
\(946\) −1.30882e7 −0.475503
\(947\) − 1.35455e7i − 0.490817i −0.969420 0.245409i \(-0.921078\pi\)
0.969420 0.245409i \(-0.0789221\pi\)
\(948\) − 1.53736e8i − 5.55592i
\(949\) −1.14668e7 −0.413311
\(950\) 0 0
\(951\) 4.92249e6 0.176495
\(952\) 5.96821e7i 2.13428i
\(953\) − 2.85179e7i − 1.01715i −0.861017 0.508576i \(-0.830172\pi\)
0.861017 0.508576i \(-0.169828\pi\)
\(954\) −3.27840e7 −1.16625
\(955\) 0 0
\(956\) 3.71981e7 1.31637
\(957\) 1.83879e7i 0.649013i
\(958\) 9.84291e6i 0.346505i
\(959\) 2.55680e6 0.0897738
\(960\) 0 0
\(961\) −2.67628e7 −0.934810
\(962\) 822353.i 0.0286497i
\(963\) − 2.79389e7i − 0.970832i
\(964\) 5.19183e7 1.79940
\(965\) 0 0
\(966\) −4.74927e7 −1.63751
\(967\) − 2.08677e7i − 0.717644i −0.933406 0.358822i \(-0.883179\pi\)
0.933406 0.358822i \(-0.116821\pi\)
\(968\) − 5.56757e7i − 1.90975i
\(969\) 1.43871e8 4.92225
\(970\) 0 0
\(971\) −3.67948e7 −1.25239 −0.626194 0.779667i \(-0.715388\pi\)
−0.626194 + 0.779667i \(0.715388\pi\)
\(972\) 7.86651e7i 2.67065i
\(973\) − 4.59383e6i − 0.155558i
\(974\) 8.43284e6 0.284824
\(975\) 0 0
\(976\) 2.69481e7 0.905533
\(977\) − 1.31397e7i − 0.440403i −0.975454 0.220202i \(-0.929328\pi\)
0.975454 0.220202i \(-0.0706715\pi\)
\(978\) − 2.06456e7i − 0.690208i
\(979\) −1.41766e7 −0.472734
\(980\) 0 0
\(981\) −7.87383e7 −2.61224
\(982\) − 8.38137e6i − 0.277355i
\(983\) − 2.66889e7i − 0.880941i −0.897767 0.440470i \(-0.854812\pi\)
0.897767 0.440470i \(-0.145188\pi\)
\(984\) −6.96164e7 −2.29205
\(985\) 0 0
\(986\) 1.27982e8 4.19236
\(987\) − 2.89304e7i − 0.945281i
\(988\) − 3.22773e7i − 1.05197i
\(989\) −2.70318e7 −0.878787
\(990\) 0 0
\(991\) −2.39103e7 −0.773394 −0.386697 0.922207i \(-0.626384\pi\)
−0.386697 + 0.922207i \(0.626384\pi\)
\(992\) − 5.85653e6i − 0.188956i
\(993\) − 3.21339e7i − 1.03416i
\(994\) 3.81001e6 0.122309
\(995\) 0 0
\(996\) −1.35675e8 −4.33364
\(997\) 3.32793e7i 1.06032i 0.847898 + 0.530160i \(0.177868\pi\)
−0.847898 + 0.530160i \(0.822132\pi\)
\(998\) 8.41307e7i 2.67379i
\(999\) −1.35938e6 −0.0430950
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.i.274.2 22
5.2 odd 4 325.6.a.j.1.11 11
5.3 odd 4 325.6.a.k.1.1 yes 11
5.4 even 2 inner 325.6.b.i.274.21 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.11 11 5.2 odd 4
325.6.a.k.1.1 yes 11 5.3 odd 4
325.6.b.i.274.2 22 1.1 even 1 trivial
325.6.b.i.274.21 22 5.4 even 2 inner