Properties

Label 325.6.b.i.274.18
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.18
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.i.274.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.07859i q^{2} -25.6203i q^{3} -4.94922 q^{4} +155.735 q^{6} +137.301i q^{7} +164.431i q^{8} -413.398 q^{9} +O(q^{10})\) \(q+6.07859i q^{2} -25.6203i q^{3} -4.94922 q^{4} +155.735 q^{6} +137.301i q^{7} +164.431i q^{8} -413.398 q^{9} +169.031 q^{11} +126.800i q^{12} -169.000i q^{13} -834.595 q^{14} -1157.88 q^{16} -487.128i q^{17} -2512.87i q^{18} -2385.49 q^{19} +3517.68 q^{21} +1027.47i q^{22} -4144.47i q^{23} +4212.75 q^{24} +1027.28 q^{26} +4365.63i q^{27} -679.532i q^{28} +4570.45 q^{29} -2957.68 q^{31} -1776.50i q^{32} -4330.61i q^{33} +2961.05 q^{34} +2046.00 q^{36} +5733.02i q^{37} -14500.4i q^{38} -4329.82 q^{39} -1705.07 q^{41} +21382.5i q^{42} -10922.2i q^{43} -836.570 q^{44} +25192.5 q^{46} -7912.12i q^{47} +29665.2i q^{48} -2044.52 q^{49} -12480.4 q^{51} +836.418i q^{52} -26431.1i q^{53} -26536.9 q^{54} -22576.4 q^{56} +61116.8i q^{57} +27781.9i q^{58} -11248.5 q^{59} -40298.6 q^{61} -17978.5i q^{62} -56759.8i q^{63} -26253.6 q^{64} +26324.0 q^{66} -64887.2i q^{67} +2410.91i q^{68} -106182. q^{69} -47076.1 q^{71} -67975.2i q^{72} -42771.8i q^{73} -34848.7 q^{74} +11806.3 q^{76} +23208.1i q^{77} -26319.2i q^{78} -90057.0 q^{79} +11392.9 q^{81} -10364.4i q^{82} +16427.0i q^{83} -17409.8 q^{84} +66391.5 q^{86} -117096. i q^{87} +27793.8i q^{88} +35632.7 q^{89} +23203.8 q^{91} +20511.9i q^{92} +75776.6i q^{93} +48094.5 q^{94} -45514.4 q^{96} -121030. i q^{97} -12427.8i q^{98} -69876.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9} + 2552 q^{11} - 1156 q^{14} + 11414 q^{16} - 7040 q^{19} + 3412 q^{21} - 15446 q^{24} + 1690 q^{26} - 36850 q^{29} + 18136 q^{31} + 28910 q^{34} + 75368 q^{36} - 3718 q^{39} - 20020 q^{41} - 121302 q^{44} - 19716 q^{46} - 146626 q^{49} + 73212 q^{51} - 96026 q^{54} - 2524 q^{56} - 263284 q^{59} - 86730 q^{61} - 360142 q^{64} - 117214 q^{66} - 118690 q^{69} + 136840 q^{71} - 742792 q^{74} + 45034 q^{76} - 104478 q^{79} + 215014 q^{81} - 1705432 q^{84} + 404492 q^{86} - 655424 q^{89} + 70304 q^{91} - 1299948 q^{94} + 1799326 q^{96} - 853396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.07859i 1.07455i 0.843406 + 0.537276i \(0.180547\pi\)
−0.843406 + 0.537276i \(0.819453\pi\)
\(3\) − 25.6203i − 1.64354i −0.569819 0.821770i \(-0.692987\pi\)
0.569819 0.821770i \(-0.307013\pi\)
\(4\) −4.94922 −0.154663
\(5\) 0 0
\(6\) 155.735 1.76607
\(7\) 137.301i 1.05908i 0.848286 + 0.529539i \(0.177635\pi\)
−0.848286 + 0.529539i \(0.822365\pi\)
\(8\) 164.431i 0.908359i
\(9\) −413.398 −1.70122
\(10\) 0 0
\(11\) 169.031 0.421196 0.210598 0.977573i \(-0.432459\pi\)
0.210598 + 0.977573i \(0.432459\pi\)
\(12\) 126.800i 0.254195i
\(13\) − 169.000i − 0.277350i
\(14\) −834.595 −1.13804
\(15\) 0 0
\(16\) −1157.88 −1.13074
\(17\) − 487.128i − 0.408810i −0.978886 0.204405i \(-0.934474\pi\)
0.978886 0.204405i \(-0.0655259\pi\)
\(18\) − 2512.87i − 1.82806i
\(19\) −2385.49 −1.51598 −0.757990 0.652267i \(-0.773818\pi\)
−0.757990 + 0.652267i \(0.773818\pi\)
\(20\) 0 0
\(21\) 3517.68 1.74064
\(22\) 1027.47i 0.452597i
\(23\) − 4144.47i − 1.63361i −0.576911 0.816807i \(-0.695742\pi\)
0.576911 0.816807i \(-0.304258\pi\)
\(24\) 4212.75 1.49292
\(25\) 0 0
\(26\) 1027.28 0.298027
\(27\) 4365.63i 1.15249i
\(28\) − 679.532i − 0.163800i
\(29\) 4570.45 1.00917 0.504585 0.863362i \(-0.331646\pi\)
0.504585 + 0.863362i \(0.331646\pi\)
\(30\) 0 0
\(31\) −2957.68 −0.552774 −0.276387 0.961046i \(-0.589137\pi\)
−0.276387 + 0.961046i \(0.589137\pi\)
\(32\) − 1776.50i − 0.306683i
\(33\) − 4330.61i − 0.692252i
\(34\) 2961.05 0.439287
\(35\) 0 0
\(36\) 2046.00 0.263117
\(37\) 5733.02i 0.688461i 0.938885 + 0.344230i \(0.111860\pi\)
−0.938885 + 0.344230i \(0.888140\pi\)
\(38\) − 14500.4i − 1.62900i
\(39\) −4329.82 −0.455836
\(40\) 0 0
\(41\) −1705.07 −0.158410 −0.0792051 0.996858i \(-0.525238\pi\)
−0.0792051 + 0.996858i \(0.525238\pi\)
\(42\) 21382.5i 1.87041i
\(43\) − 10922.2i − 0.900821i −0.892822 0.450410i \(-0.851278\pi\)
0.892822 0.450410i \(-0.148722\pi\)
\(44\) −836.570 −0.0651434
\(45\) 0 0
\(46\) 25192.5 1.75540
\(47\) − 7912.12i − 0.522454i −0.965277 0.261227i \(-0.915873\pi\)
0.965277 0.261227i \(-0.0841272\pi\)
\(48\) 29665.2i 1.85842i
\(49\) −2044.52 −0.121647
\(50\) 0 0
\(51\) −12480.4 −0.671895
\(52\) 836.418i 0.0428958i
\(53\) − 26431.1i − 1.29249i −0.763131 0.646244i \(-0.776339\pi\)
0.763131 0.646244i \(-0.223661\pi\)
\(54\) −26536.9 −1.23841
\(55\) 0 0
\(56\) −22576.4 −0.962023
\(57\) 61116.8i 2.49157i
\(58\) 27781.9i 1.08441i
\(59\) −11248.5 −0.420692 −0.210346 0.977627i \(-0.567459\pi\)
−0.210346 + 0.977627i \(0.567459\pi\)
\(60\) 0 0
\(61\) −40298.6 −1.38665 −0.693323 0.720627i \(-0.743854\pi\)
−0.693323 + 0.720627i \(0.743854\pi\)
\(62\) − 17978.5i − 0.593984i
\(63\) − 56759.8i − 1.80173i
\(64\) −26253.6 −0.801195
\(65\) 0 0
\(66\) 26324.0 0.743861
\(67\) − 64887.2i − 1.76592i −0.469444 0.882962i \(-0.655546\pi\)
