Properties

Label 325.6.b.i.274.15
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.15
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.i.274.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.78432i q^{2} +8.20788i q^{3} +17.6789 q^{4} -31.0612 q^{6} -88.9969i q^{7} +188.001i q^{8} +175.631 q^{9} +O(q^{10})\) \(q+3.78432i q^{2} +8.20788i q^{3} +17.6789 q^{4} -31.0612 q^{6} -88.9969i q^{7} +188.001i q^{8} +175.631 q^{9} -156.575 q^{11} +145.107i q^{12} +169.000i q^{13} +336.793 q^{14} -145.729 q^{16} -447.890i q^{17} +664.642i q^{18} +269.669 q^{19} +730.476 q^{21} -592.531i q^{22} +1371.05i q^{23} -1543.09 q^{24} -639.550 q^{26} +3436.07i q^{27} -1573.37i q^{28} +3698.11 q^{29} +797.974 q^{31} +5464.54i q^{32} -1285.15i q^{33} +1694.96 q^{34} +3104.97 q^{36} +4394.83i q^{37} +1020.51i q^{38} -1387.13 q^{39} +14320.9 q^{41} +2764.35i q^{42} +11337.1i q^{43} -2768.09 q^{44} -5188.50 q^{46} +9974.03i q^{47} -1196.13i q^{48} +8886.54 q^{49} +3676.23 q^{51} +2987.74i q^{52} +11587.1i q^{53} -13003.2 q^{54} +16731.5 q^{56} +2213.41i q^{57} +13994.8i q^{58} -7133.45 q^{59} +16629.8 q^{61} +3019.79i q^{62} -15630.6i q^{63} -25342.9 q^{64} +4863.42 q^{66} -4211.88i q^{67} -7918.22i q^{68} -11253.4 q^{69} +12871.4 q^{71} +33018.7i q^{72} -13097.1i q^{73} -16631.4 q^{74} +4767.46 q^{76} +13934.7i q^{77} -5249.35i q^{78} -74729.2 q^{79} +14475.4 q^{81} +54194.7i q^{82} +8547.83i q^{83} +12914.0 q^{84} -42903.0 q^{86} +30353.6i q^{87} -29436.3i q^{88} -59586.0 q^{89} +15040.5 q^{91} +24238.8i q^{92} +6549.68i q^{93} -37744.9 q^{94} -44852.3 q^{96} +17376.2i q^{97} +33629.5i q^{98} -27499.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9} + 2552 q^{11} - 1156 q^{14} + 11414 q^{16} - 7040 q^{19} + 3412 q^{21} - 15446 q^{24} + 1690 q^{26} - 36850 q^{29} + 18136 q^{31} + 28910 q^{34} + 75368 q^{36} - 3718 q^{39} - 20020 q^{41} - 121302 q^{44} - 19716 q^{46} - 146626 q^{49} + 73212 q^{51} - 96026 q^{54} - 2524 q^{56} - 263284 q^{59} - 86730 q^{61} - 360142 q^{64} - 117214 q^{66} - 118690 q^{69} + 136840 q^{71} - 742792 q^{74} + 45034 q^{76} - 104478 q^{79} + 215014 q^{81} - 1705432 q^{84} + 404492 q^{86} - 655424 q^{89} + 70304 q^{91} - 1299948 q^{94} + 1799326 q^{96} - 853396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.78432i 0.668979i 0.942399 + 0.334490i \(0.108564\pi\)
−0.942399 + 0.334490i \(0.891436\pi\)
\(3\) 8.20788i 0.526536i 0.964723 + 0.263268i \(0.0848003\pi\)
−0.964723 + 0.263268i \(0.915200\pi\)
\(4\) 17.6789 0.552467
\(5\) 0 0
\(6\) −31.0612 −0.352241
\(7\) − 88.9969i − 0.686483i −0.939247 0.343242i \(-0.888475\pi\)
0.939247 0.343242i \(-0.111525\pi\)
\(8\) 188.001i 1.03857i
\(9\) 175.631 0.722760
\(10\) 0 0
\(11\) −156.575 −0.390159 −0.195080 0.980787i \(-0.562497\pi\)
−0.195080 + 0.980787i \(0.562497\pi\)
\(12\) 145.107i 0.290893i
\(13\) 169.000i 0.277350i
\(14\) 336.793 0.459243
\(15\) 0 0
\(16\) −145.729 −0.142314
\(17\) − 447.890i − 0.375880i −0.982181 0.187940i \(-0.939819\pi\)
0.982181 0.187940i \(-0.0601810\pi\)
\(18\) 664.642i 0.483512i
\(19\) 269.669 0.171375 0.0856875 0.996322i \(-0.472691\pi\)
0.0856875 + 0.996322i \(0.472691\pi\)
\(20\) 0 0
\(21\) 730.476 0.361458
\(22\) − 592.531i − 0.261008i
\(23\) 1371.05i 0.540424i 0.962801 + 0.270212i \(0.0870938\pi\)
−0.962801 + 0.270212i \(0.912906\pi\)
\(24\) −1543.09 −0.546843
\(25\) 0 0
\(26\) −639.550 −0.185541
\(27\) 3436.07i 0.907095i
\(28\) − 1573.37i − 0.379259i
\(29\) 3698.11 0.816554 0.408277 0.912858i \(-0.366130\pi\)
0.408277 + 0.912858i \(0.366130\pi\)
\(30\) 0 0
\(31\) 797.974 0.149137 0.0745684 0.997216i \(-0.476242\pi\)
0.0745684 + 0.997216i \(0.476242\pi\)
\(32\) 5464.54i 0.943363i
\(33\) − 1285.15i − 0.205433i
\(34\) 1694.96 0.251456
\(35\) 0 0
\(36\) 3104.97 0.399301
\(37\) 4394.83i 0.527761i 0.964555 + 0.263881i \(0.0850025\pi\)
−0.964555 + 0.263881i \(0.914997\pi\)
\(38\) 1020.51i 0.114646i
\(39\) −1387.13 −0.146035
\(40\) 0 0
\(41\) 14320.9 1.33048 0.665242 0.746628i \(-0.268328\pi\)
0.665242 + 0.746628i \(0.268328\pi\)
\(42\) 2764.35i 0.241808i
\(43\) 11337.1i 0.935037i 0.883983 + 0.467519i \(0.154852\pi\)
−0.883983 + 0.467519i \(0.845148\pi\)
\(44\) −2768.09 −0.215550
\(45\) 0 0
\(46\) −5188.50 −0.361532
\(47\) 9974.03i 0.658607i 0.944224 + 0.329303i \(0.106814\pi\)
−0.944224 + 0.329303i \(0.893186\pi\)
\(48\) − 1196.13i − 0.0749331i
\(49\) 8886.54 0.528741
\(50\) 0 0
\(51\) 3676.23 0.197914
\(52\) 2987.74i 0.153227i
\(53\) 11587.1i 0.566611i 0.959030 + 0.283305i \(0.0914310\pi\)
−0.959030 + 0.283305i \(0.908569\pi\)
\(54\) −13003.2 −0.606827
\(55\) 0 0
\(56\) 16731.5 0.712960
\(57\) 2213.41i 0.0902350i
\(58\) 13994.8i 0.546258i
\(59\) −7133.45 −0.266790 −0.133395 0.991063i \(-0.542588\pi\)
−0.133395 + 0.991063i \(0.542588\pi\)
\(60\) 0 0
\(61\) 16629.8 0.572220 0.286110 0.958197i \(-0.407638\pi\)
0.286110 + 0.958197i \(0.407638\pi\)
\(62\) 3019.79i 0.0997694i
\(63\) − 15630.6i − 0.496163i
\(64\) −25342.9 −0.773404
\(65\) 0 0
\(66\) 4863.42 0.137430
\(67\) − 4211.88i − 0.114628i −0.998356 0.0573138i \(-0.981746\pi\)
