Properties

Label 325.6.b.i.274.19
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.19
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.i.274.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.27946i q^{2} +5.85765i q^{3} -54.1083 q^{4} -54.3558 q^{6} -90.4001i q^{7} -205.153i q^{8} +208.688 q^{9} +O(q^{10})\) \(q+9.27946i q^{2} +5.85765i q^{3} -54.1083 q^{4} -54.3558 q^{6} -90.4001i q^{7} -205.153i q^{8} +208.688 q^{9} +597.487 q^{11} -316.948i q^{12} -169.000i q^{13} +838.864 q^{14} +172.246 q^{16} +1347.74i q^{17} +1936.51i q^{18} -2986.90 q^{19} +529.532 q^{21} +5544.36i q^{22} +1354.91i q^{23} +1201.72 q^{24} +1568.23 q^{26} +2645.83i q^{27} +4891.40i q^{28} -6786.00 q^{29} +661.963 q^{31} -4966.56i q^{32} +3499.87i q^{33} -12506.3 q^{34} -11291.8 q^{36} +9682.46i q^{37} -27716.8i q^{38} +989.943 q^{39} +6933.76 q^{41} +4913.77i q^{42} +2511.55i q^{43} -32329.0 q^{44} -12572.8 q^{46} +10294.9i q^{47} +1008.96i q^{48} +8634.82 q^{49} -7894.59 q^{51} +9144.31i q^{52} +1060.19i q^{53} -24551.9 q^{54} -18545.9 q^{56} -17496.2i q^{57} -62970.4i q^{58} +7026.83 q^{59} -31222.1 q^{61} +6142.65i q^{62} -18865.4i q^{63} +51598.9 q^{64} -32476.9 q^{66} +27843.5i q^{67} -72924.0i q^{68} -7936.60 q^{69} -59047.0 q^{71} -42813.1i q^{72} +69099.5i q^{73} -89848.0 q^{74} +161616. q^{76} -54012.9i q^{77} +9186.13i q^{78} -59896.7 q^{79} +35212.8 q^{81} +64341.5i q^{82} +35435.2i q^{83} -28652.1 q^{84} -23305.8 q^{86} -39750.0i q^{87} -122577. i q^{88} -79177.3 q^{89} -15277.6 q^{91} -73312.0i q^{92} +3877.55i q^{93} -95531.5 q^{94} +29092.4 q^{96} +59235.2i q^{97} +80126.5i q^{98} +124688. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9} + 2552 q^{11} - 1156 q^{14} + 11414 q^{16} - 7040 q^{19} + 3412 q^{21} - 15446 q^{24} + 1690 q^{26} - 36850 q^{29} + 18136 q^{31} + 28910 q^{34} + 75368 q^{36} - 3718 q^{39} - 20020 q^{41} - 121302 q^{44} - 19716 q^{46} - 146626 q^{49} + 73212 q^{51} - 96026 q^{54} - 2524 q^{56} - 263284 q^{59} - 86730 q^{61} - 360142 q^{64} - 117214 q^{66} - 118690 q^{69} + 136840 q^{71} - 742792 q^{74} + 45034 q^{76} - 104478 q^{79} + 215014 q^{81} - 1705432 q^{84} + 404492 q^{86} - 655424 q^{89} + 70304 q^{91} - 1299948 q^{94} + 1799326 q^{96} - 853396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.27946i 1.64039i 0.572083 + 0.820196i \(0.306136\pi\)
−0.572083 + 0.820196i \(0.693864\pi\)
\(3\) 5.85765i 0.375768i 0.982191 + 0.187884i \(0.0601630\pi\)
−0.982191 + 0.187884i \(0.939837\pi\)
\(4\) −54.1083 −1.69089
\(5\) 0 0
\(6\) −54.3558 −0.616408
\(7\) − 90.4001i − 0.697307i −0.937252 0.348653i \(-0.886639\pi\)
0.937252 0.348653i \(-0.113361\pi\)
\(8\) − 205.153i − 1.13332i
\(9\) 208.688 0.858798
\(10\) 0 0
\(11\) 597.487 1.48884 0.744418 0.667714i \(-0.232727\pi\)
0.744418 + 0.667714i \(0.232727\pi\)
\(12\) − 316.948i − 0.635382i
\(13\) − 169.000i − 0.277350i
\(14\) 838.864 1.14386
\(15\) 0 0
\(16\) 172.246 0.168209
\(17\) 1347.74i 1.13106i 0.824729 + 0.565528i \(0.191327\pi\)
−0.824729 + 0.565528i \(0.808673\pi\)
\(18\) 1936.51i 1.40877i
\(19\) −2986.90 −1.89818 −0.949089 0.315008i \(-0.897993\pi\)
−0.949089 + 0.315008i \(0.897993\pi\)
\(20\) 0 0
\(21\) 529.532 0.262026
\(22\) 5544.36i 2.44227i
\(23\) 1354.91i 0.534061i 0.963688 + 0.267031i \(0.0860425\pi\)
−0.963688 + 0.267031i \(0.913957\pi\)
\(24\) 1201.72 0.425867
\(25\) 0 0
\(26\) 1568.23 0.454963
\(27\) 2645.83i 0.698478i
\(28\) 4891.40i 1.17907i
\(29\) −6786.00 −1.49837 −0.749184 0.662362i \(-0.769554\pi\)
−0.749184 + 0.662362i \(0.769554\pi\)
\(30\) 0 0
\(31\) 661.963 0.123717 0.0618585 0.998085i \(-0.480297\pi\)
0.0618585 + 0.998085i \(0.480297\pi\)
\(32\) − 4966.56i − 0.857395i
\(33\) 3499.87i 0.559458i
\(34\) −12506.3 −1.85537
\(35\) 0 0
\(36\) −11291.8 −1.45213
\(37\) 9682.46i 1.16274i 0.813640 + 0.581368i \(0.197482\pi\)
−0.813640 + 0.581368i \(0.802518\pi\)
\(38\) − 27716.8i − 3.11376i
\(39\) 989.943 0.104219
\(40\) 0 0
\(41\) 6933.76 0.644183 0.322091 0.946709i \(-0.395614\pi\)
0.322091 + 0.946709i \(0.395614\pi\)
\(42\) 4913.77i 0.429825i
\(43\) 2511.55i 0.207143i 0.994622 + 0.103572i \(0.0330271\pi\)
−0.994622 + 0.103572i \(0.966973\pi\)
\(44\) −32329.0 −2.51745
\(45\) 0 0
\(46\) −12572.8 −0.876070
\(47\) 10294.9i 0.679797i 0.940462 + 0.339899i \(0.110393\pi\)
−0.940462 + 0.339899i \(0.889607\pi\)
\(48\) 1008.96i 0.0632076i
\(49\) 8634.82 0.513763
\(50\) 0 0
\(51\) −7894.59 −0.425015
\(52\) 9144.31i 0.468967i
\(53\) 1060.19i 0.0518436i 0.999664 + 0.0259218i \(0.00825209\pi\)
−0.999664 + 0.0259218i \(0.991748\pi\)
\(54\) −24551.9 −1.14578
\(55\) 0 0
\(56\) −18545.9 −0.790274
\(57\) − 17496.2i − 0.713275i
\(58\) − 62970.4i − 2.45791i
\(59\) 7026.83 0.262802 0.131401 0.991329i \(-0.458052\pi\)
0.131401 + 0.991329i \(0.458052\pi\)
\(60\) 0 0
\(61\) −31222.1 −1.07433 −0.537164 0.843478i \(-0.680505\pi\)
−0.537164 + 0.843478i \(0.680505\pi\)
\(62\) 6142.65i 0.202944i
\(63\) − 18865.4i − 0.598846i
\(64\) 51598.9 1.57467
\(65\) 0 0
\(66\) −32476.9 −0.917730
\(67\) 27843.5i 0.757768i 0.925444 + 0.378884i \(0.123692\pi\)