0.469444 0.882962i \(-0.344454\pi\)
\(68\) 2410.91i 0.0632278i
\(69\) −106182. −2.68491
\(70\) 0 0
\(71\) −47076.1 −1.10829 −0.554147 0.832419i \(-0.686955\pi\)
−0.554147 + 0.832419i \(0.686955\pi\)
\(72\) − 67975.2i − 1.54532i
\(73\) − 42771.8i − 0.939400i −0.882826 0.469700i \(-0.844362\pi\)
0.882826 0.469700i \(-0.155638\pi\)
\(74\) −34848.7 −0.739787
\(75\) 0 0
\(76\) 11806.3 0.234466
\(77\) 23208.1i 0.446079i
\(78\) − 26319.2i − 0.489820i
\(79\) −90057.0 −1.62349 −0.811745 0.584012i \(-0.801482\pi\)
−0.811745 + 0.584012i \(0.801482\pi\)
\(80\) 0 0
\(81\) 11392.9 0.192941
\(82\) − 10364.4i − 0.170220i
\(83\) 16427.0i 0.261735i 0.991400 + 0.130868i \(0.0417763\pi\)
−0.991400 + 0.130868i \(0.958224\pi\)
\(84\) −17409.8 −0.269212
\(85\) 0 0
\(86\) 66391.5 0.967979
\(87\) − 117096.i − 1.65861i
\(88\) 27793.8i 0.382597i
\(89\) 35632.7 0.476841 0.238421 0.971162i \(-0.423370\pi\)
0.238421 + 0.971162i \(0.423370\pi\)
\(90\) 0 0
\(91\) 23203.8 0.293735
\(92\) 20511.9i 0.252660i
\(93\) 75776.6i 0.908506i
\(94\) 48094.5 0.561405
\(95\) 0 0
\(96\) −45514.4 −0.504046
\(97\) − 121030.i − 1.30606i −0.757333 0.653029i \(-0.773498\pi\)
0.757333 0.653029i \(-0.226502\pi\)
\(98\) − 12427.8i − 0.130716i
\(99\) −69876.9 −0.716549
\(100\) 0 0
\(101\) −33043.6 −0.322318 −0.161159 0.986928i \(-0.551523\pi\)
−0.161159 + 0.986928i \(0.551523\pi\)
\(102\) − 75862.9i − 0.721987i
\(103\) 198815.i 1.84653i 0.384164 + 0.923265i \(0.374490\pi\)
−0.384164 + 0.923265i \(0.625510\pi\)
\(104\) 27788.8 0.251933
\(105\) 0 0
\(106\) 160664. 1.38885
\(107\) 183355.i 1.54822i 0.633049 + 0.774112i \(0.281803\pi\)
−0.633049 + 0.774112i \(0.718197\pi\)
\(108\) − 21606.5i − 0.178248i
\(109\) 178328. 1.43765 0.718827 0.695189i \(-0.244679\pi\)
0.718827 + 0.695189i \(0.244679\pi\)
\(110\) 0 0
\(111\) 146881. 1.13151
\(112\) − 158978.i − 1.19754i
\(113\) 22426.7i 0.165223i 0.996582 + 0.0826114i \(0.0263260\pi\)
−0.996582 + 0.0826114i \(0.973674\pi\)
\(114\) −371504. −2.67733
\(115\) 0 0
\(116\) −22620.2 −0.156081
\(117\) 69864.2i 0.471835i
\(118\) − 68374.9i − 0.452056i
\(119\) 66883.1 0.432961
\(120\) 0 0
\(121\) −132480. −0.822594
\(122\) − 244959.i − 1.49002i
\(123\) 43684.4i 0.260354i
\(124\) 14638.2 0.0854937
\(125\) 0 0
\(126\) 345020. 1.93605
\(127\) 90854.6i 0.499847i 0.968266 + 0.249924i \(0.0804055\pi\)
−0.968266 + 0.249924i \(0.919594\pi\)
\(128\) − 216433.i − 1.16761i
\(129\) −279829. −1.48054
\(130\) 0 0
\(131\) −78399.9 −0.399151 −0.199575 0.979882i \(-0.563956\pi\)
−0.199575 + 0.979882i \(0.563956\pi\)
\(132\) 21433.1i 0.107066i
\(133\) − 327530.i − 1.60554i
\(134\) 394423. 1.89758
\(135\) 0 0
\(136\) 80098.8 0.371346
\(137\) − 111261.i − 0.506456i −0.967407 0.253228i \(-0.918508\pi\)
0.967407 0.253228i \(-0.0814923\pi\)
\(138\) − 645439.i − 2.88508i
\(139\) 226363. 0.993728 0.496864 0.867828i \(-0.334485\pi\)
0.496864 + 0.867828i \(0.334485\pi\)
\(140\) 0 0
\(141\) −202711. −0.858675
\(142\) − 286156.i − 1.19092i
\(143\) − 28566.2i − 0.116819i
\(144\) 478665. 1.92365
\(145\) 0 0
\(146\) 259992. 1.00943
\(147\) 52381.1i 0.199931i
\(148\) − 28374.0i − 0.106479i
\(149\) −443036. −1.63483 −0.817416 0.576047i \(-0.804594\pi\)
−0.817416 + 0.576047i \(0.804594\pi\)
\(150\) 0 0
\(151\) −1334.00 −0.00476118 −0.00238059 0.999997i \(-0.500758\pi\)
−0.00238059 + 0.999997i \(0.500758\pi\)
\(152\) − 392247.i − 1.37705i
\(153\) 201378.i 0.695477i
\(154\) −141072. −0.479336
\(155\) 0 0
\(156\) 21429.2 0.0705010
\(157\) 66009.4i 0.213726i 0.994274 + 0.106863i \(0.0340806\pi\)
−0.994274 + 0.106863i \(0.965919\pi\)
\(158\) − 547419.i − 1.74453i
\(159\) −677173. −2.12425
\(160\) 0 0
\(161\) 569039. 1.73012
\(162\) 69253.0i 0.207325i
\(163\) − 57419.5i − 0.169274i −0.996412 0.0846371i \(-0.973027\pi\)
0.996412 0.0846371i \(-0.0269731\pi\)
\(164\) 8438.78 0.0245002
\(165\) 0 0
\(166\) −99852.7 −0.281248
\(167\) 298875.i 0.829275i 0.909987 + 0.414637i \(0.136092\pi\)
−0.909987 + 0.414637i \(0.863908\pi\)
\(168\) 578414.i 1.58112i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 986155. 2.57902
\(172\) 54056.3i 0.139324i
\(173\) − 16389.5i − 0.0416342i −0.999783 0.0208171i \(-0.993373\pi\)
0.999783 0.0208171i \(-0.00662677\pi\)
\(174\) 711779. 1.78226
\(175\) 0 0
\(176\) −195717. −0.476264
\(177\) 288189.i 0.691424i
\(178\) 216596.i 0.512391i
\(179\) −420541. −0.981015 −0.490507 0.871437i \(-0.663189\pi\)
−0.490507 + 0.871437i \(0.663189\pi\)
\(180\) 0 0
\(181\) −598369. −1.35760 −0.678801 0.734322i \(-0.737500\pi\)
−0.678801 + 0.734322i \(0.737500\pi\)
\(182\) 141047.i 0.315634i
\(183\) 1.03246e6i 2.27901i
\(184\) 681477. 1.48391
\(185\) 0 0
\(186\) −460615. −0.976237
\(187\) − 82339.7i − 0.172189i
\(188\) 39158.8i 0.0808044i
\(189\) −599405. −1.22058
\(190\) 0 0
\(191\) 207706. 0.411971 0.205985 0.978555i \(-0.433960\pi\)
0.205985 + 0.978555i \(0.433960\pi\)
\(192\) 672623.i 1.31680i
\(193\) − 545285.i − 1.05373i −0.849948 0.526867i \(-0.823367\pi\)
0.849948 0.526867i \(-0.176633\pi\)
\(194\) 735690. 1.40343
\(195\) 0 0
\(196\) 10118.8 0.0188143