0.998356 0.0573138i \(-0.0182536\pi\)
\(68\) − 7918.22i − 0.207661i
\(69\) −11253.4 −0.284552
\(70\) 0 0
\(71\) 12871.4 0.303026 0.151513 0.988455i \(-0.451585\pi\)
0.151513 + 0.988455i \(0.451585\pi\)
\(72\) 33018.7i 0.750636i
\(73\) − 13097.1i − 0.287653i −0.989603 0.143826i \(-0.954059\pi\)
0.989603 0.143826i \(-0.0459407\pi\)
\(74\) −16631.4 −0.353061
\(75\) 0 0
\(76\) 4767.46 0.0946790
\(77\) 13934.7i 0.267838i
\(78\) − 5249.35i − 0.0976942i
\(79\) −74729.2 −1.34717 −0.673586 0.739109i \(-0.735247\pi\)
−0.673586 + 0.739109i \(0.735247\pi\)
\(80\) 0 0
\(81\) 14475.4 0.245143
\(82\) 54194.7i 0.890066i
\(83\) 8547.83i 0.136195i 0.997679 + 0.0680974i \(0.0216929\pi\)
−0.997679 + 0.0680974i \(0.978307\pi\)
\(84\) 12914.0 0.199694
\(85\) 0 0
\(86\) −42903.0 −0.625521
\(87\) 30353.6i 0.429945i
\(88\) − 29436.3i − 0.405207i
\(89\) −59586.0 −0.797387 −0.398694 0.917084i \(-0.630536\pi\)
−0.398694 + 0.917084i \(0.630536\pi\)
\(90\) 0 0
\(91\) 15040.5 0.190396
\(92\) 24238.8i 0.298566i
\(93\) 6549.68i 0.0785258i
\(94\) −37744.9 −0.440594
\(95\) 0 0
\(96\) −44852.3 −0.496714
\(97\) 17376.2i 0.187510i 0.995595 + 0.0937552i \(0.0298871\pi\)
−0.995595 + 0.0937552i \(0.970113\pi\)
\(98\) 33629.5i 0.353716i
\(99\) −27499.5 −0.281992
\(100\) 0 0
\(101\) 68669.7 0.669825 0.334913 0.942249i \(-0.391293\pi\)
0.334913 + 0.942249i \(0.391293\pi\)
\(102\) 13912.0i 0.132400i
\(103\) 191203.i 1.77584i 0.460002 + 0.887918i \(0.347849\pi\)
−0.460002 + 0.887918i \(0.652151\pi\)
\(104\) −31772.2 −0.288047
\(105\) 0 0
\(106\) −43849.2 −0.379051
\(107\) 46117.6i 0.389410i 0.980862 + 0.194705i \(0.0623750\pi\)
−0.980862 + 0.194705i \(0.937625\pi\)
\(108\) 60746.1i 0.501140i
\(109\) −187271. −1.50975 −0.754873 0.655871i \(-0.772302\pi\)
−0.754873 + 0.655871i \(0.772302\pi\)
\(110\) 0 0
\(111\) −36072.2 −0.277885
\(112\) 12969.4i 0.0976959i
\(113\) 189262.i 1.39434i 0.716907 + 0.697169i \(0.245557\pi\)
−0.716907 + 0.697169i \(0.754443\pi\)
\(114\) −8376.25 −0.0603653
\(115\) 0 0
\(116\) 65378.7 0.451119
\(117\) 29681.6i 0.200458i
\(118\) − 26995.2i − 0.178477i
\(119\) −39860.9 −0.258035
\(120\) 0 0
\(121\) −136535. −0.847776
\(122\) 62932.5i 0.382803i
\(123\) 117544.i 0.700547i
\(124\) 14107.3 0.0823931
\(125\) 0 0
\(126\) 59151.2 0.331923
\(127\) − 183029.i − 1.00695i −0.864009 0.503477i \(-0.832054\pi\)
0.864009 0.503477i \(-0.167946\pi\)
\(128\) 78959.8i 0.425972i
\(129\) −93053.1 −0.492331
\(130\) 0 0
\(131\) 221035. 1.12534 0.562668 0.826683i \(-0.309775\pi\)
0.562668 + 0.826683i \(0.309775\pi\)
\(132\) − 22720.1i − 0.113495i
\(133\) − 23999.7i − 0.117646i
\(134\) 15939.1 0.0766835
\(135\) 0 0
\(136\) 84203.7 0.390377
\(137\) − 353821.i − 1.61058i −0.592881 0.805290i \(-0.702009\pi\)
0.592881 0.805290i \(-0.297991\pi\)
\(138\) − 42586.6i − 0.190360i
\(139\) −282625. −1.24072 −0.620359 0.784318i \(-0.713013\pi\)
−0.620359 + 0.784318i \(0.713013\pi\)
\(140\) 0 0
\(141\) −81865.7 −0.346780
\(142\) 48709.4i 0.202718i
\(143\) − 26461.2i − 0.108211i
\(144\) −25594.5 −0.102859
\(145\) 0 0
\(146\) 49563.7 0.192434
\(147\) 72939.7i 0.278401i
\(148\) 77695.9i 0.291571i
\(149\) 77579.6 0.286274 0.143137 0.989703i \(-0.454281\pi\)
0.143137 + 0.989703i \(0.454281\pi\)
\(150\) 0 0
\(151\) −209693. −0.748412 −0.374206 0.927346i \(-0.622085\pi\)
−0.374206 + 0.927346i \(0.622085\pi\)
\(152\) 50698.0i 0.177985i
\(153\) − 78663.3i − 0.271671i
\(154\) −52733.5 −0.179178
\(155\) 0 0
\(156\) −24523.0 −0.0806793
\(157\) − 127745.i − 0.413612i −0.978382 0.206806i \(-0.933693\pi\)
0.978382 0.206806i \(-0.0663070\pi\)
\(158\) − 282799.i − 0.901230i
\(159\) −95105.4 −0.298341
\(160\) 0 0
\(161\) 122019. 0.370992
\(162\) 54779.6i 0.163995i
\(163\) 33444.3i 0.0985947i 0.998784 + 0.0492973i \(0.0156982\pi\)
−0.998784 + 0.0492973i \(0.984302\pi\)
\(164\) 253178. 0.735048
\(165\) 0 0
\(166\) −32347.7 −0.0911115
\(167\) 317479.i 0.880893i 0.897779 + 0.440447i \(0.145180\pi\)
−0.897779 + 0.440447i \(0.854820\pi\)
\(168\) 137330.i 0.375399i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 47362.2 0.123863
\(172\) 200427.i 0.516577i
\(173\) 84505.1i 0.214668i 0.994223 + 0.107334i \(0.0342314\pi\)
−0.994223 + 0.107334i \(0.965769\pi\)
\(174\) −114868. −0.287624
\(175\) 0 0
\(176\) 22817.6 0.0555249
\(177\) − 58550.5i − 0.140474i
\(178\) − 225492.i − 0.533435i
\(179\) 734183. 1.71266 0.856331 0.516428i \(-0.172739\pi\)
0.856331 + 0.516428i \(0.172739\pi\)
\(180\) 0 0
\(181\) 363356. 0.824396 0.412198 0.911094i \(-0.364761\pi\)
0.412198 + 0.911094i \(0.364761\pi\)
\(182\) 56918.0i 0.127371i
\(183\) 136496.i 0.301294i
\(184\) −257759. −0.561267
\(185\) 0 0
\(186\) −24786.1 −0.0525321
\(187\) 70128.6i 0.146653i
\(188\) 176330.i 0.363858i
\(189\) 305800. 0.622705
\(190\) 0 0
\(191\) 54142.3 0.107387 0.0536937 0.998557i \(-0.482901\pi\)
0.0536937 + 0.998557i \(0.482901\pi\)
\(192\) − 208011.i − 0.407225i
\(193\) − 208911.i − 0.403709i −0.979416 0.201855i \(-0.935303\pi\)
0.979416 0.201855i \(-0.0646968\pi\)
\(194\) −65757.1 −0.125441
\(195\) 0 0
\(196\) 157105. 0.292112