−0.925444 + 0.378884i \(0.876308\pi\)
\(68\) − 72924.0i − 1.91249i
\(69\) −7936.60 −0.200683
\(70\) 0 0
\(71\) −59047.0 −1.39012 −0.695060 0.718952i \(-0.744622\pi\)
−0.695060 + 0.718952i \(0.744622\pi\)
\(72\) − 42813.1i − 0.973296i
\(73\) 69099.5i 1.51764i 0.651302 + 0.758818i \(0.274223\pi\)
−0.651302 + 0.758818i \(0.725777\pi\)
\(74\) −89848.0 −1.90734
\(75\) 0 0
\(76\) 161616. 3.20960
\(77\) − 54012.9i − 1.03817i
\(78\) 9186.13i 0.170961i
\(79\) −59896.7 −1.07978 −0.539890 0.841736i \(-0.681534\pi\)
−0.539890 + 0.841736i \(0.681534\pi\)
\(80\) 0 0
\(81\) 35212.8 0.596332
\(82\) 64341.5i 1.05671i
\(83\) 35435.2i 0.564599i 0.959326 + 0.282300i \(0.0910972\pi\)
−0.959326 + 0.282300i \(0.908903\pi\)
\(84\) −28652.1 −0.443056
\(85\) 0 0
\(86\) −23305.8 −0.339796
\(87\) − 39750.0i − 0.563040i
\(88\) − 122577.i − 1.68733i
\(89\) −79177.3 −1.05956 −0.529780 0.848135i \(-0.677726\pi\)
−0.529780 + 0.848135i \(0.677726\pi\)
\(90\) 0 0
\(91\) −15277.6 −0.193398
\(92\) − 73312.0i − 0.903037i
\(93\) 3877.55i 0.0464889i
\(94\) −95531.5 −1.11513
\(95\) 0 0
\(96\) 29092.4 0.322182
\(97\) 59235.2i 0.639221i 0.947549 + 0.319610i \(0.103552\pi\)
−0.947549 + 0.319610i \(0.896448\pi\)
\(98\) 80126.5i 0.842773i
\(99\) 124688. 1.27861
\(100\) 0 0
\(101\) 190448. 1.85769 0.928844 0.370471i \(-0.120804\pi\)
0.928844 + 0.370471i \(0.120804\pi\)
\(102\) − 73257.5i − 0.697191i
\(103\) − 60755.7i − 0.564279i −0.959373 0.282140i \(-0.908956\pi\)
0.959373 0.282140i \(-0.0910441\pi\)
\(104\) −34670.9 −0.314327
\(105\) 0 0
\(106\) −9838.01 −0.0850438
\(107\) − 131827.i − 1.11313i −0.830805 0.556563i \(-0.812120\pi\)
0.830805 0.556563i \(-0.187880\pi\)
\(108\) − 143161.i − 1.18105i
\(109\) −148041. −1.19348 −0.596742 0.802433i \(-0.703539\pi\)
−0.596742 + 0.802433i \(0.703539\pi\)
\(110\) 0 0
\(111\) −56716.5 −0.436920
\(112\) − 15571.1i − 0.117293i
\(113\) − 47163.1i − 0.347461i −0.984793 0.173731i \(-0.944418\pi\)
0.984793 0.173731i \(-0.0555822\pi\)
\(114\) 162356. 1.17005
\(115\) 0 0
\(116\) 367179. 2.53357
\(117\) − 35268.3i − 0.238188i
\(118\) 65205.1i 0.431099i
\(119\) 121836. 0.788692
\(120\) 0 0
\(121\) 195940. 1.21663
\(122\) − 289724.i − 1.76232i
\(123\) 40615.5i 0.242064i
\(124\) −35817.7 −0.209191
\(125\) 0 0
\(126\) 175061. 0.982341
\(127\) 130485.i 0.717881i 0.933360 + 0.358941i \(0.116862\pi\)
−0.933360 + 0.358941i \(0.883138\pi\)
\(128\) 319880.i 1.72569i
\(129\) −14711.8 −0.0778379
\(130\) 0 0
\(131\) 39838.7 0.202828 0.101414 0.994844i \(-0.467663\pi\)
0.101414 + 0.994844i \(0.467663\pi\)
\(132\) − 189372.i − 0.945979i
\(133\) 270016.i 1.32361i
\(134\) −258372. −1.24304
\(135\) 0 0
\(136\) 276494. 1.28185
\(137\) − 405016.i − 1.84362i −0.387644 0.921809i \(-0.626711\pi\)
0.387644 0.921809i \(-0.373289\pi\)
\(138\) − 73647.3i − 0.329199i
\(139\) −146603. −0.643584 −0.321792 0.946810i \(-0.604285\pi\)
−0.321792 + 0.946810i \(0.604285\pi\)
\(140\) 0 0
\(141\) −60304.2 −0.255446
\(142\) − 547924.i − 2.28034i
\(143\) − 100975.i − 0.412929i
\(144\) 35945.7 0.144458
\(145\) 0 0
\(146\) −641206. −2.48952
\(147\) 50579.8i 0.193056i
\(148\) − 523902.i − 1.96606i
\(149\) −45802.9 −0.169016 −0.0845079 0.996423i \(-0.526932\pi\)
−0.0845079 + 0.996423i \(0.526932\pi\)
\(150\) 0 0
\(151\) −299685. −1.06960 −0.534802 0.844977i \(-0.679614\pi\)
−0.534802 + 0.844977i \(0.679614\pi\)
\(152\) 612773.i 2.15125i
\(153\) 281257.i 0.971348i
\(154\) 501210. 1.70301
\(155\) 0 0
\(156\) −53564.2 −0.176223
\(157\) − 248510.i − 0.804626i −0.915502 0.402313i \(-0.868206\pi\)
0.915502 0.402313i \(-0.131794\pi\)
\(158\) − 555809.i − 1.77126i
\(159\) −6210.24 −0.0194812
\(160\) 0 0
\(161\) 122484. 0.372405
\(162\) 326756.i 0.978218i
\(163\) 610706.i 1.80038i 0.435501 + 0.900188i \(0.356571\pi\)
−0.435501 + 0.900188i \(0.643429\pi\)
\(164\) −375174. −1.08924
\(165\) 0 0
\(166\) −328820. −0.926164
\(167\) − 383764.i − 1.06481i −0.846489 0.532406i \(-0.821288\pi\)
0.846489 0.532406i \(-0.178712\pi\)
\(168\) − 108635.i − 0.296960i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −623330. −1.63015
\(172\) − 135896.i − 0.350255i
\(173\) 544383.i 1.38290i 0.722426 + 0.691448i \(0.243027\pi\)
−0.722426 + 0.691448i \(0.756973\pi\)
\(174\) 368858. 0.923606
\(175\) 0 0
\(176\) 102915. 0.250435
\(177\) 41160.7i 0.0987528i
\(178\) − 734723.i − 1.73809i
\(179\) 459644. 1.07223 0.536117 0.844144i \(-0.319891\pi\)
0.536117 + 0.844144i \(0.319891\pi\)
\(180\) 0 0
\(181\) −209506. −0.475334 −0.237667 0.971347i \(-0.576383\pi\)
−0.237667 + 0.971347i \(0.576383\pi\)
\(182\) − 141768.i − 0.317249i
\(183\) − 182888.i − 0.403699i
\(184\) 277965. 0.605264
\(185\) 0 0
\(186\) −35981.5 −0.0762601
\(187\) 805257.i 1.68396i
\(188\) − 557042.i − 1.14946i
\(189\) 239183. 0.487053
\(190\) 0 0
\(191\) 311387. 0.617614 0.308807 0.951125i \(-0.400070\pi\)
0.308807 + 0.951125i \(0.400070\pi\)
\(192\) 302248.i 0.591712i
\(193\) − 775484.i − 1.49858i −0.662243 0.749289i \(-0.730395\pi\)
0.662243 0.749289i \(-0.269605\pi\)
\(194\) −549671. −1.04857
\(195\) 0 0