\(197\) − 559003.i − 1.02624i −0.858317 0.513119i \(-0.828490\pi\)
0.858317 0.513119i \(-0.171510\pi\)
\(198\) − 424753.i − 0.769969i
\(199\) 800588. 1.43310 0.716549 0.697536i \(-0.245720\pi\)
0.716549 + 0.697536i \(0.245720\pi\)
\(200\) 0 0
\(201\) −1.66243e6 −2.90237
\(202\) − 200858.i − 0.346347i
\(203\) 627527.i 1.06879i
\(204\) 61768.0 0.103917
\(205\) 0 0
\(206\) −1.20851e6 −1.98419
\(207\) 1.71331e6i 2.77914i
\(208\) 195682.i 0.313612i
\(209\) −403221. −0.638524
\(210\) 0 0
\(211\) −971904. −1.50285 −0.751427 0.659816i \(-0.770634\pi\)
−0.751427 + 0.659816i \(0.770634\pi\)
\(212\) 130814.i 0.199900i
\(213\) 1.20610e6i 1.82153i
\(214\) −1.11454e6 −1.66365
\(215\) 0 0
\(216\) −717843. −1.04688
\(217\) − 406092.i − 0.585431i
\(218\) 1.08398e6i 1.54483i
\(219\) −1.09582e6 −1.54394
\(220\) 0 0
\(221\) −82324.7 −0.113383
\(222\) 892831.i 1.21587i
\(223\) 401286.i 0.540371i 0.962808 + 0.270186i \(0.0870851\pi\)
−0.962808 + 0.270186i \(0.912915\pi\)
\(224\) 243915. 0.324802
\(225\) 0 0
\(226\) −136323. −0.177541
\(227\) − 1.30062e6i − 1.67527i −0.546227 0.837637i \(-0.683936\pi\)
0.546227 0.837637i \(-0.316064\pi\)
\(228\) − 302481.i − 0.385354i
\(229\) 864830. 1.08979 0.544894 0.838505i \(-0.316570\pi\)
0.544894 + 0.838505i \(0.316570\pi\)
\(230\) 0 0
\(231\) 594596. 0.733149
\(232\) 751521.i 0.916688i
\(233\) − 1.19230e6i − 1.43878i −0.694606 0.719390i \(-0.744421\pi\)
0.694606 0.719390i \(-0.255579\pi\)
\(234\) −424676. −0.507011
\(235\) 0 0
\(236\) 55671.3 0.0650655
\(237\) 2.30728e6i 2.66827i
\(238\) 406555.i 0.465240i
\(239\) 1.23057e6 1.39352 0.696759 0.717305i \(-0.254625\pi\)
0.696759 + 0.717305i \(0.254625\pi\)
\(240\) 0 0
\(241\) 1.64306e6 1.82226 0.911129 0.412122i \(-0.135212\pi\)
0.911129 + 0.412122i \(0.135212\pi\)
\(242\) − 805289.i − 0.883921i
\(243\) 768958.i 0.835385i
\(244\) 199447. 0.214463
\(245\) 0 0
\(246\) −265539. −0.279764
\(247\) 403148.i 0.420457i
\(248\) − 486333.i − 0.502117i
\(249\) 420863. 0.430172
\(250\) 0 0
\(251\) −447259. −0.448100 −0.224050 0.974578i \(-0.571928\pi\)
−0.224050 + 0.974578i \(0.571928\pi\)
\(252\) 280917.i 0.278661i
\(253\) − 700543.i − 0.688071i
\(254\) −552267. −0.537112
\(255\) 0 0
\(256\) 475490. 0.453463
\(257\) 465085.i 0.439237i 0.975586 + 0.219619i \(0.0704813\pi\)
−0.975586 + 0.219619i \(0.929519\pi\)
\(258\) − 1.70097e6i − 1.59091i
\(259\) −787148. −0.729134
\(260\) 0 0
\(261\) −1.88941e6 −1.71682
\(262\) − 476560.i − 0.428909i
\(263\) 1.88192e6i 1.67769i 0.544369 + 0.838846i \(0.316769\pi\)
−0.544369 + 0.838846i \(0.683231\pi\)
\(264\) 712085. 0.628813
\(265\) 0 0
\(266\) 1.99092e6 1.72524
\(267\) − 912919.i − 0.783707i
\(268\) 321141.i 0.273123i
\(269\) −39508.5 −0.0332897 −0.0166448 0.999861i \(-0.505298\pi\)
−0.0166448 + 0.999861i \(0.505298\pi\)
\(270\) 0 0
\(271\) 2.01156e6 1.66383 0.831916 0.554902i \(-0.187244\pi\)
0.831916 + 0.554902i \(0.187244\pi\)
\(272\) 564036.i 0.462258i
\(273\) − 594488.i − 0.482766i
\(274\) 676310. 0.544214
\(275\) 0 0
\(276\) 525520. 0.415256
\(277\) − 750989.i − 0.588077i −0.955794 0.294039i \(-0.905001\pi\)
0.955794 0.294039i \(-0.0949994\pi\)
\(278\) 1.37596e6i 1.06781i
\(279\) 1.22270e6 0.940392
\(280\) 0 0
\(281\) −116949. −0.0883550 −0.0441775 0.999024i \(-0.514067\pi\)
−0.0441775 + 0.999024i \(0.514067\pi\)
\(282\) − 1.23219e6i − 0.922691i
\(283\) − 1.08953e6i − 0.808671i −0.914611 0.404335i \(-0.867503\pi\)
0.914611 0.404335i \(-0.132497\pi\)
\(284\) 232990. 0.171412
\(285\) 0 0
\(286\) 173642. 0.125528
\(287\) − 234108.i − 0.167769i
\(288\) 734400.i 0.521737i
\(289\) 1.18256e6 0.832875
\(290\) 0 0
\(291\) −3.10081e6 −2.14656
\(292\) 211687.i 0.145290i
\(293\) 2.35419e6i 1.60204i 0.598638 + 0.801020i \(0.295709\pi\)
−0.598638 + 0.801020i \(0.704291\pi\)
\(294\) −318403. −0.214837
\(295\) 0 0
\(296\) −942683. −0.625369
\(297\) 737926.i 0.485424i
\(298\) − 2.69303e6i − 1.75671i
\(299\) −700415. −0.453083
\(300\) 0 0
\(301\) 1.49963e6 0.954040
\(302\) − 8108.85i − 0.00511613i
\(303\) 846585.i 0.529742i
\(304\) 2.76211e6 1.71418
\(305\) 0 0
\(306\) −1.22409e6 −0.747327
\(307\) − 1.40614e6i − 0.851495i −0.904842 0.425748i \(-0.860011\pi\)
0.904842 0.425748i \(-0.139989\pi\)
\(308\) − 114862.i − 0.0689920i
\(309\) 5.09369e6 3.03485
\(310\) 0 0
\(311\) 1.46661e6 0.859832 0.429916 0.902869i \(-0.358543\pi\)
0.429916 + 0.902869i \(0.358543\pi\)
\(312\) − 711955.i − 0.414063i
\(313\) − 310576.i − 0.179187i −0.995978 0.0895935i \(-0.971443\pi\)
0.995978 0.0895935i \(-0.0285568\pi\)
\(314\) −401244. −0.229659
\(315\) 0 0
\(316\) 445712. 0.251094
\(317\) 2.21756e6i 1.23944i 0.784822 + 0.619721i \(0.212754\pi\)
−0.784822 + 0.619721i \(0.787246\pi\)
\(318\) − 4.11625e6i − 2.28262i
\(319\) 772546. 0.425058
\(320\) 0 0
\(321\) 4.69761e6 2.54457
\(322\) 3.45895e6i 1.85911i
\(323\) 1.16204e6i 0.619747i
\(324\) −56386.2 −0.0298408
\(325\) 0 0
\(326\) 349030. 0.181894
\(327\) − 4.56882e6i − 2.36284i
\(328\) − 280366.i − 0.143893i
\(329\) 1.08634e6 0.553320
\(330\) 0 0
\(331\) 439684. 0.220582 0.110291 0.993899i \(-0.464822\pi\)