\(197\) − 581675.i − 1.06786i −0.845528 0.533931i \(-0.820714\pi\)
0.845528 0.533931i \(-0.179286\pi\)
\(198\) − 104067.i − 0.188646i
\(199\) 624788. 1.11841 0.559204 0.829030i \(-0.311107\pi\)
0.559204 + 0.829030i \(0.311107\pi\)
\(200\) 0 0
\(201\) 34570.6 0.0603555
\(202\) 259868.i 0.448099i
\(203\) − 329121.i − 0.560551i
\(204\) 64991.8 0.109341
\(205\) 0 0
\(206\) −723575. −1.18800
\(207\) 240799.i 0.390597i
\(208\) − 24628.2i − 0.0394707i
\(209\) −42223.6 −0.0668635
\(210\) 0 0
\(211\) 628250. 0.971464 0.485732 0.874108i \(-0.338553\pi\)
0.485732 + 0.874108i \(0.338553\pi\)
\(212\) 204847.i 0.313034i
\(213\) 105647.i 0.159554i
\(214\) −174524. −0.260507
\(215\) 0 0
\(216\) −645984. −0.942079
\(217\) − 71017.3i − 0.102380i
\(218\) − 708693.i − 1.00999i
\(219\) 107500. 0.151459
\(220\) 0 0
\(221\) 75693.4 0.104250
\(222\) − 136509.i − 0.185899i
\(223\) − 1.09757e6i − 1.47798i −0.673715 0.738992i \(-0.735302\pi\)
0.673715 0.738992i \(-0.264698\pi\)
\(224\) 486328. 0.647603
\(225\) 0 0
\(226\) −716229. −0.932783
\(227\) − 161937.i − 0.208584i −0.994547 0.104292i \(-0.966742\pi\)
0.994547 0.104292i \(-0.0332577\pi\)
\(228\) 39130.8i 0.0498518i
\(229\) 645210. 0.813040 0.406520 0.913642i \(-0.366742\pi\)
0.406520 + 0.913642i \(0.366742\pi\)
\(230\) 0 0
\(231\) −114375. −0.141026
\(232\) 695248.i 0.848047i
\(233\) − 839907.i − 1.01354i −0.862081 0.506770i \(-0.830839\pi\)
0.862081 0.506770i \(-0.169161\pi\)
\(234\) −112325. −0.134102
\(235\) 0 0
\(236\) −126112. −0.147393
\(237\) − 613369.i − 0.709334i
\(238\) − 150846.i − 0.172620i
\(239\) 532168. 0.602635 0.301317 0.953524i \(-0.402574\pi\)
0.301317 + 0.953524i \(0.402574\pi\)
\(240\) 0 0
\(241\) −11282.2 −0.0125127 −0.00625633 0.999980i \(-0.501991\pi\)
−0.00625633 + 0.999980i \(0.501991\pi\)
\(242\) − 516692.i − 0.567144i
\(243\) 953778.i 1.03617i
\(244\) 293998. 0.316133
\(245\) 0 0
\(246\) −444824. −0.468652
\(247\) 45574.1i 0.0475308i
\(248\) 150020.i 0.154889i
\(249\) −70159.5 −0.0717114
\(250\) 0 0
\(251\) −592652. −0.593766 −0.296883 0.954914i \(-0.595947\pi\)
−0.296883 + 0.954914i \(0.595947\pi\)
\(252\) − 276332.i − 0.274114i
\(253\) − 214673.i − 0.210851i
\(254\) 692639. 0.673632
\(255\) 0 0
\(256\) −1.10978e6 −1.05837
\(257\) 161530.i 0.152552i 0.997087 + 0.0762762i \(0.0243031\pi\)
−0.997087 + 0.0762762i \(0.975697\pi\)
\(258\) − 352143.i − 0.329359i
\(259\) 391126. 0.362299
\(260\) 0 0
\(261\) 649502. 0.590173
\(262\) 836466.i 0.752826i
\(263\) − 377791.i − 0.336793i −0.985719 0.168396i \(-0.946141\pi\)
0.985719 0.168396i \(-0.0538588\pi\)
\(264\) 241610. 0.213356
\(265\) 0 0
\(266\) 90822.6 0.0787027
\(267\) − 489075.i − 0.419853i
\(268\) − 74461.6i − 0.0633280i
\(269\) 689.090 0.000580624 0 0.000290312 1.00000i \(-0.499908\pi\)
0.000290312 1.00000i \(0.499908\pi\)
\(270\) 0 0
\(271\) 625466. 0.517345 0.258673 0.965965i \(-0.416715\pi\)
0.258673 + 0.965965i \(0.416715\pi\)
\(272\) 65270.6i 0.0534928i
\(273\) 123450.i 0.100250i
\(274\) 1.33897e6 1.07744
\(275\) 0 0
\(276\) −198949. −0.157206
\(277\) − 744000.i − 0.582604i −0.956631 0.291302i \(-0.905912\pi\)
0.956631 0.291302i \(-0.0940885\pi\)
\(278\) − 1.06954e6i − 0.830015i
\(279\) 140149. 0.107790
\(280\) 0 0
\(281\) 1.43786e6 1.08631 0.543153 0.839634i \(-0.317230\pi\)
0.543153 + 0.839634i \(0.317230\pi\)
\(282\) − 309806.i − 0.231989i
\(283\) − 1.24662e6i − 0.925267i −0.886550 0.462634i \(-0.846905\pi\)
0.886550 0.462634i \(-0.153095\pi\)
\(284\) 227553. 0.167412
\(285\) 0 0
\(286\) 100138. 0.0723907
\(287\) − 1.27451e6i − 0.913355i
\(288\) 959742.i 0.681825i
\(289\) 1.21925e6 0.858714
\(290\) 0 0
\(291\) −142622. −0.0987309
\(292\) − 231543.i − 0.158919i
\(293\) 1.74658e6i 1.18855i 0.804261 + 0.594276i \(0.202561\pi\)
−0.804261 + 0.594276i \(0.797439\pi\)
\(294\) −276027. −0.186244
\(295\) 0 0
\(296\) −826231. −0.548116
\(297\) − 538004.i − 0.353911i
\(298\) 293586.i 0.191511i
\(299\) −231708. −0.149887
\(300\) 0 0
\(301\) 1.00896e6 0.641888
\(302\) − 793543.i − 0.500672i
\(303\) 563632.i 0.352687i
\(304\) −39298.6 −0.0243890
\(305\) 0 0
\(306\) 297687. 0.181742
\(307\) 239330.i 0.144928i 0.997371 + 0.0724638i \(0.0230862\pi\)
−0.997371 + 0.0724638i \(0.976914\pi\)
\(308\) 246351.i 0.147972i
\(309\) −1.56937e6 −0.935041
\(310\) 0 0
\(311\) 1.10338e6 0.646883 0.323441 0.946248i \(-0.395160\pi\)
0.323441 + 0.946248i \(0.395160\pi\)
\(312\) − 260782.i − 0.151667i
\(313\) − 934831.i − 0.539352i −0.962951 0.269676i \(-0.913083\pi\)
0.962951 0.269676i \(-0.0869165\pi\)
\(314\) 483426. 0.276698
\(315\) 0 0
\(316\) −1.32113e6 −0.744268
\(317\) − 2.65437e6i − 1.48359i −0.670628 0.741794i \(-0.733975\pi\)
0.670628 0.741794i \(-0.266025\pi\)
\(318\) − 359909.i − 0.199584i
\(319\) −579033. −0.318586
\(320\) 0 0
\(321\) −378528. −0.205038
\(322\) 461761.i 0.248186i
\(323\) − 120782.i − 0.0644164i
\(324\) 255910. 0.135433
\(325\) 0 0
\(326\) −126564. −0.0659578
\(327\) − 1.53710e6i − 0.794935i
\(328\) 2.69234e6i 1.38180i
\(329\) 887659. 0.452123
\(330\) 0 0
\(331\) 648335. 0.325259 0.162630 0.986687i \(-0.448002\pi\)