\(196\) −467216. −0.868715
\(197\) 492489.i 0.904130i 0.891985 + 0.452065i \(0.149313\pi\)
−0.891985 + 0.452065i \(0.850687\pi\)
\(198\) 1.15704e6i 2.09742i
\(199\) −805242. −1.44143 −0.720716 0.693231i \(-0.756187\pi\)
−0.720716 + 0.693231i \(0.756187\pi\)
\(200\) 0 0
\(201\) −163097. −0.284745
\(202\) 1.76725e6i 3.04734i
\(203\) 613455.i 1.04482i
\(204\) 427163. 0.718652
\(205\) 0 0
\(206\) 563780. 0.925639
\(207\) 282754.i 0.458651i
\(208\) − 29109.6i − 0.0466528i
\(209\) −1.78463e6 −2.82607
\(210\) 0 0
\(211\) 112124. 0.173377 0.0866885 0.996235i \(-0.472372\pi\)
0.0866885 + 0.996235i \(0.472372\pi\)
\(212\) − 57365.2i − 0.0876616i
\(213\) − 345877.i − 0.522363i
\(214\) 1.22328e6 1.82596
\(215\) 0 0
\(216\) 542801. 0.791601
\(217\) − 59841.5i − 0.0862686i
\(218\) − 1.37374e6i − 1.95778i
\(219\) −404761. −0.570280
\(220\) 0 0
\(221\) 227768. 0.313698
\(222\) − 526298.i − 0.716720i
\(223\) 309032.i 0.416142i 0.978114 + 0.208071i \(0.0667186\pi\)
−0.978114 + 0.208071i \(0.933281\pi\)
\(224\) −448978. −0.597867
\(225\) 0 0
\(226\) 437648. 0.569973
\(227\) 229817.i 0.296018i 0.988986 + 0.148009i \(0.0472865\pi\)
−0.988986 + 0.148009i \(0.952714\pi\)
\(228\) 946692.i 1.20607i
\(229\) 1.48633e6 1.87295 0.936475 0.350735i \(-0.114068\pi\)
0.936475 + 0.350735i \(0.114068\pi\)
\(230\) 0 0
\(231\) 316389. 0.390113
\(232\) 1.39217e6i 1.69814i
\(233\) 706867.i 0.852997i 0.904488 + 0.426499i \(0.140253\pi\)
−0.904488 + 0.426499i \(0.859747\pi\)
\(234\) 327270. 0.390721
\(235\) 0 0
\(236\) −380210. −0.444369
\(237\) − 350854.i − 0.405747i
\(238\) 1.13057e6i 1.29376i
\(239\) −657958. −0.745080 −0.372540 0.928016i \(-0.621513\pi\)
−0.372540 + 0.928016i \(0.621513\pi\)
\(240\) 0 0
\(241\) −790694. −0.876932 −0.438466 0.898748i \(-0.644478\pi\)
−0.438466 + 0.898748i \(0.644478\pi\)
\(242\) 1.81821e6i 1.99575i
\(243\) 849201.i 0.922561i
\(244\) 1.68938e6 1.81657
\(245\) 0 0
\(246\) −376890. −0.397079
\(247\) 504786.i 0.526460i
\(248\) − 135804.i − 0.140211i
\(249\) −207567. −0.212159
\(250\) 0 0
\(251\) −129798. −0.130042 −0.0650212 0.997884i \(-0.520711\pi\)
−0.0650212 + 0.997884i \(0.520711\pi\)
\(252\) 1.02078e6i 1.01258i
\(253\) 809542.i 0.795130i
\(254\) −1.21083e6 −1.17761
\(255\) 0 0
\(256\) −1.31715e6 −1.25613
\(257\) − 475029.i − 0.448629i −0.974517 0.224314i \(-0.927986\pi\)
0.974517 0.224314i \(-0.0720142\pi\)
\(258\) − 136517.i − 0.127685i
\(259\) 875295. 0.810784
\(260\) 0 0
\(261\) −1.41616e6 −1.28680
\(262\) 369682.i 0.332717i
\(263\) 1.81430e6i 1.61741i 0.588214 + 0.808705i \(0.299831\pi\)
−0.588214 + 0.808705i \(0.700169\pi\)
\(264\) 718011. 0.634046
\(265\) 0 0
\(266\) −2.50560e6 −2.17124
\(267\) − 463793.i − 0.398149i
\(268\) − 1.50656e6i − 1.28130i
\(269\) −1.77036e6 −1.49170 −0.745849 0.666115i \(-0.767956\pi\)
−0.745849 + 0.666115i \(0.767956\pi\)
\(270\) 0 0
\(271\) 1.11442e6 0.921777 0.460888 0.887458i \(-0.347531\pi\)
0.460888 + 0.887458i \(0.347531\pi\)
\(272\) 232143.i 0.190254i
\(273\) − 89490.9i − 0.0726729i
\(274\) 3.75833e6 3.02426
\(275\) 0 0
\(276\) 429436. 0.339333
\(277\) 508146.i 0.397914i 0.980008 + 0.198957i \(0.0637554\pi\)
−0.980008 + 0.198957i \(0.936245\pi\)
\(278\) − 1.36039e6i − 1.05573i
\(279\) 138144. 0.106248
\(280\) 0 0
\(281\) 1.60415e6 1.21193 0.605966 0.795491i \(-0.292787\pi\)
0.605966 + 0.795491i \(0.292787\pi\)
\(282\) − 559590.i − 0.419032i
\(283\) − 1.80648e6i − 1.34081i −0.741997 0.670403i \(-0.766121\pi\)
0.741997 0.670403i \(-0.233879\pi\)
\(284\) 3.19494e6 2.35053
\(285\) 0 0
\(286\) 936996. 0.677365
\(287\) − 626812.i − 0.449193i
\(288\) − 1.03646e6i − 0.736329i
\(289\) −396546. −0.279286
\(290\) 0 0
\(291\) −346979. −0.240199
\(292\) − 3.73886e6i − 2.56615i
\(293\) 2.20331e6i 1.49936i 0.661798 + 0.749682i \(0.269794\pi\)
−0.661798 + 0.749682i \(0.730206\pi\)
\(294\) −469353. −0.316688
\(295\) 0 0
\(296\) 1.98639e6 1.31776
\(297\) 1.58085e6i 1.03992i
\(298\) − 425026.i − 0.277252i
\(299\) 228980. 0.148122
\(300\) 0 0
\(301\) 227044. 0.144442
\(302\) − 2.78092e6i − 1.75457i
\(303\) 1.11558e6i 0.698061i
\(304\) −514482. −0.319290
\(305\) 0 0
\(306\) −2.60991e6 −1.59339
\(307\) − 2.20792e6i − 1.33702i −0.743704 0.668509i \(-0.766933\pi\)
0.743704 0.668509i \(-0.233067\pi\)
\(308\) 2.92255e6i 1.75544i
\(309\) 355886. 0.212038
\(310\) 0 0
\(311\) −1.09149e6 −0.639910 −0.319955 0.947433i \(-0.603668\pi\)
−0.319955 + 0.947433i \(0.603668\pi\)
\(312\) − 203090.i − 0.118114i
\(313\) 1.38817e6i 0.800905i 0.916318 + 0.400452i \(0.131147\pi\)
−0.916318 + 0.400452i \(0.868853\pi\)
\(314\) 2.30604e6 1.31990
\(315\) 0 0
\(316\) 3.24091e6 1.82578
\(317\) − 1.04832e6i − 0.585931i −0.956123 0.292965i \(-0.905358\pi\)
0.956123 0.292965i \(-0.0946421\pi\)
\(318\) − 57627.6i − 0.0319568i
\(319\) −4.05454e6 −2.23082
\(320\) 0 0
\(321\) 772196. 0.418278
\(322\) 1.13659e6i 0.610889i
\(323\) − 4.02557e6i − 2.14694i
\(324\) −1.90531e6 −1.00833
\(325\) 0 0
\(326\) −5.66702e6 −2.95332
\(327\) − 867175.i − 0.448474i
\(328\) − 1.42248e6i − 0.730067i
\(329\) 930664. 0.474027
\(330\) 0 0