0.110291 + 0.993899i \(0.464822\pi\)
\(332\) − 81300.7i − 0.0404808i
\(333\) − 2.37002e6i − 1.17123i
\(334\) −1.81674e6 −0.891099
\(335\) 0 0
\(336\) −4.07306e6 −1.96821
\(337\) 65125.6i 0.0312376i 0.999878 + 0.0156188i \(0.00497181\pi\)
−0.999878 + 0.0156188i \(0.995028\pi\)
\(338\) − 173611.i − 0.0826579i
\(339\) 574579. 0.271550
\(340\) 0 0
\(341\) −499939. −0.232826
\(342\) 5.99443e6i 2.77129i
\(343\) 2.02690e6i 0.930245i
\(344\) 1.79594e6 0.818269
\(345\) 0 0
\(346\) 99625.0 0.0447382
\(347\) − 3.63163e6i − 1.61912i −0.587039 0.809558i \(-0.699707\pi\)
0.587039 0.809558i \(-0.300293\pi\)
\(348\) 579534.i 0.256526i
\(349\) −755061. −0.331832 −0.165916 0.986140i \(-0.553058\pi\)
−0.165916 + 0.986140i \(0.553058\pi\)
\(350\) 0 0
\(351\) 737791. 0.319643
\(352\) − 300283.i − 0.129174i
\(353\) 3.06050e6i 1.30724i 0.756823 + 0.653620i \(0.226751\pi\)
−0.756823 + 0.653620i \(0.773249\pi\)
\(354\) −1.75178e6 −0.742972
\(355\) 0 0
\(356\) −176354. −0.0737497
\(357\) − 1.71356e6i − 0.711590i
\(358\) − 2.55629e6i − 1.05415i
\(359\) −3.68034e6 −1.50713 −0.753567 0.657371i \(-0.771668\pi\)
−0.753567 + 0.657371i \(0.771668\pi\)
\(360\) 0 0
\(361\) 3.21446e6 1.29819
\(362\) − 3.63724e6i − 1.45882i
\(363\) 3.39416e6i 1.35197i
\(364\) −114841. −0.0454300
\(365\) 0 0
\(366\) −6.27591e6 −2.44891
\(367\) − 2.22414e6i − 0.861978i −0.902357 0.430989i \(-0.858165\pi\)
0.902357 0.430989i \(-0.141835\pi\)
\(368\) 4.79880e6i 1.84720i
\(369\) 704873. 0.269491
\(370\) 0 0
\(371\) 3.62902e6 1.36885
\(372\) − 375035.i − 0.140512i
\(373\) − 3.73922e6i − 1.39158i −0.718244 0.695791i \(-0.755054\pi\)
0.718244 0.695791i \(-0.244946\pi\)
\(374\) 500509. 0.185026
\(375\) 0 0
\(376\) 1.30099e6 0.474576
\(377\) − 772406.i − 0.279893i
\(378\) − 3.64353e6i − 1.31158i
\(379\) −656559. −0.234788 −0.117394 0.993085i \(-0.537454\pi\)
−0.117394 + 0.993085i \(0.537454\pi\)
\(380\) 0 0
\(381\) 2.32772e6 0.821519
\(382\) 1.26256e6i 0.442684i
\(383\) − 3.33584e6i − 1.16200i −0.813902 0.581002i \(-0.802661\pi\)
0.813902 0.581002i \(-0.197339\pi\)
\(384\) −5.54506e6 −1.91901
\(385\) 0 0
\(386\) 3.31456e6 1.13229
\(387\) 4.51521e6i 1.53250i
\(388\) 599003.i 0.201999i
\(389\) −4.44083e6 −1.48796 −0.743978 0.668204i \(-0.767063\pi\)
−0.743978 + 0.668204i \(0.767063\pi\)
\(390\) 0 0
\(391\) −2.01889e6 −0.667837
\(392\) − 336181.i − 0.110499i
\(393\) 2.00863e6i 0.656021i
\(394\) 3.39795e6 1.10275
\(395\) 0 0
\(396\) 345836. 0.110824
\(397\) 2.72643e6i 0.868196i 0.900866 + 0.434098i \(0.142933\pi\)
−0.900866 + 0.434098i \(0.857067\pi\)
\(398\) 4.86644e6i 1.53994i
\(399\) −8.39139e6 −2.63877
\(400\) 0 0
\(401\) 5.27026e6 1.63671 0.818353 0.574715i \(-0.194887\pi\)
0.818353 + 0.574715i \(0.194887\pi\)
\(402\) − 1.01052e7i − 3.11875i
\(403\) 499848.i 0.153312i
\(404\) 163540. 0.0498506
\(405\) 0 0
\(406\) −3.81447e6 −1.14847
\(407\) 969056.i 0.289977i
\(408\) − 2.05215e6i − 0.610322i
\(409\) −4.58065e6 −1.35400 −0.677000 0.735983i \(-0.736720\pi\)
−0.677000 + 0.735983i \(0.736720\pi\)
\(410\) 0 0
\(411\) −2.85054e6 −0.832381
\(412\) − 983979.i − 0.285590i
\(413\) − 1.54443e6i − 0.445546i
\(414\) −1.04145e7 −2.98634
\(415\) 0 0
\(416\) −300228. −0.0850586
\(417\) − 5.79947e6i − 1.63323i
\(418\) − 2.45101e6i − 0.686128i
\(419\) −3.94543e6 −1.09789 −0.548945 0.835858i \(-0.684970\pi\)
−0.548945 + 0.835858i \(0.684970\pi\)
\(420\) 0 0
\(421\) 4.17743e6 1.14869 0.574347 0.818612i \(-0.305256\pi\)
0.574347 + 0.818612i \(0.305256\pi\)
\(422\) − 5.90780e6i − 1.61490i
\(423\) 3.27085e6i 0.888812i
\(424\) 4.34609e6 1.17404
\(425\) 0 0
\(426\) −7.33140e6 −1.95732
\(427\) − 5.53304e6i − 1.46857i
\(428\) − 907465.i − 0.239453i
\(429\) −731873. −0.191996
\(430\) 0 0
\(431\) −7.66563e6 −1.98772 −0.993859 0.110652i \(-0.964706\pi\)
−0.993859 + 0.110652i \(0.964706\pi\)
\(432\) − 5.05488e6i − 1.30317i
\(433\) 5.49209e6i 1.40773i 0.710336 + 0.703863i \(0.248543\pi\)
−0.710336 + 0.703863i \(0.751457\pi\)
\(434\) 2.46847e6 0.629076
\(435\) 0 0
\(436\) −882586. −0.222352
\(437\) 9.88658e6i 2.47652i
\(438\) − 6.66107e6i − 1.65905i
\(439\) 2.56331e6 0.634805 0.317403 0.948291i \(-0.397189\pi\)
0.317403 + 0.948291i \(0.397189\pi\)
\(440\) 0 0
\(441\) 845199. 0.206949
\(442\) − 500418.i − 0.121836i
\(443\) − 1.41896e6i − 0.343526i −0.985138 0.171763i \(-0.945054\pi\)
0.985138 0.171763i \(-0.0549463\pi\)
\(444\) −726948. −0.175003
\(445\) 0 0
\(446\) −2.43925e6 −0.580657
\(447\) 1.13507e7i 2.68691i
\(448\) − 3.60464e6i − 0.848528i
\(449\) −3.56619e6 −0.834813 −0.417406 0.908720i \(-0.637061\pi\)
−0.417406 + 0.908720i \(0.637061\pi\)
\(450\) 0 0
\(451\) −288210. −0.0667217
\(452\) − 110995.i − 0.0255539i
\(453\) 34177.5i 0.00782519i
\(454\) 7.90593e6 1.80017
\(455\) 0 0
\(456\) −1.00495e7 −2.26324
\(457\) 3.71538e6i 0.832172i 0.909325 + 0.416086i \(0.136598\pi\)
−0.909325 + 0.416086i \(0.863402\pi\)
\(458\) 5.25694e6i 1.17103i
\(459\) 2.12662e6 0.471149
\(460\) 0 0
\(461\) 3.74184e6 0.820035 0.410018 0.912078i \(-0.365523\pi\)
0.410018 + 0.912078i \(0.365523\pi\)
\(462\) 3.61431e6i 0.787807i