0.162630 + 0.986687i \(0.448002\pi\)
\(332\) 151117.i 0.0752431i
\(333\) 771867.i 0.381445i
\(334\) −1.20144e6 −0.589299
\(335\) 0 0
\(336\) −106452. −0.0514404
\(337\) 761016.i 0.365022i 0.983204 + 0.182511i \(0.0584226\pi\)
−0.983204 + 0.182511i \(0.941577\pi\)
\(338\) − 108084.i − 0.0514599i
\(339\) −1.55344e6 −0.734169
\(340\) 0 0
\(341\) −124943. −0.0581871
\(342\) 179234.i 0.0828617i
\(343\) − 2.28665e6i − 1.04945i
\(344\) −2.13138e6 −0.971100
\(345\) 0 0
\(346\) −319794. −0.143609
\(347\) 1.06891e6i 0.476561i 0.971196 + 0.238281i \(0.0765838\pi\)
−0.971196 + 0.238281i \(0.923416\pi\)
\(348\) 536620.i 0.237530i
\(349\) −1.57765e6 −0.693342 −0.346671 0.937987i \(-0.612688\pi\)
−0.346671 + 0.937987i \(0.612688\pi\)
\(350\) 0 0
\(351\) −580696. −0.251583
\(352\) − 855613.i − 0.368062i
\(353\) 109374.i 0.0467173i 0.999727 + 0.0233587i \(0.00743597\pi\)
−0.999727 + 0.0233587i \(0.992564\pi\)
\(354\) 221574. 0.0939745
\(355\) 0 0
\(356\) −1.05342e6 −0.440530
\(357\) − 327173.i − 0.135865i
\(358\) 2.77838e6i 1.14573i
\(359\) −3.75166e6 −1.53634 −0.768169 0.640247i \(-0.778832\pi\)
−0.768169 + 0.640247i \(0.778832\pi\)
\(360\) 0 0
\(361\) −2.40338e6 −0.970631
\(362\) 1.37506e6i 0.551504i
\(363\) − 1.12066e6i − 0.446384i
\(364\) 265900. 0.105188
\(365\) 0 0
\(366\) −516543. −0.201560
\(367\) 2.12587e6i 0.823895i 0.911208 + 0.411947i \(0.135151\pi\)
−0.911208 + 0.411947i \(0.864849\pi\)
\(368\) − 199802.i − 0.0769096i
\(369\) 2.51518e6 0.961621
\(370\) 0 0
\(371\) 1.03122e6 0.388969
\(372\) 115791.i 0.0433829i
\(373\) − 725713.i − 0.270080i −0.990840 0.135040i \(-0.956884\pi\)
0.990840 0.135040i \(-0.0431163\pi\)
\(374\) −265389. −0.0981078
\(375\) 0 0
\(376\) −1.87513e6 −0.684008
\(377\) 624981.i 0.226471i
\(378\) 1.15724e6i 0.416577i
\(379\) −1.40410e6 −0.502111 −0.251056 0.967973i \(-0.580778\pi\)
−0.251056 + 0.967973i \(0.580778\pi\)
\(380\) 0 0
\(381\) 1.50228e6 0.530197
\(382\) 204892.i 0.0718400i
\(383\) − 2.82085e6i − 0.982615i −0.870986 0.491307i \(-0.836519\pi\)
0.870986 0.491307i \(-0.163481\pi\)
\(384\) −648093. −0.224290
\(385\) 0 0
\(386\) 790587. 0.270073
\(387\) 1.99113e6i 0.675808i
\(388\) 307193.i 0.103593i
\(389\) 1.71293e6 0.573940 0.286970 0.957940i \(-0.407352\pi\)
0.286970 + 0.957940i \(0.407352\pi\)
\(390\) 0 0
\(391\) 614081. 0.203135
\(392\) 1.67068e6i 0.549133i
\(393\) 1.81423e6i 0.592530i
\(394\) 2.20124e6 0.714377
\(395\) 0 0
\(396\) −486161. −0.155791
\(397\) 3.80080e6i 1.21032i 0.796106 + 0.605158i \(0.206890\pi\)
−0.796106 + 0.605158i \(0.793110\pi\)
\(398\) 2.36440e6i 0.748191i
\(399\) 196987. 0.0619448
\(400\) 0 0
\(401\) 1.09440e6 0.339871 0.169936 0.985455i \(-0.445644\pi\)
0.169936 + 0.985455i \(0.445644\pi\)
\(402\) 130826.i 0.0403766i
\(403\) 134858.i 0.0413631i
\(404\) 1.21401e6 0.370056
\(405\) 0 0
\(406\) 1.24550e6 0.374997
\(407\) − 688122.i − 0.205911i
\(408\) 691134.i 0.205547i
\(409\) −6.63162e6 −1.96025 −0.980125 0.198380i \(-0.936432\pi\)
−0.980125 + 0.198380i \(0.936432\pi\)
\(410\) 0 0
\(411\) 2.90412e6 0.848028
\(412\) 3.38027e6i 0.981090i
\(413\) 634855.i 0.183147i
\(414\) −911260. −0.261301
\(415\) 0 0
\(416\) −923508. −0.261642
\(417\) − 2.31975e6i − 0.653283i
\(418\) − 159787.i − 0.0447303i
\(419\) 1.50034e6 0.417499 0.208749 0.977969i \(-0.433061\pi\)
0.208749 + 0.977969i \(0.433061\pi\)
\(420\) 0 0
\(421\) −1.91392e6 −0.526282 −0.263141 0.964757i \(-0.584758\pi\)
−0.263141 + 0.964757i \(0.584758\pi\)
\(422\) 2.37750e6i 0.649889i
\(423\) 1.75175e6i 0.476015i
\(424\) −2.17838e6 −0.588464
\(425\) 0 0
\(426\) −399801. −0.106738
\(427\) − 1.48000e6i − 0.392820i
\(428\) 815311.i 0.215136i
\(429\) 217191. 0.0569768
\(430\) 0 0
\(431\) 6.04255e6 1.56685 0.783424 0.621488i \(-0.213471\pi\)
0.783424 + 0.621488i \(0.213471\pi\)
\(432\) − 500735.i − 0.129092i
\(433\) − 1.81284e6i − 0.464666i −0.972636 0.232333i \(-0.925364\pi\)
0.972636 0.232333i \(-0.0746359\pi\)
\(434\) 268752. 0.0684900
\(435\) 0 0
\(436\) −3.31075e6 −0.834085
\(437\) 369731.i 0.0926151i
\(438\) 406813.i 0.101323i
\(439\) −3.45414e6 −0.855418 −0.427709 0.903916i \(-0.640679\pi\)
−0.427709 + 0.903916i \(0.640679\pi\)
\(440\) 0 0
\(441\) 1.56075e6 0.382153
\(442\) 286448.i 0.0697413i
\(443\) − 1.64299e6i − 0.397764i −0.980023 0.198882i \(-0.936269\pi\)
0.980023 0.198882i \(-0.0637311\pi\)
\(444\) −637718. −0.153522
\(445\) 0 0
\(446\) 4.15355e6 0.988740
\(447\) 636764.i 0.150733i
\(448\) 2.25544e6i 0.530929i
\(449\) −3.90173e6 −0.913359 −0.456680 0.889631i \(-0.650961\pi\)
−0.456680 + 0.889631i \(0.650961\pi\)
\(450\) 0 0
\(451\) −2.24230e6 −0.519101
\(452\) 3.34596e6i 0.770325i
\(453\) − 1.72113e6i − 0.394066i
\(454\) 612821. 0.139539
\(455\) 0 0
\(456\) −416123. −0.0937152
\(457\) 6.09815e6i 1.36586i 0.730482 + 0.682932i \(0.239296\pi\)
−0.730482 + 0.682932i \(0.760704\pi\)
\(458\) 2.44168e6i 0.543907i
\(459\) 1.53898e6 0.340959
\(460\) 0 0
\(461\) 8.52589e6 1.86848 0.934238 0.356651i \(-0.116081\pi\)
0.934238 + 0.356651i \(0.116081\pi\)
\(462\) − 432830.i − 0.0943436i
\(463\) − 2.70655e6i − 0.586765i −0.955995 0.293382i \(-0.905219\pi\)