\(331\) 3.48155e6 1.74664 0.873320 0.487148i \(-0.161963\pi\)
0.873320 + 0.487148i \(0.161963\pi\)
\(332\) − 1.91734e6i − 0.954673i
\(333\) 2.02061e6i 0.998556i
\(334\) 3.56112e6 1.74671
\(335\) 0 0
\(336\) 91209.8 0.0440751
\(337\) 1.92271e6i 0.922231i 0.887340 + 0.461115i \(0.152551\pi\)
−0.887340 + 0.461115i \(0.847449\pi\)
\(338\) − 265031.i − 0.126184i
\(339\) 276265. 0.130565
\(340\) 0 0
\(341\) 395514. 0.184194
\(342\) − 5.78417e6i − 2.67409i
\(343\) − 2.29994e6i − 1.05556i
\(344\) 515253. 0.234760
\(345\) 0 0
\(346\) −5.05158e6 −2.26849
\(347\) 3.52602e6i 1.57203i 0.618207 + 0.786016i \(0.287860\pi\)
−0.618207 + 0.786016i \(0.712140\pi\)
\(348\) 2.15081e6i 0.952036i
\(349\) 1.36701e6 0.600771 0.300385 0.953818i \(-0.402885\pi\)
0.300385 + 0.953818i \(0.402885\pi\)
\(350\) 0 0
\(351\) 447145. 0.193723
\(352\) − 2.96746e6i − 1.27652i
\(353\) − 829000.i − 0.354094i −0.984202 0.177047i \(-0.943346\pi\)
0.984202 0.177047i \(-0.0566544\pi\)
\(354\) −381949. −0.161993
\(355\) 0 0
\(356\) 4.28415e6 1.79160
\(357\) 713672.i 0.296366i
\(358\) 4.26525e6i 1.75888i
\(359\) −663764. −0.271818 −0.135909 0.990721i \(-0.543395\pi\)
−0.135909 + 0.990721i \(0.543395\pi\)
\(360\) 0 0
\(361\) 6.44548e6 2.60308
\(362\) − 1.94410e6i − 0.779734i
\(363\) 1.14775e6i 0.457172i
\(364\) 826647. 0.327014
\(365\) 0 0
\(366\) 1.69710e6 0.662224
\(367\) − 193910.i − 0.0751511i −0.999294 0.0375755i \(-0.988037\pi\)
0.999294 0.0375755i \(-0.0119635\pi\)
\(368\) 233378.i 0.0898339i
\(369\) 1.44699e6 0.553223
\(370\) 0 0
\(371\) 95841.5 0.0361509
\(372\) − 209808.i − 0.0786075i
\(373\) 1.83984e6i 0.684712i 0.939570 + 0.342356i \(0.111225\pi\)
−0.939570 + 0.342356i \(0.888775\pi\)
\(374\) −7.47235e6 −2.76235
\(375\) 0 0
\(376\) 2.11204e6 0.770430
\(377\) 1.14683e6i 0.415573i
\(378\) 2.21949e6i 0.798958i
\(379\) 1.64249e6 0.587359 0.293680 0.955904i \(-0.405120\pi\)
0.293680 + 0.955904i \(0.405120\pi\)
\(380\) 0 0
\(381\) −764338. −0.269757
\(382\) 2.88951e6i 1.01313i
\(383\) − 126562.i − 0.0440865i −0.999757 0.0220432i \(-0.992983\pi\)
0.999757 0.0220432i \(-0.00701715\pi\)
\(384\) −1.87374e6 −0.648458
\(385\) 0 0
\(386\) 7.19607e6 2.45826
\(387\) 524130.i 0.177894i
\(388\) − 3.20512e6i − 1.08085i
\(389\) 5.20026e6 1.74241 0.871206 0.490917i \(-0.163338\pi\)
0.871206 + 0.490917i \(0.163338\pi\)
\(390\) 0 0
\(391\) −1.82607e6 −0.604053
\(392\) − 1.77146e6i − 0.582260i
\(393\) 233361.i 0.0762163i
\(394\) −4.57003e6 −1.48313
\(395\) 0 0
\(396\) −6.74668e6 −2.16198
\(397\) 2.24899e6i 0.716163i 0.933690 + 0.358081i \(0.116569\pi\)
−0.933690 + 0.358081i \(0.883431\pi\)
\(398\) − 7.47221e6i − 2.36451i
\(399\) −1.58166e6 −0.497372
\(400\) 0 0
\(401\) 2.11199e6 0.655889 0.327945 0.944697i \(-0.393644\pi\)
0.327945 + 0.944697i \(0.393644\pi\)
\(402\) − 1.51345e6i − 0.467094i
\(403\) − 111872.i − 0.0343129i
\(404\) −1.03048e7 −3.14114
\(405\) 0 0
\(406\) −5.69253e6 −1.71392
\(407\) 5.78514e6i 1.73112i
\(408\) 1.61960e6i 0.481679i
\(409\) −1.01144e6 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(410\) 0 0
\(411\) 2.37244e6 0.692774
\(412\) 3.28739e6i 0.954132i
\(413\) − 635226.i − 0.183254i
\(414\) −2.62380e6 −0.752367
\(415\) 0 0
\(416\) −839349. −0.237799
\(417\) − 858748.i − 0.241839i
\(418\) − 1.65604e7i − 4.63587i
\(419\) 84677.5 0.0235631 0.0117816 0.999931i \(-0.496250\pi\)
0.0117816 + 0.999931i \(0.496250\pi\)
\(420\) 0 0
\(421\) −2.58658e6 −0.711247 −0.355624 0.934629i \(-0.615731\pi\)
−0.355624 + 0.934629i \(0.615731\pi\)
\(422\) 1.04045e6i 0.284406i
\(423\) 2.14843e6i 0.583808i
\(424\) 217502. 0.0587555
\(425\) 0 0
\(426\) 3.20955e6 0.856880
\(427\) 2.82248e6i 0.749137i
\(428\) 7.13294e6i 1.88217i
\(429\) 591478. 0.155166
\(430\) 0 0
\(431\) 63405.6 0.0164412 0.00822062 0.999966i \(-0.497383\pi\)
0.00822062 + 0.999966i \(0.497383\pi\)
\(432\) 455734.i 0.117490i
\(433\) − 916925.i − 0.235025i −0.993071 0.117512i \(-0.962508\pi\)
0.993071 0.117512i \(-0.0374920\pi\)
\(434\) 555296. 0.141514
\(435\) 0 0
\(436\) 8.01027e6 2.01805
\(437\) − 4.04699e6i − 1.01374i
\(438\) − 3.75596e6i − 0.935483i
\(439\) −1.74762e6 −0.432799 −0.216399 0.976305i \(-0.569431\pi\)
−0.216399 + 0.976305i \(0.569431\pi\)
\(440\) 0 0
\(441\) 1.80198e6 0.441219
\(442\) 2.11356e6i 0.514588i
\(443\) − 3.55036e6i − 0.859533i −0.902940 0.429766i \(-0.858596\pi\)
0.902940 0.429766i \(-0.141404\pi\)
\(444\) 3.06883e6 0.738782
\(445\) 0 0
\(446\) −2.86765e6 −0.682637
\(447\) − 268297.i − 0.0635108i
\(448\) − 4.66454e6i − 1.09803i
\(449\) −7.03537e6 −1.64691 −0.823457 0.567378i \(-0.807958\pi\)
−0.823457 + 0.567378i \(0.807958\pi\)
\(450\) 0 0
\(451\) 4.14283e6 0.959082
\(452\) 2.55192e6i 0.587517i
\(453\) − 1.75545e6i − 0.401924i
\(454\) −2.13258e6 −0.485586
\(455\) 0 0
\(456\) −3.58941e6 −0.808372
\(457\) − 1.68083e6i − 0.376472i −0.982124 0.188236i \(-0.939723\pi\)
0.982124 0.188236i \(-0.0602770\pi\)
\(458\) 1.37923e7i 3.07237i
\(459\) −3.56589e6 −0.790017
\(460\) 0 0
\(461\) −8.85997e6 −1.94169 −0.970845 0.239709i \(-0.922948\pi\)
−0.970845 + 0.239709i \(0.922948\pi\)