\(463\) − 3.53774e6i − 0.766962i −0.923549 0.383481i \(-0.874725\pi\)
0.923549 0.383481i \(-0.125275\pi\)
\(464\) −5.29203e6 −1.14111
\(465\) 0 0
\(466\) 7.24748e6 1.54605
\(467\) 1.97789e6i 0.419671i 0.977737 + 0.209836i \(0.0672929\pi\)
−0.977737 + 0.209836i \(0.932707\pi\)
\(468\) − 345773.i − 0.0729754i
\(469\) 8.90907e6 1.87025
\(470\) 0 0
\(471\) 1.69118e6 0.351267
\(472\) − 1.84960e6i − 0.382139i
\(473\) − 1.84619e6i − 0.379422i
\(474\) −1.40250e7 −2.86720
\(475\) 0 0
\(476\) −331019. −0.0669632
\(477\) 1.09266e7i 2.19881i
\(478\) 7.48014e6i 1.49741i
\(479\) 2.88196e6 0.573918 0.286959 0.957943i \(-0.407356\pi\)
0.286959 + 0.957943i \(0.407356\pi\)
\(480\) 0 0
\(481\) 968880. 0.190945
\(482\) 9.98746e6i 1.95811i
\(483\) − 1.45789e7i − 2.84353i
\(484\) 655671. 0.127225
\(485\) 0 0
\(486\) −4.67418e6 −0.897665
\(487\) 2.88578e6i 0.551366i 0.961249 + 0.275683i \(0.0889040\pi\)
−0.961249 + 0.275683i \(0.911096\pi\)
\(488\) − 6.62632e6i − 1.25957i
\(489\) −1.47110e6 −0.278209
\(490\) 0 0
\(491\) 5.27189e6 0.986876 0.493438 0.869781i \(-0.335740\pi\)
0.493438 + 0.869781i \(0.335740\pi\)
\(492\) − 216204.i − 0.0402671i
\(493\) − 2.22640e6i − 0.412558i
\(494\) −2.45057e6 −0.451803
\(495\) 0 0
\(496\) 3.42464e6 0.625045
\(497\) − 6.46359e6i − 1.17377i
\(498\) 2.55825e6i 0.462243i
\(499\) 308093. 0.0553898 0.0276949 0.999616i \(-0.491183\pi\)
0.0276949 + 0.999616i \(0.491183\pi\)
\(500\) 0 0
\(501\) 7.65725e6 1.36295
\(502\) − 2.71870e6i − 0.481507i
\(503\) 4.27447e6i 0.753291i 0.926358 + 0.376645i \(0.122922\pi\)
−0.926358 + 0.376645i \(0.877078\pi\)
\(504\) 9.33305e6 1.63662
\(505\) 0 0
\(506\) 4.25831e6 0.739368
\(507\) 731740.i 0.126426i
\(508\) − 449659.i − 0.0773080i
\(509\) 405253. 0.0693317 0.0346658 0.999399i \(-0.488963\pi\)
0.0346658 + 0.999399i \(0.488963\pi\)
\(510\) 0 0
\(511\) 5.87260e6 0.994898
\(512\) − 4.03553e6i − 0.680340i
\(513\) − 1.04142e7i − 1.74715i
\(514\) −2.82706e6 −0.471984
\(515\) 0 0
\(516\) 1.38494e6 0.228984
\(517\) − 1.33739e6i − 0.220056i
\(518\) − 4.78475e6i − 0.783492i
\(519\) −419903. −0.0684275
\(520\) 0 0
\(521\) −7.00100e6 −1.12997 −0.564983 0.825102i \(-0.691117\pi\)
−0.564983 + 0.825102i \(0.691117\pi\)
\(522\) − 1.14850e7i − 1.84482i
\(523\) − 7.78764e6i − 1.24495i −0.782640 0.622475i \(-0.786127\pi\)
0.782640 0.622475i \(-0.213873\pi\)
\(524\) 388018. 0.0617339
\(525\) 0 0
\(526\) −1.14394e7 −1.80277
\(527\) 1.44077e6i 0.225979i
\(528\) 5.01433e6i 0.782759i
\(529\) −1.07403e7 −1.66869
\(530\) 0 0
\(531\) 4.65010e6 0.715692
\(532\) 1.62102e6i 0.248318i
\(533\) 288157.i 0.0439351i
\(534\) 5.54926e6 0.842135
\(535\) 0 0
\(536\) 1.06694e7 1.60409
\(537\) 1.07744e7i 1.61234i
\(538\) − 240156.i − 0.0357715i
\(539\) −345586. −0.0512371
\(540\) 0 0
\(541\) 3.36678e6 0.494562 0.247281 0.968944i \(-0.420463\pi\)
0.247281 + 0.968944i \(0.420463\pi\)
\(542\) 1.22274e7i 1.78787i
\(543\) 1.53304e7i 2.23128i
\(544\) −865383. −0.125375
\(545\) 0 0
\(546\) 3.61365e6 0.518757
\(547\) − 1.32125e7i − 1.88806i −0.329860 0.944030i \(-0.607001\pi\)
0.329860 0.944030i \(-0.392999\pi\)
\(548\) 550656.i 0.0783301i
\(549\) 1.66594e7 2.35900
\(550\) 0 0
\(551\) −1.09028e7 −1.52988
\(552\) − 1.74596e7i − 2.43886i
\(553\) − 1.23649e7i − 1.71940i
\(554\) 4.56495e6 0.631920
\(555\) 0 0
\(556\) −1.12032e6 −0.153693
\(557\) − 7.47598e6i − 1.02101i −0.859875 0.510505i \(-0.829459\pi\)
0.859875 0.510505i \(-0.170541\pi\)
\(558\) 7.43228e6i 1.01050i
\(559\) −1.84585e6 −0.249843
\(560\) 0 0
\(561\) −2.10956e6 −0.282999
\(562\) − 710886.i − 0.0949421i
\(563\) 1.32316e7i 1.75931i 0.475617 + 0.879653i \(0.342225\pi\)
−0.475617 + 0.879653i \(0.657775\pi\)
\(564\) 1.00326e6 0.132805
\(565\) 0 0
\(566\) 6.62278e6 0.868959
\(567\) 1.56426e6i 0.204339i
\(568\) − 7.74075e6i − 1.00673i
\(569\) 9.80441e6 1.26952 0.634762 0.772708i \(-0.281098\pi\)
0.634762 + 0.772708i \(0.281098\pi\)
\(570\) 0 0
\(571\) 2.98442e6 0.383063 0.191532 0.981486i \(-0.438655\pi\)
0.191532 + 0.981486i \(0.438655\pi\)
\(572\) 141380.i 0.0180675i
\(573\) − 5.32149e6i − 0.677091i
\(574\) 1.42305e6 0.180276
\(575\) 0 0
\(576\) 1.08532e7 1.36301
\(577\) 1.47218e7i 1.84086i 0.390911 + 0.920429i \(0.372160\pi\)
−0.390911 + 0.920429i \(0.627840\pi\)
\(578\) 7.18831e6i 0.894968i
\(579\) −1.39704e7 −1.73185
\(580\) 0 0
\(581\) −2.25544e6 −0.277198
\(582\) − 1.88486e7i − 2.30659i
\(583\) − 4.46768e6i − 0.544390i
\(584\) 7.03299e6 0.853312
\(585\) 0 0
\(586\) −1.43102e7 −1.72148
\(587\) 9.66987e6i 1.15831i 0.815217 + 0.579156i \(0.196618\pi\)
−0.815217 + 0.579156i \(0.803382\pi\)
\(588\) − 259245.i − 0.0309220i
\(589\) 7.05552e6 0.837993
\(590\) 0 0
\(591\) −1.43218e7 −1.68666
\(592\) − 6.63815e6i − 0.778472i
\(593\) − 1.52788e7i − 1.78424i −0.451797 0.892121i \(-0.649217\pi\)
0.451797 0.892121i \(-0.350783\pi\)
\(594\) −4.48554e6 −0.521614
\(595\) 0 0
\(596\) 2.19268e6 0.252848
\(597\) − 2.05113e7i − 2.35536i
\(598\) − 4.25754e6i − 0.486861i
\(599\) −7.95473e6 −0.905854 −0.452927 0.891548i \(-0.649620\pi\)
−0.452927 + 0.891548i \(0.649620\pi\)