0.955995 0.293382i \(-0.0947809\pi\)
\(464\) −538922. −0.116207
\(465\) 0 0
\(466\) 3.17847e6 0.678038
\(467\) 350172.i 0.0743001i 0.999310 + 0.0371501i \(0.0118280\pi\)
−0.999310 + 0.0371501i \(0.988172\pi\)
\(468\) 524739.i 0.110746i
\(469\) −374845. −0.0786900
\(470\) 0 0
\(471\) 1.04851e6 0.217782
\(472\) − 1.34110e6i − 0.277080i
\(473\) − 1.77510e6i − 0.364813i
\(474\) 2.32118e6 0.474529
\(475\) 0 0
\(476\) −704698. −0.142556
\(477\) 2.03505e6i 0.409524i
\(478\) 2.01389e6i 0.403150i
\(479\) −8.49125e6 −1.69096 −0.845479 0.534009i \(-0.820685\pi\)
−0.845479 + 0.534009i \(0.820685\pi\)
\(480\) 0 0
\(481\) −742726. −0.146375
\(482\) − 42695.3i − 0.00837071i
\(483\) 1.00152e6i 0.195341i
\(484\) −2.41380e6 −0.468368
\(485\) 0 0
\(486\) −3.60940e6 −0.693177
\(487\) − 3034.65i 0 0.000579811i −1.00000 0.000289905i \(-0.999908\pi\)
1.00000 0.000289905i \(-9.22797e-5\pi\)
\(488\) 3.12642e6i 0.594289i
\(489\) −274507. −0.0519136
\(490\) 0 0
\(491\) −3.43114e6 −0.642295 −0.321147 0.947029i \(-0.604068\pi\)
−0.321147 + 0.947029i \(0.604068\pi\)
\(492\) 2.07805e6i 0.387029i
\(493\) − 1.65635e6i − 0.306926i
\(494\) −172467. −0.0317971
\(495\) 0 0
\(496\) −116288. −0.0212242
\(497\) − 1.14551e6i − 0.208022i
\(498\) − 265506.i − 0.0479735i
\(499\) 1.11566e6 0.200577 0.100289 0.994958i \(-0.468023\pi\)
0.100289 + 0.994958i \(0.468023\pi\)
\(500\) 0 0
\(501\) −2.60583e6 −0.463822
\(502\) − 2.24278e6i − 0.397217i
\(503\) 4.99165e6i 0.879679i 0.898076 + 0.439840i \(0.144965\pi\)
−0.898076 + 0.439840i \(0.855035\pi\)
\(504\) 2.93857e6 0.515299
\(505\) 0 0
\(506\) 812391. 0.141055
\(507\) − 234425.i − 0.0405027i
\(508\) − 3.23575e6i − 0.556309i
\(509\) 398811. 0.0682296 0.0341148 0.999418i \(-0.489139\pi\)
0.0341148 + 0.999418i \(0.489139\pi\)
\(510\) 0 0
\(511\) −1.16560e6 −0.197469
\(512\) − 1.67305e6i − 0.282056i
\(513\) 926602.i 0.155453i
\(514\) −611279. −0.102054
\(515\) 0 0
\(516\) −1.64508e6 −0.271996
\(517\) − 1.56169e6i − 0.256962i
\(518\) 1.48015e6i 0.242371i
\(519\) −693607. −0.113030
\(520\) 0 0
\(521\) 9.33110e6 1.50605 0.753023 0.657994i \(-0.228595\pi\)
0.753023 + 0.657994i \(0.228595\pi\)
\(522\) 2.45792e6i 0.394813i
\(523\) − 4.93297e6i − 0.788596i −0.918983 0.394298i \(-0.870988\pi\)
0.918983 0.394298i \(-0.129012\pi\)
\(524\) 3.90766e6 0.621711
\(525\) 0 0
\(526\) 1.42968e6 0.225307
\(527\) − 357405.i − 0.0560575i
\(528\) 187284.i 0.0292359i
\(529\) 4.55656e6 0.707942
\(530\) 0 0
\(531\) −1.25285e6 −0.192825
\(532\) − 424290.i − 0.0649955i
\(533\) 2.42023e6i 0.369010i
\(534\) 1.85081e6 0.280873
\(535\) 0 0
\(536\) 791838. 0.119049
\(537\) 6.02608e6i 0.901777i
\(538\) 2607.73i 0 0.000388425i
\(539\) −1.39141e6 −0.206293
\(540\) 0 0
\(541\) 2.72340e6 0.400054 0.200027 0.979790i \(-0.435897\pi\)
0.200027 + 0.979790i \(0.435897\pi\)
\(542\) 2.36696e6i 0.346093i
\(543\) 2.98238e6i 0.434074i
\(544\) 2.44751e6 0.354591
\(545\) 0 0
\(546\) −467176. −0.0670654
\(547\) − 1.28669e7i − 1.83867i −0.393472 0.919337i \(-0.628726\pi\)
0.393472 0.919337i \(-0.371274\pi\)
\(548\) − 6.25518e6i − 0.889792i
\(549\) 2.92071e6 0.413578
\(550\) 0 0
\(551\) 997266. 0.139937
\(552\) − 2.11566e6i − 0.295527i
\(553\) 6.65067e6i 0.924811i
\(554\) 2.81553e6 0.389750
\(555\) 0 0
\(556\) −4.99651e6 −0.685456
\(557\) − 1.03791e7i − 1.41750i −0.705459 0.708751i \(-0.749259\pi\)
0.705459 0.708751i \(-0.250741\pi\)
\(558\) 530368.i 0.0721094i
\(559\) −1.91596e6 −0.259333
\(560\) 0 0
\(561\) −575607. −0.0772180
\(562\) 5.44133e6i 0.726716i
\(563\) − 3.37237e6i − 0.448399i −0.974543 0.224199i \(-0.928023\pi\)
0.974543 0.224199i \(-0.0719767\pi\)
\(564\) −1.44730e6 −0.191584
\(565\) 0 0
\(566\) 4.71760e6 0.618984
\(567\) − 1.28827e6i − 0.168286i
\(568\) 2.41983e6i 0.314713i
\(569\) 9.65718e6 1.25046 0.625230 0.780441i \(-0.285005\pi\)
0.625230 + 0.780441i \(0.285005\pi\)
\(570\) 0 0
\(571\) −3.19460e6 −0.410040 −0.205020 0.978758i \(-0.565726\pi\)
−0.205020 + 0.978758i \(0.565726\pi\)
\(572\) − 467807.i − 0.0597828i
\(573\) 444394.i 0.0565433i
\(574\) 4.82316e6 0.611016
\(575\) 0 0
\(576\) −4.45099e6 −0.558986
\(577\) − 1.01384e7i − 1.26774i −0.773438 0.633872i \(-0.781465\pi\)
0.773438 0.633872i \(-0.218535\pi\)
\(578\) 4.61403e6i 0.574462i
\(579\) 1.71472e6 0.212567
\(580\) 0 0
\(581\) 760731. 0.0934955
\(582\) − 539726.i − 0.0660489i
\(583\) − 1.81425e6i − 0.221068i
\(584\) 2.46227e6 0.298747
\(585\) 0 0
\(586\) −6.60960e6 −0.795117
\(587\) − 777799.i − 0.0931691i −0.998914 0.0465846i \(-0.985166\pi\)
0.998914 0.0465846i \(-0.0148337\pi\)
\(588\) 1.28950e6i 0.153807i
\(589\) 215189. 0.0255583
\(590\) 0 0
\(591\) 4.77432e6 0.562267
\(592\) − 640454.i − 0.0751076i
\(593\) − 8.28738e6i − 0.967789i −0.875126 0.483894i \(-0.839222\pi\)
0.875126 0.483894i \(-0.160778\pi\)
\(594\) 2.03598e6 0.236759
\(595\) 0 0
\(596\) 1.37153e6 0.158157
\(597\) 5.12818e6i 0.588881i
\(598\) − 876856.i − 0.100271i
\(599\) −1.39700e7 −1.59085 −0.795423 0.606054i \(-0.792751\pi\)
−0.795423 + 0.606054i \(0.792751\pi\)
\(600\) 0 0