\(462\) 2.93592e6i 0.639939i
\(463\) − 7.32234e6i − 1.58744i −0.608284 0.793720i \(-0.708142\pi\)
0.608284 0.793720i \(-0.291858\pi\)
\(464\) −1.16886e6 −0.252039
\(465\) 0 0
\(466\) −6.55934e6 −1.39925
\(467\) − 840696.i − 0.178380i −0.996015 0.0891901i \(-0.971572\pi\)
0.996015 0.0891901i \(-0.0284279\pi\)
\(468\) 1.90831e6i 0.402748i
\(469\) 2.51705e6 0.528396
\(470\) 0 0
\(471\) 1.45568e6 0.302353
\(472\) − 1.44158e6i − 0.297840i
\(473\) 1.50062e6i 0.308402i
\(474\) 3.25574e6 0.665585
\(475\) 0 0
\(476\) −6.59233e6 −1.33359
\(477\) 221249.i 0.0445232i
\(478\) − 6.10549e6i − 1.22222i
\(479\) 4.72739e6 0.941418 0.470709 0.882288i \(-0.343998\pi\)
0.470709 + 0.882288i \(0.343998\pi\)
\(480\) 0 0
\(481\) 1.63634e6 0.322485
\(482\) − 7.33722e6i − 1.43851i
\(483\) 717469.i 0.139938i
\(484\) −1.06020e7 −2.05718
\(485\) 0 0
\(486\) −7.88013e6 −1.51336
\(487\) − 5.60717e6i − 1.07133i −0.844432 0.535663i \(-0.820062\pi\)
0.844432 0.535663i \(-0.179938\pi\)
\(488\) 6.40532e6i 1.21756i
\(489\) −3.57730e6 −0.676525
\(490\) 0 0
\(491\) 117889. 0.0220683 0.0110341 0.999939i \(-0.496488\pi\)
0.0110341 + 0.999939i \(0.496488\pi\)
\(492\) − 2.19764e6i − 0.409302i
\(493\) − 9.14576e6i − 1.69474i
\(494\) −4.68414e6 −0.863600
\(495\) 0 0
\(496\) 114020. 0.0208103
\(497\) 5.33786e6i 0.969340i
\(498\) − 1.92611e6i − 0.348023i
\(499\) 314105. 0.0564707 0.0282354 0.999601i \(-0.491011\pi\)
0.0282354 + 0.999601i \(0.491011\pi\)
\(500\) 0 0
\(501\) 2.24796e6 0.400123
\(502\) − 1.20446e6i − 0.213320i
\(503\) 8.44792e6i 1.48878i 0.667747 + 0.744389i \(0.267259\pi\)
−0.667747 + 0.744389i \(0.732741\pi\)
\(504\) −3.87030e6 −0.678686
\(505\) 0 0
\(506\) −7.51211e6 −1.30432
\(507\) − 167300.i − 0.0289053i
\(508\) − 7.06035e6i − 1.21385i
\(509\) 4.29988e6 0.735635 0.367817 0.929898i \(-0.380105\pi\)
0.367817 + 0.929898i \(0.380105\pi\)
\(510\) 0 0
\(511\) 6.24660e6 1.05826
\(512\) − 1.98625e6i − 0.334857i
\(513\) − 7.90283e6i − 1.32583i
\(514\) 4.40801e6 0.735927
\(515\) 0 0
\(516\) 796030. 0.131615
\(517\) 6.15110e6i 1.01211i
\(518\) 8.12227e6i 1.33000i
\(519\) −3.18881e6 −0.519649
\(520\) 0 0
\(521\) −7.31158e6 −1.18009 −0.590047 0.807369i \(-0.700891\pi\)
−0.590047 + 0.807369i \(0.700891\pi\)
\(522\) − 1.31412e7i − 2.11085i
\(523\) − 3.72278e6i − 0.595131i −0.954701 0.297566i \(-0.903825\pi\)
0.954701 0.297566i \(-0.0961747\pi\)
\(524\) −2.15561e6 −0.342959
\(525\) 0 0
\(526\) −1.68357e7 −2.65319
\(527\) 892153.i 0.139931i
\(528\) 602839.i 0.0941058i
\(529\) 4.60056e6 0.714778
\(530\) 0 0
\(531\) 1.46641e6 0.225694
\(532\) − 1.46101e7i − 2.23808i
\(533\) − 1.17181e6i − 0.178664i
\(534\) 4.30375e6 0.653121
\(535\) 0 0
\(536\) 5.71218e6 0.858796
\(537\) 2.69244e6i 0.402912i
\(538\) − 1.64280e7i − 2.44697i
\(539\) 5.15919e6 0.764909
\(540\) 0 0
\(541\) 612758. 0.0900111 0.0450056 0.998987i \(-0.485669\pi\)
0.0450056 + 0.998987i \(0.485669\pi\)
\(542\) 1.03412e7i 1.51208i
\(543\) − 1.22721e6i − 0.178616i
\(544\) 6.69363e6 0.969761
\(545\) 0 0
\(546\) 830428. 0.119212
\(547\) 1.31870e7i 1.88442i 0.335020 + 0.942211i \(0.391257\pi\)
−0.335020 + 0.942211i \(0.608743\pi\)
\(548\) 2.19148e7i 3.11735i
\(549\) −6.51567e6 −0.922632
\(550\) 0 0
\(551\) 2.02691e7 2.84417
\(552\) 1.62822e6i 0.227439i
\(553\) 5.41467e6i 0.752938i
\(554\) −4.71532e6 −0.652735
\(555\) 0 0
\(556\) 7.93244e6 1.08823
\(557\) 2.49720e6i 0.341048i 0.985354 + 0.170524i \(0.0545460\pi\)
−0.985354 + 0.170524i \(0.945454\pi\)
\(558\) 1.28190e6i 0.174288i
\(559\) 424452. 0.0574512
\(560\) 0 0
\(561\) −4.71692e6 −0.632777
\(562\) 1.48856e7i 1.98804i
\(563\) 8.39064e6i 1.11564i 0.829962 + 0.557820i \(0.188362\pi\)
−0.829962 + 0.557820i \(0.811638\pi\)
\(564\) 3.26296e6 0.431931
\(565\) 0 0
\(566\) 1.67631e7 2.19945
\(567\) − 3.18324e6i − 0.415826i
\(568\) 1.21137e7i 1.57546i
\(569\) 2.18516e6 0.282945 0.141473 0.989942i \(-0.454816\pi\)
0.141473 + 0.989942i \(0.454816\pi\)
\(570\) 0 0
\(571\) 1.46108e7 1.87535 0.937676 0.347510i \(-0.112973\pi\)
0.937676 + 0.347510i \(0.112973\pi\)
\(572\) 5.46361e6i 0.698215i
\(573\) 1.82400e6i 0.232080i
\(574\) 5.81648e6 0.736852
\(575\) 0 0
\(576\) 1.07681e7 1.35233
\(577\) − 756371.i − 0.0945791i −0.998881 0.0472896i \(-0.984942\pi\)
0.998881 0.0472896i \(-0.0150583\pi\)
\(578\) − 3.67973e6i − 0.458138i
\(579\) 4.54252e6 0.563119
\(580\) 0 0
\(581\) 3.20335e6 0.393699
\(582\) − 3.21978e6i − 0.394020i
\(583\) 633451.i 0.0771866i
\(584\) 1.41760e7 1.71997
\(585\) 0 0
\(586\) −2.04456e7 −2.45955
\(587\) − 797341.i − 0.0955100i −0.998859 0.0477550i \(-0.984793\pi\)
0.998859 0.0477550i \(-0.0152067\pi\)
\(588\) − 2.73679e6i − 0.326436i
\(589\) −1.97722e6 −0.234837
\(590\) 0 0
\(591\) −2.88483e6 −0.339744
\(592\) 1.66776e6i 0.195583i
\(593\) 9.00116e6i 1.05114i 0.850750 + 0.525571i \(0.176148\pi\)
−0.850750 + 0.525571i \(0.823852\pi\)
\(594\) −1.46694e7 −1.70587
\(595\) 0 0
\(596\) 2.47832e6 0.285786
\(597\) − 4.71683e6i − 0.541644i
\(598\) 2.12481e6i 0.242978i
\(599\) 1.40266e7 1.59730 0.798648 0.601799i \(-0.205549\pi\)
