Properties

Label 325.6.b.i.274.14
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.14
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.i.274.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.89241i q^{2} +3.45730i q^{3} +23.6340 q^{4} -9.99993 q^{6} -148.288i q^{7} +160.916i q^{8} +231.047 q^{9} +O(q^{10})\) \(q+2.89241i q^{2} +3.45730i q^{3} +23.6340 q^{4} -9.99993 q^{6} -148.288i q^{7} +160.916i q^{8} +231.047 q^{9} -712.658 q^{11} +81.7096i q^{12} -169.000i q^{13} +428.910 q^{14} +290.850 q^{16} -1131.92i q^{17} +668.283i q^{18} -1400.39 q^{19} +512.676 q^{21} -2061.30i q^{22} -897.571i q^{23} -556.336 q^{24} +488.818 q^{26} +1638.92i q^{27} -3504.63i q^{28} -3238.07 q^{29} -7976.53 q^{31} +5990.58i q^{32} -2463.87i q^{33} +3273.98 q^{34} +5460.56 q^{36} +4978.35i q^{37} -4050.50i q^{38} +584.284 q^{39} -15559.9 q^{41} +1482.87i q^{42} +2308.61i q^{43} -16842.9 q^{44} +2596.15 q^{46} -7602.52i q^{47} +1005.56i q^{48} -5182.35 q^{49} +3913.39 q^{51} -3994.14i q^{52} +14138.1i q^{53} -4740.44 q^{54} +23862.0 q^{56} -4841.56i q^{57} -9365.83i q^{58} -49808.7 q^{59} -2516.69 q^{61} -23071.4i q^{62} -34261.5i q^{63} -8020.03 q^{64} +7126.54 q^{66} -38549.3i q^{67} -26751.8i q^{68} +3103.17 q^{69} +68008.5 q^{71} +37179.2i q^{72} +21305.2i q^{73} -14399.4 q^{74} -33096.7 q^{76} +105679. i q^{77} +1689.99i q^{78} -3984.60 q^{79} +50478.2 q^{81} -45005.8i q^{82} +13876.6i q^{83} +12116.6 q^{84} -6677.44 q^{86} -11195.0i q^{87} -114678. i q^{88} -89289.8 q^{89} -25060.7 q^{91} -21213.1i q^{92} -27577.2i q^{93} +21989.6 q^{94} -20711.2 q^{96} -147549. i q^{97} -14989.5i q^{98} -164658. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9} + 2552 q^{11} - 1156 q^{14} + 11414 q^{16} - 7040 q^{19} + 3412 q^{21} - 15446 q^{24} + 1690 q^{26} - 36850 q^{29} + 18136 q^{31} + 28910 q^{34} + 75368 q^{36} - 3718 q^{39} - 20020 q^{41} - 121302 q^{44} - 19716 q^{46} - 146626 q^{49} + 73212 q^{51} - 96026 q^{54} - 2524 q^{56} - 263284 q^{59} - 86730 q^{61} - 360142 q^{64} - 117214 q^{66} - 118690 q^{69} + 136840 q^{71} - 742792 q^{74} + 45034 q^{76} - 104478 q^{79} + 215014 q^{81} - 1705432 q^{84} + 404492 q^{86} - 655424 q^{89} + 70304 q^{91} - 1299948 q^{94} + 1799326 q^{96} - 853396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.89241i 0.511311i 0.966768 + 0.255656i \(0.0822913\pi\)
−0.966768 + 0.255656i \(0.917709\pi\)
\(3\) 3.45730i 0.221786i 0.993832 + 0.110893i \(0.0353711\pi\)
−0.993832 + 0.110893i \(0.964629\pi\)
\(4\) 23.6340 0.738561
\(5\) 0 0
\(6\) −9.99993 −0.113402
\(7\) − 148.288i − 1.14383i −0.820313 0.571914i \(-0.806201\pi\)
0.820313 0.571914i \(-0.193799\pi\)
\(8\) 160.916i 0.888945i
\(9\) 231.047 0.950811
\(10\) 0 0
\(11\) −712.658 −1.77582 −0.887912 0.460014i \(-0.847844\pi\)
−0.887912 + 0.460014i \(0.847844\pi\)
\(12\) 81.7096i 0.163802i
\(13\) − 169.000i − 0.277350i
\(14\) 428.910 0.584852
\(15\) 0 0
\(16\) 290.850 0.284033
\(17\) − 1131.92i − 0.949935i −0.880003 0.474968i \(-0.842460\pi\)
0.880003 0.474968i \(-0.157540\pi\)
\(18\) 668.283i 0.486160i
\(19\) −1400.39 −0.889947 −0.444974 0.895544i \(-0.646787\pi\)
−0.444974 + 0.895544i \(0.646787\pi\)
\(20\) 0 0
\(21\) 512.676 0.253685
\(22\) − 2061.30i − 0.907998i
\(23\) − 897.571i − 0.353793i −0.984229 0.176896i \(-0.943394\pi\)
0.984229 0.176896i \(-0.0566058\pi\)
\(24\) −556.336 −0.197156
\(25\) 0 0
\(26\) 488.818 0.141812