\(601\) −1.27397e7 −1.43871 −0.719355 0.694643i \(-0.755562\pi\)
−0.719355 + 0.694643i \(0.755562\pi\)
\(602\) 3.81824e6i 0.429409i
\(603\) − 739736.i − 0.0828483i
\(604\) −3.70714e6 −0.413473
\(605\) 0 0
\(606\) −2.13296e6 −0.235940
\(607\) 6.25976e6i 0.689583i 0.938679 + 0.344791i \(0.112050\pi\)
−0.938679 + 0.344791i \(0.887950\pi\)
\(608\) 1.47362e6i 0.161669i
\(609\) 2.70138e6 0.295150
\(610\) 0 0
\(611\) −1.68561e6 −0.182665
\(612\) − 1.39068e6i − 0.150089i
\(613\) − 1.17405e7i − 1.26193i −0.775812 0.630964i \(-0.782660\pi\)
0.775812 0.630964i \(-0.217340\pi\)
\(614\) −905700. −0.0969535
\(615\) 0 0
\(616\) −2.61974e6 −0.278168
\(617\) − 1.57982e7i − 1.67069i −0.549729 0.835343i \(-0.685269\pi\)
0.549729 0.835343i \(-0.314731\pi\)
\(618\) − 5.93901e6i − 0.625523i
\(619\) −3.16596e6 −0.332108 −0.166054 0.986117i \(-0.553103\pi\)
−0.166054 + 0.986117i \(0.553103\pi\)
\(620\) 0 0
\(621\) −4.71103e6 −0.490216
\(622\) 4.17556e6i 0.432751i
\(623\) 5.30297e6i 0.547393i
\(624\) 202145. 0.0207827
\(625\) 0 0
\(626\) 3.53770e6 0.360815
\(627\) − 346566.i − 0.0352060i
\(628\) − 2.25839e6i − 0.228507i
\(629\) 1.96840e6 0.198375
\(630\) 0 0
\(631\) −1.95795e7 −1.95762 −0.978811 0.204764i \(-0.934357\pi\)
−0.978811 + 0.204764i \(0.934357\pi\)
\(632\) − 1.40492e7i − 1.39913i
\(633\) 5.15660e6i 0.511510i
\(634\) 1.00450e7 0.992489
\(635\) 0 0
\(636\) −1.68136e6 −0.164823
\(637\) 1.50183e6i 0.146646i
\(638\) − 2.19125e6i − 0.213127i
\(639\) 2.26061e6 0.219015
\(640\) 0 0
\(641\) −7.23060e6 −0.695072 −0.347536 0.937667i \(-0.612981\pi\)
−0.347536 + 0.937667i \(0.612981\pi\)
\(642\) − 1.43247e6i − 0.137166i
\(643\) − 1.17438e7i − 1.12016i −0.828438 0.560081i \(-0.810770\pi\)
0.828438 0.560081i \(-0.189230\pi\)
\(644\) 2.15718e6 0.204961
\(645\) 0 0
\(646\) 457078. 0.0430932
\(647\) − 9.24080e6i − 0.867858i −0.900947 0.433929i \(-0.857127\pi\)
0.900947 0.433929i \(-0.142873\pi\)
\(648\) 2.72139e6i 0.254597i
\(649\) 1.11692e6 0.104091
\(650\) 0 0
\(651\) 582901. 0.0539067
\(652\) 591260.i 0.0544703i
\(653\) − 1.11349e7i − 1.02188i −0.859615 0.510942i \(-0.829297\pi\)
0.859615 0.510942i \(-0.170703\pi\)
\(654\) 5.81686e6 0.531795
\(655\) 0 0
\(656\) −2.08697e6 −0.189346
\(657\) − 2.30026e6i − 0.207904i
\(658\) 3.35918e6i 0.302461i
\(659\) −8.65776e6 −0.776590 −0.388295 0.921535i \(-0.626936\pi\)
−0.388295 + 0.921535i \(0.626936\pi\)
\(660\) 0 0
\(661\) −1.23594e7 −1.10025 −0.550127 0.835081i \(-0.685421\pi\)
−0.550127 + 0.835081i \(0.685421\pi\)
\(662\) 2.45351e6i 0.217592i
\(663\) 621282.i 0.0548915i
\(664\) −1.60700e6 −0.141448
\(665\) 0 0
\(666\) −2.92099e6 −0.255179
\(667\) 5.07030e6i 0.441285i
\(668\) 5.61268e6i 0.486664i
\(669\) 9.00871e6 0.778211
\(670\) 0 0
\(671\) −2.60382e6 −0.223257
\(672\) 3.99172e6i 0.340986i
\(673\) − 6.11057e6i − 0.520048i −0.965602 0.260024i \(-0.916269\pi\)
0.965602 0.260024i \(-0.0837305\pi\)
\(674\) −2.87993e6 −0.244192
\(675\) 0 0
\(676\) −504928. −0.0424974
\(677\) − 1.48518e7i − 1.24540i −0.782462 0.622698i \(-0.786036\pi\)
0.782462 0.622698i \(-0.213964\pi\)
\(678\) − 5.87872e6i − 0.491144i
\(679\) 1.54643e6 0.128723
\(680\) 0 0
\(681\) 1.32916e6 0.109827
\(682\) − 472825.i − 0.0389260i
\(683\) − 6.13145e6i − 0.502934i −0.967866 0.251467i \(-0.919087\pi\)
0.967866 0.251467i \(-0.0809130\pi\)
\(684\) 837313. 0.0684302
\(685\) 0 0
\(686\) 8.65340e6 0.702064
\(687\) 5.29580e6i 0.428095i
\(688\) − 1.65214e6i − 0.133068i
\(689\) −1.95822e6 −0.157150
\(690\) 0 0
\(691\) 2.33358e7 1.85920 0.929602 0.368566i \(-0.120151\pi\)
0.929602 + 0.368566i \(0.120151\pi\)
\(692\) 1.49396e6i 0.118597i
\(693\) 2.44737e6i 0.193582i
\(694\) −4.04511e6 −0.318809
\(695\) 0 0
\(696\) −5.70651e6 −0.446527
\(697\) − 6.41417e6i − 0.500102i
\(698\) − 5.97033e6i − 0.463831i
\(699\) 6.89385e6 0.533665
\(700\) 0 0
\(701\) 2.53633e7 1.94944 0.974721 0.223426i \(-0.0717242\pi\)
0.974721 + 0.223426i \(0.0717242\pi\)
\(702\) − 2.19754e6i − 0.168304i
\(703\) 1.18515e6i 0.0904450i
\(704\) 3.96807e6 0.301751
\(705\) 0 0
\(706\) −413907. −0.0312529
\(707\) − 6.11139e6i − 0.459824i
\(708\) − 1.03511e6i − 0.0776075i
\(709\) 1.64964e7 1.23246 0.616232 0.787565i \(-0.288658\pi\)
0.616232 + 0.787565i \(0.288658\pi\)
\(710\) 0 0
\(711\) −1.31248e7 −0.973682
\(712\) − 1.12022e7i − 0.828141i
\(713\) 1.09407e6i 0.0805971i
\(714\) 1.23813e6 0.0908907
\(715\) 0 0
\(716\) 1.29796e7 0.946189
\(717\) 4.36797e6i 0.317309i
\(718\) − 1.41975e7i − 1.02778i
\(719\) 9.96268e6 0.718710 0.359355 0.933201i \(-0.382997\pi\)
0.359355 + 0.933201i \(0.382997\pi\)
\(720\) 0 0
\(721\) 1.70165e7 1.21908
\(722\) − 9.09514e6i − 0.649332i
\(723\) − 92602.6i − 0.00658836i
\(724\) 6.42375e6 0.455452
\(725\) 0 0
\(726\) 4.24095e6 0.298622
\(727\) 2.53565e7i 1.77932i 0.456627 + 0.889658i \(0.349057\pi\)
−0.456627 + 0.889658i \(0.650943\pi\)
\(728\) 2.82762e6i 0.197739i
\(729\) −4.31096e6 −0.300438
\(730\) 0 0
\(731\) 5.07775e6 0.351462
\(732\) 2.41310e6i 0.166455i
\(733\) 1.70653e7i 1.17315i 0.809894 + 0.586576i \(0.199524\pi\)
−0.809894 + 0.586576i \(0.800476\pi\)
\(734\) −8.04497e6 −0.551168
\(735\) 0 0