0.798648 + 0.601799i \(0.205549\pi\)
\(600\) 0 0
\(601\) 1.55864e7 1.76019 0.880094 0.474800i \(-0.157480\pi\)
0.880094 + 0.474800i \(0.157480\pi\)
\(602\) 2.10685e6i 0.236942i
\(603\) 5.81059e6i 0.650769i
\(604\) 1.62155e7 1.80858
\(605\) 0 0
\(606\) −1.03520e7 −1.14509
\(607\) − 6.45850e6i − 0.711475i −0.934586 0.355738i \(-0.884230\pi\)
0.934586 0.355738i \(-0.115770\pi\)
\(608\) 1.48346e7i 1.62749i
\(609\) −3.59340e6 −0.392611
\(610\) 0 0
\(611\) 1.73985e6 0.188542
\(612\) − 1.52184e7i − 1.64244i
\(613\) 8.15464e6i 0.876503i 0.898852 + 0.438252i \(0.144402\pi\)
−0.898852 + 0.438252i \(0.855598\pi\)
\(614\) 2.04883e7 2.19323
\(615\) 0 0
\(616\) −1.10809e7 −1.17659
\(617\) − 1.30591e7i − 1.38102i −0.723323 0.690510i \(-0.757386\pi\)
0.723323 0.690510i \(-0.242614\pi\)
\(618\) 3.30243e6i 0.347826i
\(619\) 1.16624e7 1.22338 0.611690 0.791098i \(-0.290490\pi\)
0.611690 + 0.791098i \(0.290490\pi\)
\(620\) 0 0
\(621\) −3.58486e6 −0.373030
\(622\) − 1.01284e7i − 1.04970i
\(623\) 7.15764e6i 0.738839i
\(624\) 170514. 0.0175306
\(625\) 0 0
\(626\) −1.28814e7 −1.31380
\(627\) − 1.04538e7i − 1.06195i
\(628\) 1.34465e7i 1.36053i
\(629\) −1.30494e7 −1.31512
\(630\) 0 0
\(631\) 6.56162e6 0.656051 0.328026 0.944669i \(-0.393617\pi\)
0.328026 + 0.944669i \(0.393617\pi\)
\(632\) 1.22880e7i 1.22374i
\(633\) 656782.i 0.0651496i
\(634\) 9.72786e6 0.961156
\(635\) 0 0
\(636\) 336026. 0.0329405
\(637\) − 1.45928e6i − 0.142492i
\(638\) − 3.76240e7i − 3.65943i
\(639\) −1.23224e7 −1.19383
\(640\) 0 0
\(641\) 8.91450e6 0.856943 0.428472 0.903555i \(-0.359052\pi\)
0.428472 + 0.903555i \(0.359052\pi\)
\(642\) 7.16556e6i 0.686140i
\(643\) − 1.65259e7i − 1.57629i −0.615489 0.788146i \(-0.711041\pi\)
0.615489 0.788146i \(-0.288959\pi\)
\(644\) −6.62741e6 −0.629694
\(645\) 0 0
\(646\) 3.73551e7 3.52183
\(647\) 1.36339e7i 1.28044i 0.768192 + 0.640220i \(0.221157\pi\)
−0.768192 + 0.640220i \(0.778843\pi\)
\(648\) − 7.22403e6i − 0.675837i
\(649\) 4.19844e6 0.391269
\(650\) 0 0
\(651\) 350530. 0.0324170
\(652\) − 3.30443e7i − 3.04423i
\(653\) − 9.93610e6i − 0.911870i −0.890013 0.455935i \(-0.849305\pi\)
0.890013 0.455935i \(-0.150695\pi\)
\(654\) 8.04691e6 0.735673
\(655\) 0 0
\(656\) 1.19431e6 0.108357
\(657\) 1.44202e7i 1.30334i
\(658\) 8.63606e6i 0.777590i
\(659\) 1.18157e6 0.105985 0.0529926 0.998595i \(-0.483124\pi\)
0.0529926 + 0.998595i \(0.483124\pi\)
\(660\) 0 0
\(661\) −1.40076e7 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(662\) 3.23069e7i 2.86517i
\(663\) 1.33419e6i 0.117878i
\(664\) 7.26966e6 0.639873
\(665\) 0 0
\(666\) −1.87502e7 −1.63802
\(667\) − 9.19442e6i − 0.800221i
\(668\) 2.07648e7i 1.80048i
\(669\) −1.81020e6 −0.156373
\(670\) 0 0
\(671\) −1.86548e7 −1.59950
\(672\) − 2.62995e6i − 0.224660i
\(673\) 1.45325e7i 1.23681i 0.785860 + 0.618404i \(0.212221\pi\)
−0.785860 + 0.618404i \(0.787779\pi\)
\(674\) −1.78417e7 −1.51282
\(675\) 0 0
\(676\) 1.54539e6 0.130068
\(677\) − 6.27094e6i − 0.525849i −0.964816 0.262925i \(-0.915313\pi\)
0.964816 0.262925i \(-0.0846870\pi\)
\(678\) 2.56359e6i 0.214178i
\(679\) 5.35487e6 0.445733
\(680\) 0 0
\(681\) −1.34619e6 −0.111234
\(682\) 3.67016e6i 0.302151i
\(683\) 188702.i 0.0154784i 0.999970 + 0.00773919i \(0.00246348\pi\)
−0.999970 + 0.00773919i \(0.997537\pi\)
\(684\) 3.37274e7 2.75640
\(685\) 0 0
\(686\) 2.13422e7 1.73153
\(687\) 8.70639e6i 0.703796i
\(688\) 432604.i 0.0348433i
\(689\) 179172. 0.0143788
\(690\) 0 0
\(691\) −2.49501e7 −1.98782 −0.993910 0.110195i \(-0.964852\pi\)
−0.993910 + 0.110195i \(0.964852\pi\)
\(692\) − 2.94557e7i − 2.33832i
\(693\) − 1.12718e7i − 0.891583i
\(694\) −3.27196e7 −2.57875
\(695\) 0 0
\(696\) −8.15485e6 −0.638106
\(697\) 9.34490e6i 0.728606i
\(698\) 1.26851e7i 0.985500i
\(699\) −4.14058e6 −0.320530
\(700\) 0 0
\(701\) 1.11757e7 0.858975 0.429488 0.903073i \(-0.358694\pi\)
0.429488 + 0.903073i \(0.358694\pi\)
\(702\) 4.14927e6i 0.317781i
\(703\) − 2.89206e7i − 2.20708i
\(704\) 3.08297e7 2.34443
\(705\) 0 0
\(706\) 7.69267e6 0.580852
\(707\) − 1.72165e7i − 1.29538i
\(708\) − 2.22714e6i − 0.166980i
\(709\) 1.91144e7 1.42806 0.714028 0.700117i \(-0.246869\pi\)
0.714028 + 0.700117i \(0.246869\pi\)
\(710\) 0 0
\(711\) −1.24997e7 −0.927313
\(712\) 1.62435e7i 1.20082i
\(713\) 896900.i 0.0660724i
\(714\) −6.62249e6 −0.486156
\(715\) 0 0
\(716\) −2.48706e7 −1.81302
\(717\) − 3.85409e6i − 0.279978i
\(718\) − 6.15937e6i − 0.445887i
\(719\) 9.47384e6 0.683446 0.341723 0.939801i \(-0.388990\pi\)
0.341723 + 0.939801i \(0.388990\pi\)
\(720\) 0 0
\(721\) −5.49232e6 −0.393476
\(722\) 5.98106e7i 4.27007i
\(723\) − 4.63161e6i − 0.329524i
\(724\) 1.13360e7 0.803736
\(725\) 0 0
\(726\) −1.06505e7 −0.749941
\(727\) − 2.00091e7i − 1.40408i −0.712139 0.702039i \(-0.752273\pi\)
0.712139 0.702039i \(-0.247727\pi\)
\(728\) 3.13426e6i 0.219183i
\(729\) 3.58239e6 0.249663
\(730\) 0 0
\(731\) −3.38492e6 −0.234290
\(732\) 9.89577e6i 0.682609i
\(733\) 8.14639e6i 0.560023i 0.959997 + 0.280011i \(0.0903382\pi\)
−0.959997 + 0.280011i \(0.909662\pi\)
\(734\) 1.79938e6 0.123277
\(735\) 0 0