\(600\) 0 0
\(601\) 5.48231e6 0.619123 0.309562 0.950879i \(-0.399818\pi\)
0.309562 + 0.950879i \(0.399818\pi\)
\(602\) 9.11560e6i 1.02517i
\(603\) 2.68242e7i 3.00423i
\(604\) 6602.27 0.000736378 0
\(605\) 0 0
\(606\) −5.14604e6 −0.569235
\(607\) 1.49346e6i 0.164521i 0.996611 + 0.0822605i \(0.0262139\pi\)
−0.996611 + 0.0822605i \(0.973786\pi\)
\(608\) 4.23782e6i 0.464926i
\(609\) 1.60774e7 1.75660
\(610\) 0 0
\(611\) −1.33715e6 −0.144903
\(612\) − 996663.i − 0.107565i
\(613\) − 9.31063e6i − 1.00076i −0.865807 0.500378i \(-0.833195\pi\)
0.865807 0.500378i \(-0.166805\pi\)
\(614\) 8.54733e6 0.914976
\(615\) 0 0
\(616\) −3.81611e6 −0.405200
\(617\) − 245403.i − 0.0259517i −0.999916 0.0129759i \(-0.995870\pi\)
0.999916 0.0129759i \(-0.00413046\pi\)
\(618\) 3.09625e7i 3.26110i
\(619\) −2.82756e6 −0.296610 −0.148305 0.988942i \(-0.547382\pi\)
−0.148305 + 0.988942i \(0.547382\pi\)
\(620\) 0 0
\(621\) 1.80932e7 1.88272
\(622\) 8.91491e6i 0.923934i
\(623\) 4.89240e6i 0.505012i
\(624\) 5.01342e6 0.515433
\(625\) 0 0
\(626\) 1.88786e6 0.192546
\(627\) 1.03306e7i 1.04944i
\(628\) − 326695.i − 0.0330555i
\(629\) 2.79272e6 0.281449
\(630\) 0 0
\(631\) −1.53391e7 −1.53366 −0.766828 0.641853i \(-0.778166\pi\)
−0.766828 + 0.641853i \(0.778166\pi\)
\(632\) − 1.48081e7i − 1.47471i
\(633\) 2.49004e7i 2.47000i
\(634\) −1.34796e7 −1.33185
\(635\) 0 0
\(636\) 3.35148e6 0.328544
\(637\) 345523.i 0.0337388i
\(638\) 4.69599e6i 0.456747i
\(639\) 1.94612e7 1.88546
\(640\) 0 0
\(641\) 1.02617e7 0.986444 0.493222 0.869904i \(-0.335819\pi\)
0.493222 + 0.869904i \(0.335819\pi\)
\(642\) 2.85548e7i 2.73427i
\(643\) 5.26807e6i 0.502486i 0.967924 + 0.251243i \(0.0808394\pi\)
−0.967924 + 0.251243i \(0.919161\pi\)
\(644\) −2.81630e6 −0.267586
\(645\) 0 0
\(646\) −7.06356e6 −0.665951
\(647\) 2.03948e7i 1.91540i 0.287775 + 0.957698i \(0.407085\pi\)
−0.287775 + 0.957698i \(0.592915\pi\)
\(648\) 1.87335e6i 0.175259i
\(649\) −1.90134e6 −0.177194
\(650\) 0 0
\(651\) −1.04042e7 −0.962179
\(652\) 284182.i 0.0261805i
\(653\) 8.69527e6i 0.797994i 0.916952 + 0.398997i \(0.130642\pi\)
−0.916952 + 0.398997i \(0.869358\pi\)
\(654\) 2.77720e7 2.53900
\(655\) 0 0
\(656\) 1.97427e6 0.179121
\(657\) 1.76818e7i 1.59813i
\(658\) 6.60342e6i 0.594571i
\(659\) −1.85493e7 −1.66385 −0.831926 0.554886i \(-0.812762\pi\)
−0.831926 + 0.554886i \(0.812762\pi\)
\(660\) 0 0
\(661\) 1.00321e6 0.0893078 0.0446539 0.999003i \(-0.485782\pi\)
0.0446539 + 0.999003i \(0.485782\pi\)
\(662\) 2.67266e6i 0.237027i
\(663\) 2.10918e6i 0.186350i
\(664\) −2.70109e6 −0.237750
\(665\) 0 0
\(666\) 1.44063e7 1.25854
\(667\) − 1.89421e7i − 1.64859i
\(668\) − 1.47920e6i − 0.128258i
\(669\) 1.02811e7 0.888122
\(670\) 0 0
\(671\) −6.81171e6 −0.584049
\(672\) − 6.24916e6i − 0.533824i
\(673\) 653810.i 0.0556434i 0.999613 + 0.0278217i \(0.00885706\pi\)
−0.999613 + 0.0278217i \(0.991143\pi\)
\(674\) −395872. −0.0335664
\(675\) 0 0
\(676\) 141355. 0.0118972
\(677\) 831237.i 0.0697033i 0.999392 + 0.0348516i \(0.0110959\pi\)
−0.999392 + 0.0348516i \(0.988904\pi\)
\(678\) 3.49263e6i 0.291795i
\(679\) 1.66175e7 1.38322
\(680\) 0 0
\(681\) −3.33222e7 −2.75338
\(682\) − 3.03892e6i − 0.250184i
\(683\) 4.86860e6i 0.399349i 0.979862 + 0.199675i \(0.0639885\pi\)
−0.979862 + 0.199675i \(0.936012\pi\)
\(684\) −4.88070e6 −0.398879
\(685\) 0 0
\(686\) −1.23207e7 −0.999597
\(687\) − 2.21572e7i − 1.79111i
\(688\) 1.26466e7i 1.01860i
\(689\) −4.46686e6 −0.358471
\(690\) 0 0
\(691\) −7.17359e6 −0.571533 −0.285767 0.958299i \(-0.592248\pi\)
−0.285767 + 0.958299i \(0.592248\pi\)
\(692\) 81115.2i 0.00643928i
\(693\) − 9.59416e6i − 0.758881i
\(694\) 2.20752e7 1.73983
\(695\) 0 0
\(696\) 1.92542e7 1.50661
\(697\) 830589.i 0.0647596i
\(698\) − 4.58970e6i − 0.356571i
\(699\) −3.05470e7 −2.36469
\(700\) 0 0
\(701\) −9.45026e6 −0.726355 −0.363177 0.931720i \(-0.618308\pi\)
−0.363177 + 0.931720i \(0.618308\pi\)
\(702\) 4.48473e6i 0.343474i
\(703\) − 1.36761e7i − 1.04369i
\(704\) −4.43766e6 −0.337460
\(705\) 0 0
\(706\) −1.86035e7 −1.40470
\(707\) − 4.53691e6i − 0.341359i
\(708\) − 1.42631e6i − 0.106938i
\(709\) 2.98225e6 0.222807 0.111404 0.993775i \(-0.464465\pi\)
0.111404 + 0.993775i \(0.464465\pi\)
\(710\) 0 0
\(711\) 3.72293e7 2.76192
\(712\) 5.85910e6i 0.433143i
\(713\) 1.22580e7i 0.903019i
\(714\) 1.04160e7 0.764640
\(715\) 0 0
\(716\) 2.08135e6 0.151727
\(717\) − 3.15276e7i − 2.29030i
\(718\) − 2.23713e7i − 1.61949i
\(719\) −1.65959e7 −1.19723 −0.598617 0.801036i \(-0.704283\pi\)
−0.598617 + 0.801036i \(0.704283\pi\)
\(720\) 0 0
\(721\) −2.72975e7 −1.95562
\(722\) 1.95394e7i 1.39498i
\(723\) − 4.20955e7i − 2.99495i
\(724\) 2.96146e6 0.209971
\(725\) 0 0
\(726\) −2.06317e7 −1.45276
\(727\) 47580.6i 0.00333882i 0.999999 + 0.00166941i \(0.000531391\pi\)
−0.999999 + 0.00166941i \(0.999469\pi\)
\(728\) 3.81542e6i 0.266817i
\(729\) 2.24694e7 1.56593
\(730\) 0 0
\(731\) −5.32051e6 −0.368264
\(732\) − 5.10988e6i − 0.352479i
\(733\) − 6.02222e6i − 0.413996i −0.978341 0.206998i \(-0.933631\pi\)
0.978341 0.206998i \(-0.0663694\pi\)