\(736\) −7.49218e6 −0.509816
\(737\) 659478.i 0.0447230i
\(738\) 9.51826e6i 0.643304i
\(739\) 1.40560e7 0.946781 0.473391 0.880853i \(-0.343030\pi\)
0.473391 + 0.880853i \(0.343030\pi\)
\(740\) 0 0
\(741\) −374067. −0.0250267
\(742\) 3.90245e6i 0.260212i
\(743\) − 1.55718e7i − 1.03483i −0.855736 0.517413i \(-0.826895\pi\)
0.855736 0.517413i \(-0.173105\pi\)
\(744\) −1.23135e6 −0.0815544
\(745\) 0 0
\(746\) 2.74633e6 0.180678
\(747\) 1.50126e6i 0.0984362i
\(748\) 1.23980e6i 0.0810209i
\(749\) 4.10433e6 0.267324
\(750\) 0 0
\(751\) −5.89761e6 −0.381572 −0.190786 0.981632i \(-0.561104\pi\)
−0.190786 + 0.981632i \(0.561104\pi\)
\(752\) − 1.45351e6i − 0.0937287i
\(753\) − 4.86441e6i − 0.312639i
\(754\) −2.36513e6 −0.151505
\(755\) 0 0
\(756\) 5.40622e6 0.344024
\(757\) 2.57205e6i 0.163132i 0.996668 + 0.0815660i \(0.0259921\pi\)
−0.996668 + 0.0815660i \(0.974008\pi\)
\(758\) − 5.31356e6i − 0.335902i
\(759\) 1.76201e6 0.111021
\(760\) 0 0
\(761\) −2.56012e7 −1.60250 −0.801252 0.598328i \(-0.795832\pi\)
−0.801252 + 0.598328i \(0.795832\pi\)
\(762\) 5.68509e6i 0.354691i
\(763\) 1.66665e7i 1.03642i
\(764\) 957179. 0.0593280
\(765\) 0 0
\(766\) 1.06750e7 0.657349
\(767\) − 1.20555e6i − 0.0739942i
\(768\) − 9.10895e6i − 0.557270i
\(769\) 1.15095e7 0.701842 0.350921 0.936405i \(-0.385869\pi\)
0.350921 + 0.936405i \(0.385869\pi\)
\(770\) 0 0
\(771\) −1.32582e6 −0.0803243
\(772\) − 3.69333e6i − 0.223036i
\(773\) − 5.18479e6i − 0.312092i −0.987750 0.156046i \(-0.950125\pi\)
0.987750 0.156046i \(-0.0498748\pi\)
\(774\) −7.53509e6 −0.452101
\(775\) 0 0
\(776\) −3.26674e6 −0.194742
\(777\) 3.21032e6i 0.190764i
\(778\) 6.48229e6i 0.383954i
\(779\) 3.86190e6 0.228012
\(780\) 0 0
\(781\) −2.01534e6 −0.118228
\(782\) 2.32388e6i 0.135893i
\(783\) 1.27070e7i 0.740692i
\(784\) −1.29503e6 −0.0752469
\(785\) 0 0
\(786\) −6.86561e6 −0.396390
\(787\) 1.28463e7i 0.739333i 0.929165 + 0.369667i \(0.120528\pi\)
−0.929165 + 0.369667i \(0.879472\pi\)
\(788\) − 1.02834e7i − 0.589958i
\(789\) 3.10087e6 0.177333
\(790\) 0 0
\(791\) 1.68438e7 0.957190
\(792\) − 5.16992e6i − 0.292867i
\(793\) 2.81044e6i 0.158705i
\(794\) −1.43834e7 −0.809676
\(795\) 0 0
\(796\) 1.10456e7 0.617883
\(797\) 2.11768e7i 1.18090i 0.807073 + 0.590452i \(0.201050\pi\)
−0.807073 + 0.590452i \(0.798950\pi\)
\(798\) 745461.i 0.0414398i
\(799\) 4.46727e6 0.247557
\(800\) 0 0
\(801\) −1.04651e7 −0.576320
\(802\) 4.14155e6i 0.227367i
\(803\) 2.05069e6i 0.112230i
\(804\) 611172. 0.0333444
\(805\) 0 0
\(806\) −510344. −0.0276711
\(807\) 5655.97i 0 0.000305719i
\(808\) 1.29100e7i 0.695659i
\(809\) −1.58537e6 −0.0851648 −0.0425824 0.999093i \(-0.513558\pi\)
−0.0425824 + 0.999093i \(0.513558\pi\)
\(810\) 0 0
\(811\) −2.18155e7 −1.16470 −0.582350 0.812938i \(-0.697867\pi\)
−0.582350 + 0.812938i \(0.697867\pi\)
\(812\) − 5.81850e6i − 0.309686i
\(813\) 5.13375e6i 0.272401i
\(814\) 2.60407e6 0.137750
\(815\) 0 0
\(816\) −535733. −0.0281659
\(817\) 3.05725e6i 0.160242i
\(818\) − 2.50962e7i − 1.31137i
\(819\) 2.64157e6 0.137611
\(820\) 0 0
\(821\) 3.09541e7 1.60273 0.801365 0.598176i \(-0.204108\pi\)
0.801365 + 0.598176i \(0.204108\pi\)
\(822\) 1.09901e7i 0.567313i
\(823\) 2.68746e7i 1.38307i 0.722345 + 0.691533i \(0.243064\pi\)
−0.722345 + 0.691533i \(0.756936\pi\)
\(824\) −3.59464e7 −1.84433
\(825\) 0 0
\(826\) −2.40249e6 −0.122521
\(827\) − 9.94152e6i − 0.505462i −0.967537 0.252731i \(-0.918671\pi\)
0.967537 0.252731i \(-0.0813288\pi\)
\(828\) 4.25707e6i 0.215792i
\(829\) −7.20887e6 −0.364318 −0.182159 0.983269i \(-0.558309\pi\)
−0.182159 + 0.983269i \(0.558309\pi\)
\(830\) 0 0
\(831\) 6.10666e6 0.306762
\(832\) − 4.28295e6i − 0.214504i
\(833\) − 3.98020e6i − 0.198743i
\(834\) 8.77867e6 0.437032
\(835\) 0 0
\(836\) −746468. −0.0369399
\(837\) 2.74190e6i 0.135281i
\(838\) 5.67777e6i 0.279298i
\(839\) −1.96670e7 −0.964569 −0.482285 0.876015i \(-0.660193\pi\)
−0.482285 + 0.876015i \(0.660193\pi\)
\(840\) 0 0
\(841\) −6.83513e6 −0.333240
\(842\) − 7.24288e6i − 0.352072i
\(843\) 1.18018e7i 0.571979i
\(844\) 1.11068e7 0.536702
\(845\) 0 0
\(846\) −6.62917e6 −0.318444
\(847\) 1.21512e7i 0.581984i
\(848\) − 1.68858e6i − 0.0806364i
\(849\) 1.02321e7 0.487186
\(850\) 0 0
\(851\) −6.02554e6 −0.285215
\(852\) 1.86772e6i 0.0881482i
\(853\) 2.60044e7i 1.22370i 0.790975 + 0.611848i \(0.209574\pi\)
−0.790975 + 0.611848i \(0.790426\pi\)
\(854\) 5.60080e6 0.262788
\(855\) 0 0
\(856\) −8.67015e6 −0.404429
\(857\) 2.74925e7i 1.27868i 0.768923 + 0.639341i \(0.220793\pi\)
−0.768923 + 0.639341i \(0.779207\pi\)
\(858\) 821919.i 0.0381163i
\(859\) −3.86634e7 −1.78779 −0.893896 0.448274i \(-0.852039\pi\)
−0.893896 + 0.448274i \(0.852039\pi\)
\(860\) 0 0
\(861\) 1.04611e7 0.480914
\(862\) 2.28669e7i 1.04819i
\(863\) 8.41848e6i 0.384775i 0.981319 + 0.192387i \(0.0616230\pi\)
−0.981319 + 0.192387i \(0.938377\pi\)
\(864\) −1.87766e7 −0.855720
\(865\) 0 0
\(866\) 6.86038e6 0.310852
\(867\) 1.00075e7i 0.452144i
\(868\) − 1.25551e6i − 0.0565615i
\(869\) 1.17008e7 0.525611
\(870\) 0 0
\(871\) 711808. 0.0317920
\(872\) − 3.52071e7i − 1.56797i