\(736\) 6.72925e6 0.457901
\(737\) 1.66361e7i 1.12819i
\(738\) 1.34273e7i 0.907502i
\(739\) −9.22447e6 −0.621342 −0.310671 0.950518i \(-0.600554\pi\)
−0.310671 + 0.950518i \(0.600554\pi\)
\(740\) 0 0
\(741\) −2.95686e6 −0.197827
\(742\) 889357.i 0.0593016i
\(743\) − 1.27277e7i − 0.845820i −0.906172 0.422910i \(-0.861009\pi\)
0.906172 0.422910i \(-0.138991\pi\)
\(744\) 795492. 0.0526870
\(745\) 0 0
\(746\) −1.70727e7 −1.12320
\(747\) 7.39491e6i 0.484877i
\(748\) − 4.35711e7i − 2.84738i
\(749\) −1.19172e7 −0.776191
\(750\) 0 0
\(751\) −1.45313e7 −0.940169 −0.470084 0.882622i \(-0.655776\pi\)
−0.470084 + 0.882622i \(0.655776\pi\)
\(752\) 1.77326e6i 0.114348i
\(753\) − 760313.i − 0.0488658i
\(754\) −1.06420e7 −0.681702
\(755\) 0 0
\(756\) −1.29418e7 −0.823551
\(757\) 9.46969e6i 0.600615i 0.953842 + 0.300307i \(0.0970893\pi\)
−0.953842 + 0.300307i \(0.902911\pi\)
\(758\) 1.52414e7i 0.963499i
\(759\) −4.74201e6 −0.298785
\(760\) 0 0
\(761\) 2.61063e7 1.63412 0.817059 0.576554i \(-0.195603\pi\)
0.817059 + 0.576554i \(0.195603\pi\)
\(762\) − 7.09264e6i − 0.442507i
\(763\) 1.33830e7i 0.832225i
\(764\) −1.68486e7 −1.04432
\(765\) 0 0
\(766\) 1.17442e6 0.0723191
\(767\) − 1.18753e6i − 0.0728883i
\(768\) − 7.71538e6i − 0.472013i
\(769\) 5.26481e6 0.321045 0.160523 0.987032i \(-0.448682\pi\)
0.160523 + 0.987032i \(0.448682\pi\)
\(770\) 0 0
\(771\) 2.78255e6 0.168580
\(772\) 4.19602e7i 2.53393i
\(773\) 6.66639e6i 0.401275i 0.979666 + 0.200638i \(0.0643014\pi\)
−0.979666 + 0.200638i \(0.935699\pi\)
\(774\) −4.86364e6 −0.291816
\(775\) 0 0
\(776\) 1.21523e7 0.724444
\(777\) 5.12717e6i 0.304667i
\(778\) 4.82556e7i 2.85824i
\(779\) −2.07105e7 −1.22277
\(780\) 0 0
\(781\) −3.52798e7 −2.06966
\(782\) − 1.69449e7i − 0.990883i
\(783\) − 1.79546e7i − 1.04658i
\(784\) 1.48731e6 0.0864196
\(785\) 0 0
\(786\) −2.16547e6 −0.125025
\(787\) 1.01573e7i 0.584577i 0.956330 + 0.292288i \(0.0944167\pi\)
−0.956330 + 0.292288i \(0.905583\pi\)
\(788\) − 2.66478e7i − 1.52878i
\(789\) −1.06275e7 −0.607772
\(790\) 0 0
\(791\) −4.26355e6 −0.242287
\(792\) − 2.55802e7i − 1.44908i
\(793\) 5.27653e6i 0.297965i
\(794\) −2.08694e7 −1.17479
\(795\) 0 0
\(796\) 4.35703e7 2.43730
\(797\) − 9.12058e6i − 0.508600i −0.967125 0.254300i \(-0.918155\pi\)
0.967125 0.254300i \(-0.0818451\pi\)
\(798\) − 1.46770e7i − 0.815885i
\(799\) −1.38749e7 −0.768888
\(800\) 0 0
\(801\) −1.65233e7 −0.909948
\(802\) 1.95981e7i 1.07592i
\(803\) 4.12861e7i 2.25951i
\(804\) 8.82492e6 0.481472
\(805\) 0 0
\(806\) 1.03811e6 0.0562866
\(807\) − 1.03702e7i − 0.560533i
\(808\) − 3.90710e7i − 2.10536i
\(809\) 1.59436e7 0.856475 0.428238 0.903666i \(-0.359135\pi\)
0.428238 + 0.903666i \(0.359135\pi\)
\(810\) 0 0
\(811\) −1.92860e7 −1.02965 −0.514825 0.857295i \(-0.672143\pi\)
−0.514825 + 0.857295i \(0.672143\pi\)
\(812\) − 3.31930e7i − 1.76668i
\(813\) 6.52789e6i 0.346375i
\(814\) −5.36830e7 −2.83972
\(815\) 0 0
\(816\) −1.35981e6 −0.0714913
\(817\) − 7.50175e6i − 0.393195i
\(818\) − 9.38565e6i − 0.490435i
\(819\) −3.18825e6 −0.166090
\(820\) 0 0
\(821\) −3.67112e6 −0.190082 −0.0950408 0.995473i \(-0.530298\pi\)
−0.0950408 + 0.995473i \(0.530298\pi\)
\(822\) 2.20150e7i 1.13642i
\(823\) 7.63657e6i 0.393006i 0.980503 + 0.196503i \(0.0629585\pi\)
−0.980503 + 0.196503i \(0.937042\pi\)
\(824\) −1.24642e7 −0.639511
\(825\) 0 0
\(826\) 5.89455e6 0.300608
\(827\) 1.92879e7i 0.980667i 0.871535 + 0.490334i \(0.163125\pi\)
−0.871535 + 0.490334i \(0.836875\pi\)
\(828\) − 1.52993e7i − 0.775526i
\(829\) −1.14847e7 −0.580407 −0.290203 0.956965i \(-0.593723\pi\)
−0.290203 + 0.956965i \(0.593723\pi\)
\(830\) 0 0
\(831\) −2.97654e6 −0.149524
\(832\) − 8.72021e6i − 0.436736i
\(833\) 1.16375e7i 0.581095i
\(834\) 7.96872e6 0.396710
\(835\) 0 0
\(836\) 9.65636e7 4.77857
\(837\) 1.75144e6i 0.0864135i
\(838\) 785761.i 0.0386528i
\(839\) −3.21966e7 −1.57908 −0.789541 0.613698i \(-0.789681\pi\)
−0.789541 + 0.613698i \(0.789681\pi\)
\(840\) 0 0
\(841\) 2.55386e7 1.24511
\(842\) − 2.40020e7i − 1.16672i
\(843\) 9.39653e6i 0.455406i
\(844\) −6.06683e6 −0.293161
\(845\) 0 0
\(846\) −1.99363e7 −0.957675
\(847\) − 1.77130e7i − 0.848365i
\(848\) 182614.i 0.00872055i
\(849\) 1.05817e7 0.503833
\(850\) 0 0
\(851\) −1.31189e7 −0.620973
\(852\) 1.87148e7i 0.883256i
\(853\) 3.91351e7i 1.84160i 0.390040 + 0.920798i \(0.372461\pi\)
−0.390040 + 0.920798i \(0.627539\pi\)
\(854\) −2.61911e7 −1.22888
\(855\) 0 0
\(856\) −2.70448e7 −1.26153
\(857\) 2.45430e7i 1.14150i 0.821124 + 0.570750i \(0.193347\pi\)
−0.821124 + 0.570750i \(0.806653\pi\)
\(858\) 5.48860e6i 0.254532i
\(859\) 3.17559e7 1.46839 0.734196 0.678937i \(-0.237559\pi\)
0.734196 + 0.678937i \(0.237559\pi\)
\(860\) 0 0
\(861\) 3.67165e6 0.168793
\(862\) 588370.i 0.0269701i
\(863\) − 2.85461e7i − 1.30473i −0.757906 0.652363i \(-0.773778\pi\)
0.757906 0.652363i \(-0.226222\pi\)
\(864\) 1.31407e7 0.598871
\(865\) 0 0
\(866\) 8.50857e6 0.385533
\(867\) − 2.32283e6i − 0.104947i
\(868\) 3.23792e6i 0.145870i
\(869\) −3.57875e7 −1.60761
\(870\) 0 0
\(871\) 4.70554e6 0.210167