\(734\) 1.35196e7 0.926241
\(735\) 0 0
\(736\) −7.36265e6 −0.501002
\(737\) − 1.09679e7i − 0.743800i
\(738\) 4.28463e6i 0.289583i
\(739\) −8.15662e6 −0.549413 −0.274707 0.961528i \(-0.588581\pi\)
−0.274707 + 0.961528i \(0.588581\pi\)
\(740\) 0 0
\(741\) 1.03287e7 0.691038
\(742\) 2.20593e7i 1.47090i
\(743\) − 473118.i − 0.0314411i −0.999876 0.0157205i \(-0.994996\pi\)
0.999876 0.0157205i \(-0.00500421\pi\)
\(744\) −1.24600e7 −0.825249
\(745\) 0 0
\(746\) 2.27292e7 1.49533
\(747\) − 6.79087e6i − 0.445270i
\(748\) 407517.i 0.0266313i
\(749\) −2.51748e7 −1.63969
\(750\) 0 0
\(751\) 5.49506e6 0.355527 0.177764 0.984073i \(-0.443114\pi\)
0.177764 + 0.984073i \(0.443114\pi\)
\(752\) 9.16129e6i 0.590761i
\(753\) 1.14589e7i 0.736470i
\(754\) 4.69514e6 0.300760
\(755\) 0 0
\(756\) 2.96659e6 0.188778
\(757\) 6.82041e6i 0.432585i 0.976329 + 0.216292i \(0.0693964\pi\)
−0.976329 + 0.216292i \(0.930604\pi\)
\(758\) − 3.99095e6i − 0.252292i
\(759\) −1.79481e7 −1.13087
\(760\) 0 0
\(761\) 1.14435e7 0.716304 0.358152 0.933663i \(-0.383407\pi\)
0.358152 + 0.933663i \(0.383407\pi\)
\(762\) 1.41492e7i 0.882766i
\(763\) 2.44846e7i 1.52259i
\(764\) −1.02798e6 −0.0637167
\(765\) 0 0
\(766\) 2.02772e7 1.24863
\(767\) 1.90100e6i 0.116679i
\(768\) − 1.21822e7i − 0.745284i
\(769\) 5.05628e6 0.308330 0.154165 0.988045i \(-0.450731\pi\)
0.154165 + 0.988045i \(0.450731\pi\)
\(770\) 0 0
\(771\) 1.19156e7 0.721904
\(772\) 2.69874e6i 0.162974i
\(773\) − 3.54919e6i − 0.213639i −0.994278 0.106820i \(-0.965933\pi\)
0.994278 0.106820i \(-0.0340667\pi\)
\(774\) −2.74461e7 −1.64675
\(775\) 0 0
\(776\) 1.99010e7 1.18637
\(777\) 2.01669e7i 1.19836i
\(778\) − 2.69940e7i − 1.59889i
\(779\) 4.06743e6 0.240147
\(780\) 0 0
\(781\) −7.95731e6 −0.466809
\(782\) − 1.22720e7i − 0.717626i
\(783\) 1.99529e7i 1.16306i
\(784\) 2.36731e6 0.137551
\(785\) 0 0
\(786\) −1.22096e7 −0.704929
\(787\) 2.14355e7i 1.23367i 0.787094 + 0.616833i \(0.211585\pi\)
−0.787094 + 0.616833i \(0.788415\pi\)
\(788\) 2.76663e6i 0.158721i
\(789\) 4.82153e7 2.75735
\(790\) 0 0
\(791\) −3.07921e6 −0.174984
\(792\) − 1.14899e7i − 0.650883i
\(793\) 6.81047e6i 0.384586i
\(794\) −1.65728e7 −0.932923
\(795\) 0 0
\(796\) −3.96228e6 −0.221648
\(797\) 1.94471e7i 1.08445i 0.840235 + 0.542223i \(0.182417\pi\)
−0.840235 + 0.542223i \(0.817583\pi\)
\(798\) − 5.10078e7i − 2.83550i
\(799\) −3.85422e6 −0.213584
\(800\) 0 0
\(801\) −1.47305e7 −0.811214
\(802\) 3.20357e7i 1.75873i
\(803\) − 7.22975e6i − 0.395671i
\(804\) 8.22772e6 0.448889
\(805\) 0 0
\(806\) −3.03837e6 −0.164742
\(807\) 1.01222e6i 0.0547129i
\(808\) − 5.43338e6i − 0.292780i
\(809\) −1.45681e7 −0.782585 −0.391292 0.920266i \(-0.627972\pi\)
−0.391292 + 0.920266i \(0.627972\pi\)
\(810\) 0 0
\(811\) 1.86252e7 0.994371 0.497185 0.867644i \(-0.334367\pi\)
0.497185 + 0.867644i \(0.334367\pi\)
\(812\) − 3.10577e6i − 0.165302i
\(813\) − 5.15366e7i − 2.73457i
\(814\) −5.89049e6 −0.311595
\(815\) 0 0
\(816\) 1.44508e7 0.759740
\(817\) 2.60548e7i 1.36563i
\(818\) − 2.78439e7i − 1.45494i
\(819\) −9.59241e6 −0.499710
\(820\) 0 0
\(821\) 1.61122e7 0.834252 0.417126 0.908849i \(-0.363037\pi\)
0.417126 + 0.908849i \(0.363037\pi\)
\(822\) − 1.73272e7i − 0.894438i
\(823\) 1.15862e7i 0.596269i 0.954524 + 0.298134i \(0.0963643\pi\)
−0.954524 + 0.298134i \(0.903636\pi\)
\(824\) −3.26913e7 −1.67731
\(825\) 0 0
\(826\) 9.38794e6 0.478762
\(827\) 8.40345e6i 0.427262i 0.976914 + 0.213631i \(0.0685289\pi\)
−0.976914 + 0.213631i \(0.931471\pi\)
\(828\) − 8.47957e6i − 0.429831i
\(829\) 4.77193e6 0.241161 0.120581 0.992704i \(-0.461524\pi\)
0.120581 + 0.992704i \(0.461524\pi\)
\(830\) 0 0
\(831\) −1.92405e7 −0.966528
\(832\) 4.43685e6i 0.222212i
\(833\) 995943.i 0.0497304i
\(834\) 3.52526e7 1.75499
\(835\) 0 0
\(836\) 1.99563e6 0.0987561
\(837\) − 1.29121e7i − 0.637067i
\(838\) − 2.39826e7i − 1.17974i
\(839\) 2.32624e7 1.14091 0.570453 0.821330i \(-0.306768\pi\)
0.570453 + 0.821330i \(0.306768\pi\)
\(840\) 0 0
\(841\) 377863. 0.0184223
\(842\) 2.53929e7i 1.23433i
\(843\) 2.99627e6i 0.145215i
\(844\) 4.81016e6 0.232436
\(845\) 0 0
\(846\) −1.98822e7 −0.955075
\(847\) − 1.81896e7i − 0.871192i
\(848\) 3.06041e7i 1.46147i
\(849\) −2.79140e7 −1.32908
\(850\) 0 0
\(851\) 2.37603e7 1.12468
\(852\) − 5.96927e6i − 0.281723i
\(853\) 6.88858e6i 0.324158i 0.986778 + 0.162079i \(0.0518200\pi\)
−0.986778 + 0.162079i \(0.948180\pi\)
\(854\) 3.36330e7 1.57805
\(855\) 0 0
\(856\) −3.01492e7 −1.40634
\(857\) 782343.i 0.0363869i 0.999834 + 0.0181935i \(0.00579148\pi\)
−0.999834 + 0.0181935i \(0.994209\pi\)
\(858\) − 4.44876e6i − 0.206310i
\(859\) −1.23216e7 −0.569751 −0.284875 0.958565i \(-0.591952\pi\)
−0.284875 + 0.958565i \(0.591952\pi\)
\(860\) 0 0
\(861\) −5.99790e6 −0.275735
\(862\) − 4.65962e7i − 2.13591i
\(863\) 7.42942e6i 0.339569i 0.985481 + 0.169785i \(0.0543072\pi\)
−0.985481 + 0.169785i \(0.945693\pi\)
\(864\) 7.75554e6 0.353450
\(865\) 0 0
\(866\) −3.33842e7 −1.51268
\(867\) − 3.02976e7i − 1.36886i
\(868\) 2.00984e6i 0.0905445i
\(869\) −1.52224e7 −0.683807
\(870\) 0 0