\(873\) 3.05179e6i 0.135525i
\(874\) −1.39918e6 −0.0619576
\(875\) 0 0
\(876\) 1.90048e6 0.0836763
\(877\) − 1.24226e7i − 0.545399i −0.962099 0.272699i \(-0.912084\pi\)
0.962099 0.272699i \(-0.0879164\pi\)
\(878\) − 1.30716e7i − 0.572257i
\(879\) −1.43357e7 −0.625815
\(880\) 0 0
\(881\) 7.24684e6 0.314564 0.157282 0.987554i \(-0.449727\pi\)
0.157282 + 0.987554i \(0.449727\pi\)
\(882\) 5.90637e6i 0.255652i
\(883\) 1.58232e7i 0.682958i 0.939889 + 0.341479i \(0.110928\pi\)
−0.939889 + 0.341479i \(0.889072\pi\)
\(884\) 1.33818e6 0.0575949
\(885\) 0 0
\(886\) 6.21760e6 0.266096
\(887\) 1.85905e7i 0.793382i 0.917952 + 0.396691i \(0.129842\pi\)
−0.917952 + 0.396691i \(0.870158\pi\)
\(888\) − 6.78161e6i − 0.288603i
\(889\) −1.62890e7 −0.691257
\(890\) 0 0
\(891\) −2.26650e6 −0.0956446
\(892\) − 1.94038e7i − 0.816537i
\(893\) 2.68969e6i 0.112869i
\(894\) −2.40972e6 −0.100838
\(895\) 0 0
\(896\) 7.02718e6 0.292423
\(897\) − 1.90183e6i − 0.0789206i
\(898\) − 1.47654e7i − 0.611018i
\(899\) 2.95100e6 0.121778
\(900\) 0 0
\(901\) 5.18974e6 0.212978
\(902\) − 8.48556e6i − 0.347267i
\(903\) 8.28144e6i 0.337977i
\(904\) −3.55815e7 −1.44811
\(905\) 0 0
\(906\) 6.51331e6 0.263622
\(907\) 4.30877e7i 1.73914i 0.493808 + 0.869571i \(0.335605\pi\)
−0.493808 + 0.869571i \(0.664395\pi\)
\(908\) − 2.86288e6i − 0.115236i
\(909\) 1.20605e7 0.484123
\(910\) 0 0
\(911\) 870987. 0.0347709 0.0173854 0.999849i \(-0.494466\pi\)
0.0173854 + 0.999849i \(0.494466\pi\)
\(912\) − 322558.i − 0.0128417i
\(913\) − 1.33838e6i − 0.0531377i
\(914\) −2.30773e7 −0.913735
\(915\) 0 0
\(916\) 1.14066e7 0.449178
\(917\) − 1.96714e7i − 0.772524i
\(918\) 5.82400e6i 0.228094i
\(919\) 7.81477e6 0.305230 0.152615 0.988286i \(-0.451231\pi\)
0.152615 + 0.988286i \(0.451231\pi\)
\(920\) 0 0
\(921\) −1.96439e6 −0.0763095
\(922\) 3.22647e7i 1.24997i
\(923\) 2.17526e6i 0.0840442i
\(924\) −2.02202e6 −0.0779123
\(925\) 0 0
\(926\) 1.02425e7 0.392533
\(927\) 3.35812e7i 1.28350i
\(928\) 2.02085e7i 0.770307i
\(929\) −6.93323e6 −0.263570 −0.131785 0.991278i \(-0.542071\pi\)
−0.131785 + 0.991278i \(0.542071\pi\)
\(930\) 0 0
\(931\) 2.39643e6 0.0906129
\(932\) − 1.48487e7i − 0.559948i
\(933\) 9.05644e6i 0.340607i
\(934\) −1.32516e6 −0.0497052
\(935\) 0 0
\(936\) −5.58017e6 −0.208189
\(937\) − 3.31684e7i − 1.23417i −0.786896 0.617085i \(-0.788313\pi\)
0.786896 0.617085i \(-0.211687\pi\)
\(938\) − 1.41853e6i − 0.0526420i
\(939\) 7.67298e6 0.283988
\(940\) 0 0
\(941\) −5.00778e6 −0.184362 −0.0921809 0.995742i \(-0.529384\pi\)
−0.0921809 + 0.995742i \(0.529384\pi\)
\(942\) 3.96790e6i 0.145691i
\(943\) 1.96347e7i 0.719025i
\(944\) 1.03955e6 0.0379678
\(945\) 0 0
\(946\) 6.71756e6 0.244053
\(947\) − 7.37028e6i − 0.267060i −0.991045 0.133530i \(-0.957369\pi\)
0.991045 0.133530i \(-0.0426313\pi\)
\(948\) − 1.08437e7i − 0.391883i
\(949\) 2.21341e6 0.0797805
\(950\) 0 0
\(951\) 2.17867e7 0.781162
\(952\) − 7.49388e6i − 0.267987i
\(953\) − 7.45227e6i − 0.265801i −0.991129 0.132900i \(-0.957571\pi\)
0.991129 0.132900i \(-0.0424291\pi\)
\(954\) −7.70127e6 −0.273963
\(955\) 0 0
\(956\) 9.40817e6 0.332936
\(957\) − 4.75263e6i − 0.167747i
\(958\) − 3.21336e7i − 1.13122i
\(959\) −3.14890e7 −1.10564
\(960\) 0 0
\(961\) −2.79924e7 −0.977758
\(962\) − 2.81071e6i − 0.0979216i
\(963\) 8.09967e6i 0.281450i
\(964\) −199457. −0.00691283
\(965\) 0 0
\(966\) −3.79007e6 −0.130679
\(967\) − 4.78544e7i − 1.64572i −0.568244 0.822860i \(-0.692377\pi\)
0.568244 0.822860i \(-0.307623\pi\)
\(968\) − 2.56687e7i − 0.880473i
\(969\) 991365. 0.0339175
\(970\) 0 0
\(971\) −2.54187e7 −0.865177 −0.432588 0.901592i \(-0.642400\pi\)
−0.432588 + 0.901592i \(0.642400\pi\)
\(972\) 1.68618e7i 0.572450i
\(973\) 2.51527e7i 0.851733i
\(974\) 11484.1 0.000387881 0
\(975\) 0 0
\(976\) −2.42345e6 −0.0814347
\(977\) 3.10699e7i 1.04137i 0.853750 + 0.520683i \(0.174323\pi\)
−0.853750 + 0.520683i \(0.825677\pi\)
\(978\) − 1.03882e6i − 0.0347291i
\(979\) 9.32970e6 0.311108
\(980\) 0 0
\(981\) −3.28905e7 −1.09118
\(982\) − 1.29845e7i − 0.429682i
\(983\) − 1.28575e6i − 0.0424398i −0.999775 0.0212199i \(-0.993245\pi\)
0.999775 0.0212199i \(-0.00675501\pi\)
\(984\) −2.20984e7 −0.727566
\(985\) 0 0
\(986\) 6.26814e6 0.205327
\(987\) 7.28579e6i 0.238059i
\(988\) 805701.i 0.0262592i
\(989\) −1.55437e7 −0.505317
\(990\) 0 0
\(991\) −4.43766e6 −0.143539 −0.0717695 0.997421i \(-0.522865\pi\)
−0.0717695 + 0.997421i \(0.522865\pi\)
\(992\) 4.36057e6i 0.140690i
\(993\) 5.32146e6i 0.171261i
\(994\) 4.33499e6 0.139162
\(995\) 0 0
\(996\) −1.24035e6 −0.0396182
\(997\) − 2.72549e7i − 0.868375i −0.900823 0.434187i \(-0.857036\pi\)
0.900823 0.434187i \(-0.142964\pi\)
\(998\) 4.22202e6i 0.134182i
\(999\) −1.51009e7 −0.478729
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.i.274.15 22
5.2 odd 4 325.6.a.k.1.4 yes 11
5.3 odd 4 325.6.a.j.1.8 11
5.4 even 2 inner 325.6.b.i.274.8 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.8 11 5.3 odd 4
325.6.a.k.1.4 yes 11 5.2 odd 4
325.6.b.i.274.8 22 5.4 even 2 inner
325.6.b.i.274.15 22 1.1 even 1 trivial