\(872\) 3.03712e7i 1.35260i
\(873\) 1.23617e7i 0.548961i
\(874\) 3.75538e7 1.66294
\(875\) 0 0
\(876\) 2.19009e7 0.964278
\(877\) − 3.56134e7i − 1.56356i −0.623556 0.781779i \(-0.714312\pi\)
0.623556 0.781779i \(-0.285688\pi\)
\(878\) − 1.62170e7i − 0.709959i
\(879\) −1.29062e7 −0.563414
\(880\) 0 0
\(881\) −2.79621e7 −1.21375 −0.606877 0.794796i \(-0.707578\pi\)
−0.606877 + 0.794796i \(0.707578\pi\)
\(882\) 1.67214e7i 0.723772i
\(883\) − 1.65853e7i − 0.715849i −0.933751 0.357924i \(-0.883485\pi\)
0.933751 0.357924i \(-0.116515\pi\)
\(884\) −1.23242e7 −0.530428
\(885\) 0 0
\(886\) 3.29454e7 1.40997
\(887\) − 376818.i − 0.0160813i −0.999968 0.00804067i \(-0.997441\pi\)
0.999968 0.00804067i \(-0.00255945\pi\)
\(888\) 1.16356e7i 0.495172i
\(889\) 1.17959e7 0.500583
\(890\) 0 0
\(891\) 2.10392e7 0.887840
\(892\) − 1.67212e7i − 0.703649i
\(893\) − 3.07500e7i − 1.29038i
\(894\) 2.48966e6 0.104183
\(895\) 0 0
\(896\) 2.89171e7 1.20333
\(897\) 1.34128e6i 0.0556596i
\(898\) − 6.52844e7i − 2.70159i
\(899\) −4.49208e6 −0.185374
\(900\) 0 0
\(901\) −1.42886e6 −0.0586379
\(902\) 3.84432e7i 1.57327i
\(903\) 1.32995e6i 0.0542769i
\(904\) −9.67568e6 −0.393786
\(905\) 0 0
\(906\) 1.62896e7 0.659312
\(907\) − 2.16129e7i − 0.872360i −0.899860 0.436180i \(-0.856331\pi\)
0.899860 0.436180i \(-0.143669\pi\)
\(908\) − 1.24350e7i − 0.500533i
\(909\) 3.97442e7 1.59538
\(910\) 0 0
\(911\) 2.44743e7 0.977043 0.488521 0.872552i \(-0.337536\pi\)
0.488521 + 0.872552i \(0.337536\pi\)
\(912\) − 3.01365e6i − 0.119979i
\(913\) 2.11721e7i 0.840595i
\(914\) 1.55972e7 0.617561
\(915\) 0 0
\(916\) −8.04228e7 −3.16694
\(917\) − 3.60143e6i − 0.141433i
\(918\) − 3.30895e7i − 1.29594i
\(919\) −3.34269e7 −1.30559 −0.652796 0.757534i \(-0.726404\pi\)
−0.652796 + 0.757534i \(0.726404\pi\)
\(920\) 0 0
\(921\) 1.29332e7 0.502409
\(922\) − 8.22157e7i − 3.18513i
\(923\) 9.97895e6i 0.385550i
\(924\) −1.71193e7 −0.659637
\(925\) 0 0
\(926\) 6.79473e7 2.60402
\(927\) − 1.26790e7i − 0.484602i
\(928\) 3.37031e7i 1.28469i
\(929\) 2.68705e7 1.02149 0.510747 0.859731i \(-0.329369\pi\)
0.510747 + 0.859731i \(0.329369\pi\)
\(930\) 0 0
\(931\) −2.57914e7 −0.975214
\(932\) − 3.82474e7i − 1.44232i
\(933\) − 6.39357e6i − 0.240458i
\(934\) 7.80120e6 0.292613
\(935\) 0 0
\(936\) −7.23541e6 −0.269944
\(937\) − 1.17808e7i − 0.438353i −0.975685 0.219177i \(-0.929663\pi\)
0.975685 0.219177i \(-0.0703371\pi\)
\(938\) 2.33569e7i 0.866777i
\(939\) −8.13140e6 −0.300955
\(940\) 0 0
\(941\) −4.37398e7 −1.61029 −0.805143 0.593081i \(-0.797911\pi\)
−0.805143 + 0.593081i \(0.797911\pi\)
\(942\) 1.35080e7i 0.495978i
\(943\) 9.39463e6i 0.344033i
\(944\) 1.21034e6 0.0442057
\(945\) 0 0
\(946\) −1.39249e7 −0.505900
\(947\) − 5.14429e7i − 1.86402i −0.362435 0.932009i \(-0.618054\pi\)
0.362435 0.932009i \(-0.381946\pi\)
\(948\) 1.89841e7i 0.686072i
\(949\) 1.16778e7 0.420917
\(950\) 0 0
\(951\) 6.14070e6 0.220174
\(952\) − 2.49950e7i − 0.893843i
\(953\) − 5.27803e7i − 1.88252i −0.337682 0.941260i \(-0.609643\pi\)
0.337682 0.941260i \(-0.390357\pi\)
\(954\) −2.05307e6 −0.0730354
\(955\) 0 0
\(956\) 3.56010e7 1.25985
\(957\) − 2.37501e7i − 0.838274i
\(958\) 4.38676e7i 1.54429i
\(959\) −3.66135e7 −1.28557
\(960\) 0 0
\(961\) −2.81910e7 −0.984694
\(962\) 1.51843e7i 0.529002i
\(963\) − 2.75107e7i − 0.955951i
\(964\) 4.27832e7 1.48279
\(965\) 0 0
\(966\) −6.65772e6 −0.229553
\(967\) 2.62374e6i 0.0902307i 0.998982 + 0.0451154i \(0.0143655\pi\)
−0.998982 + 0.0451154i \(0.985634\pi\)
\(968\) − 4.01977e7i − 1.37884i
\(969\) 2.35804e7 0.806754
\(970\) 0 0
\(971\) 3.08316e6 0.104942 0.0524708 0.998622i \(-0.483290\pi\)
0.0524708 + 0.998622i \(0.483290\pi\)
\(972\) − 4.59489e7i − 1.55994i
\(973\) 1.32529e7i 0.448775i
\(974\) 5.20315e7 1.75739
\(975\) 0 0
\(976\) −5.37788e6 −0.180712
\(977\) − 3.86878e7i − 1.29669i −0.761345 0.648347i \(-0.775461\pi\)
0.761345 0.648347i \(-0.224539\pi\)
\(978\) − 3.31954e7i − 1.10977i
\(979\) −4.73074e7 −1.57751
\(980\) 0 0
\(981\) −3.08944e7 −1.02496
\(982\) 1.09394e6i 0.0362006i
\(983\) − 4.32293e7i − 1.42690i −0.700705 0.713451i \(-0.747131\pi\)
0.700705 0.713451i \(-0.252869\pi\)
\(984\) 8.33242e6 0.274336
\(985\) 0 0
\(986\) 8.48677e7 2.78003
\(987\) 5.45150e6i 0.178124i
\(988\) − 2.73132e7i − 0.890183i
\(989\) −3.40293e6 −0.110627
\(990\) 0 0
\(991\) −1.44224e7 −0.466501 −0.233251 0.972417i \(-0.574936\pi\)
−0.233251 + 0.972417i \(0.574936\pi\)
\(992\) − 3.28768e6i − 0.106074i
\(993\) 2.03937e7i 0.656332i
\(994\) −4.95324e7 −1.59010
\(995\) 0 0
\(996\) 1.12311e7 0.358736
\(997\) 4.29304e7i 1.36781i 0.729569 + 0.683907i \(0.239721\pi\)
−0.729569 + 0.683907i \(0.760279\pi\)
\(998\) 2.91472e6i 0.0926341i
\(999\) −2.56181e7 −0.812146
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.i.274.19 22
5.2 odd 4 325.6.a.j.1.2 11
5.3 odd 4 325.6.a.k.1.10 yes 11
5.4 even 2 inner 325.6.b.i.274.4 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.2 11 5.2 odd 4
325.6.a.k.1.10 yes 11 5.3 odd 4
325.6.b.i.274.4 22 5.4 even 2 inner
325.6.b.i.274.19 22 1.1 even 1 trivial