\(871\) −1.09659e7 −0.489779
\(872\) 2.93226e7i 1.30591i
\(873\) 5.00334e7i 2.22190i
\(874\) −6.00965e7 −2.66116
\(875\) 0 0
\(876\) 5.42348e6 0.238791
\(877\) − 7.95778e6i − 0.349376i −0.984624 0.174688i \(-0.944108\pi\)
0.984624 0.174688i \(-0.0558917\pi\)
\(878\) 1.55813e7i 0.682132i
\(879\) 6.03151e7 2.63302
\(880\) 0 0
\(881\) 3.11775e7 1.35333 0.676663 0.736293i \(-0.263426\pi\)
0.676663 + 0.736293i \(0.263426\pi\)
\(882\) 5.13761e6i 0.222377i
\(883\) 2.20671e7i 0.952452i 0.879323 + 0.476226i \(0.157996\pi\)
−0.879323 + 0.476226i \(0.842004\pi\)
\(884\) 407443. 0.0175362
\(885\) 0 0
\(886\) 8.62524e6 0.369137
\(887\) − 1.08566e6i − 0.0463323i −0.999732 0.0231662i \(-0.992625\pi\)
0.999732 0.0231662i \(-0.00737468\pi\)
\(888\) 2.41518e7i 1.02782i
\(889\) −1.24744e7 −0.529378
\(890\) 0 0
\(891\) 1.92576e6 0.0812657
\(892\) − 1.98605e6i − 0.0835755i
\(893\) 1.88743e7i 0.792030i
\(894\) −6.89962e7 −2.88723
\(895\) 0 0
\(896\) 2.97164e7 1.23659
\(897\) 1.79448e7i 0.744660i
\(898\) − 2.16774e7i − 0.897050i
\(899\) −1.35179e7 −0.557842
\(900\) 0 0
\(901\) −1.28754e7 −0.528381
\(902\) − 1.75191e6i − 0.0716960i
\(903\) − 3.84208e7i − 1.56800i
\(904\) −3.68764e6 −0.150082
\(905\) 0 0
\(906\) −207751. −0.00840857
\(907\) − 3.82701e7i − 1.54469i −0.635203 0.772345i \(-0.719084\pi\)
0.635203 0.772345i \(-0.280916\pi\)
\(908\) 6.43706e6i 0.259103i
\(909\) 1.36601e7 0.548334
\(910\) 0 0
\(911\) −4.01079e7 −1.60116 −0.800579 0.599227i \(-0.795475\pi\)
−0.800579 + 0.599227i \(0.795475\pi\)
\(912\) − 7.07660e7i − 2.81733i
\(913\) 2.77666e6i 0.110242i
\(914\) −2.25843e7 −0.894212
\(915\) 0 0
\(916\) −4.28023e6 −0.168550
\(917\) − 1.07644e7i − 0.422732i
\(918\) 1.29269e7i 0.506275i
\(919\) −1.38759e6 −0.0541967 −0.0270984 0.999633i \(-0.508627\pi\)
−0.0270984 + 0.999633i \(0.508627\pi\)
\(920\) 0 0
\(921\) −3.60256e7 −1.39947
\(922\) 2.27451e7i 0.881171i
\(923\) 7.95587e6i 0.307385i
\(924\) −2.94279e6 −0.113391
\(925\) 0 0
\(926\) 2.15045e7 0.824141
\(927\) − 8.21897e7i − 3.14136i
\(928\) − 8.11940e6i − 0.309495i
\(929\) 7.82980e6 0.297654 0.148827 0.988863i \(-0.452450\pi\)
0.148827 + 0.988863i \(0.452450\pi\)
\(930\) 0 0
\(931\) 4.87717e6 0.184414
\(932\) 5.90094e6i 0.222526i
\(933\) − 3.75749e7i − 1.41317i
\(934\) −1.20228e7 −0.450959
\(935\) 0 0
\(936\) −1.14878e7 −0.428595
\(937\) − 5.19939e7i − 1.93465i −0.253532 0.967327i \(-0.581592\pi\)
0.253532 0.967327i \(-0.418408\pi\)
\(938\) 5.41546e7i 2.00968i
\(939\) −7.95703e6 −0.294501
\(940\) 0 0
\(941\) 2.54802e7 0.938055 0.469028 0.883184i \(-0.344605\pi\)
0.469028 + 0.883184i \(0.344605\pi\)
\(942\) 1.02800e7i 0.377455i
\(943\) 7.06662e6i 0.258781i
\(944\) 1.30244e7 0.475694
\(945\) 0 0
\(946\) 1.12222e7 0.407709
\(947\) − 6.45145e6i − 0.233767i −0.993146 0.116883i \(-0.962710\pi\)
0.993146 0.116883i \(-0.0372903\pi\)
\(948\) − 1.14193e7i − 0.412683i
\(949\) −7.22843e6 −0.260543
\(950\) 0 0
\(951\) 5.68143e7 2.03707
\(952\) 1.09976e7i 0.393284i
\(953\) − 2.82313e7i − 1.00693i −0.864016 0.503465i \(-0.832058\pi\)
0.864016 0.503465i \(-0.167942\pi\)
\(954\) −6.64181e7 −2.36274
\(955\) 0 0
\(956\) −6.09038e6 −0.215526
\(957\) − 1.97928e7i − 0.698599i
\(958\) 1.75183e7i 0.616705i
\(959\) 1.52762e7 0.536377
\(960\) 0 0
\(961\) −1.98813e7 −0.694441
\(962\) 5.88942e6i 0.205180i
\(963\) − 7.57986e7i − 2.63388i
\(964\) −8.13185e6 −0.281836
\(965\) 0 0
\(966\) 8.86193e7 3.05552
\(967\) − 5.33839e7i − 1.83588i −0.396722 0.917939i \(-0.629852\pi\)
0.396722 0.917939i \(-0.370148\pi\)
\(968\) − 2.17837e7i − 0.747211i
\(969\) 2.97717e7 1.01858
\(970\) 0 0
\(971\) 3.29212e7 1.12054 0.560270 0.828310i \(-0.310697\pi\)
0.560270 + 0.828310i \(0.310697\pi\)
\(972\) − 3.80574e6i − 0.129203i
\(973\) 3.10798e7i 1.05244i
\(974\) −1.75414e7 −0.592472
\(975\) 0 0
\(976\) 4.66610e7 1.56794
\(977\) − 4.57380e7i − 1.53300i −0.642247 0.766498i \(-0.721997\pi\)
0.642247 0.766498i \(-0.278003\pi\)
\(978\) − 8.94223e6i − 0.298950i
\(979\) 6.02302e6 0.200843
\(980\) 0 0
\(981\) −7.37205e7 −2.44577
\(982\) 3.20457e7i 1.06045i
\(983\) 5.78671e7i 1.91006i 0.296505 + 0.955031i \(0.404179\pi\)
−0.296505 + 0.955031i \(0.595821\pi\)
\(984\) −7.18305e6 −0.236495
\(985\) 0 0
\(986\) 1.35333e7 0.443315
\(987\) − 2.78323e7i − 0.909404i
\(988\) − 1.99527e6i − 0.0650292i
\(989\) −4.52667e7 −1.47159
\(990\) 0 0
\(991\) −4.51653e7 −1.46090 −0.730451 0.682965i \(-0.760690\pi\)
−0.730451 + 0.682965i \(0.760690\pi\)
\(992\) 5.25432e6i 0.169526i
\(993\) − 1.12648e7i − 0.362536i
\(994\) 3.92895e7 1.26128
\(995\) 0 0
\(996\) −2.08294e6 −0.0665318
\(997\) − 1.89237e7i − 0.602933i −0.953477 0.301467i \(-0.902524\pi\)
0.953477 0.301467i \(-0.0974761\pi\)
\(998\) 1.87277e6i 0.0595193i
\(999\) −2.50282e7 −0.793445
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.i.274.18 22
5.2 odd 4 325.6.a.j.1.3 11
5.3 odd 4 325.6.a.k.1.9 yes 11
5.4 even 2 inner 325.6.b.i.274.5 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.3 11 5.2 odd 4
325.6.a.k.1.9 yes 11 5.3 odd 4
325.6.b.i.274.5 22 5.4 even 2 inner
325.6.b.i.274.18 22 1.1 even 1 trivial