\(27\) 1638.92i 0.432662i
\(28\) − 3504.63i − 0.844787i
\(29\) −3238.07 −0.714975 −0.357488 0.933918i \(-0.616367\pi\)
−0.357488 + 0.933918i \(0.616367\pi\)
\(30\) 0 0
\(31\) −7976.53 −1.49077 −0.745383 0.666636i \(-0.767733\pi\)
−0.745383 + 0.666636i \(0.767733\pi\)
\(32\) 5990.58i 1.03417i
\(33\) − 2463.87i − 0.393852i
\(34\) 3273.98 0.485712
\(35\) 0 0
\(36\) 5460.56 0.702232
\(37\) 4978.35i 0.597835i 0.954279 + 0.298917i \(0.0966255\pi\)
−0.954279 + 0.298917i \(0.903374\pi\)
\(38\) − 4050.50i − 0.455040i
\(39\) 584.284 0.0615123
\(40\) 0 0
\(41\) −15559.9 −1.44560 −0.722800 0.691057i \(-0.757145\pi\)
−0.722800 + 0.691057i \(0.757145\pi\)
\(42\) 1482.87i 0.129712i
\(43\) 2308.61i 0.190405i 0.995458 + 0.0952026i \(0.0303499\pi\)
−0.995458 + 0.0952026i \(0.969650\pi\)
\(44\) −16842.9 −1.31155
\(45\) 0 0
\(46\) 2596.15 0.180898
\(47\) − 7602.52i − 0.502011i −0.967986 0.251005i \(-0.919239\pi\)
0.967986 0.251005i \(-0.0807612\pi\)
\(48\) 1005.56i 0.0629946i
\(49\) −5182.35 −0.308344
\(50\) 0 0
\(51\) 3913.39 0.210682
\(52\) − 3994.14i − 0.204840i
\(53\) 14138.1i 0.691357i 0.938353 + 0.345678i \(0.112351\pi\)
−0.938353 + 0.345678i \(0.887649\pi\)
\(54\) −4740.44 −0.221225
\(55\) 0 0
\(56\) 23862.0 1.01680
\(57\) − 4841.56i − 0.197378i
\(58\) − 9365.83i − 0.365575i
\(59\) −49808.7 −1.86284 −0.931419 0.363948i \(-0.881428\pi\)
−0.931419 + 0.363948i \(0.881428\pi\)
\(60\) 0 0
\(61\) −2516.69 −0.0865973 −0.0432986 0.999062i \(-0.513787\pi\)
−0.0432986 + 0.999062i \(0.513787\pi\)
\(62\) − 23071.4i − 0.762245i
\(63\) − 34261.5i − 1.08757i
\(64\) −8020.03 −0.244752
\(65\) 0 0
\(66\) 7126.54 0.201381
\(67\) − 38549.3i − 1.04913i −0.851370 0.524566i \(-0.824228\pi\)
0.851370 0.524566i \(-0.175772\pi\)
\(68\) − 26751.8i − 0.701585i
\(69\) 3103.17 0.0784663
\(70\) 0 0
\(71\) 68008.5 1.60110 0.800548 0.599269i \(-0.204542\pi\)
0.800548 + 0.599269i \(0.204542\pi\)
\(72\) 37179.2i 0.845219i
\(73\) 21305.2i 0.467927i 0.972245 + 0.233963i \(0.0751696\pi\)
−0.972245 + 0.233963i \(0.924830\pi\)
\(74\) −14399.4 −0.305680
\(75\) 0 0
\(76\) −33096.7 −0.657280
\(77\) 105679.i 2.03124i
\(78\) 1689.99i 0.0314519i
\(79\) −3984.60 −0.0718318 −0.0359159 0.999355i \(-0.511435\pi\)
−0.0359159 + 0.999355i \(0.511435\pi\)
\(80\) 0 0
\(81\) 50478.2 0.854853
\(82\) − 45005.8i − 0.739152i
\(83\) 13876.6i 0.221100i 0.993871 + 0.110550i \(0.0352612\pi\)
−0.993871 + 0.110550i \(0.964739\pi\)
\(84\) 12116.6 0.187362
\(85\) 0 0
\(86\) −6677.44 −0.0973563
\(87\) − 11195.0i − 0.158571i
\(88\) − 114678.i − 1.57861i
\(89\) −89289.8 −1.19489 −0.597443 0.801911i \(-0.703817\pi\)
−0.597443 + 0.801911i \(0.703817\pi\)
\(90\) 0 0
\(91\) −25060.7 −0.317241
\(92\) − 21213.1i − 0.261298i
\(93\) − 27577.2i − 0.330631i
\(94\) 21989.6 0.256684
\(95\) 0 0
\(96\) −20711.2 −0.229365
\(97\) − 147549.i − 1.59223i −0.605145 0.796116i \(-0.706885\pi\)
0.605145 0.796116i \(-0.293115\pi\)
\(98\) − 14989.5i − 0.157660i
\(99\) −164658. −1.68847
\(100\) 0 0
\(101\) −10084.2 −0.0983642 −0.0491821 0.998790i \(-0.515661\pi\)
−0.0491821 + 0.998790i \(0.515661\pi\)
\(102\) 11319.1i 0.107724i
\(103\) − 175080.i − 1.62608i −0.582206 0.813041i \(-0.697810\pi\)
0.582206 0.813041i \(-0.302190\pi\)
\(104\) 27194.9 0.246549
\(105\) 0 0
\(106\) −40893.3 −0.353498
\(107\) − 225117.i − 1.90086i −0.310946 0.950428i \(-0.600646\pi\)
0.310946 0.950428i \(-0.399354\pi\)
\(108\) 38734.2i 0.319547i
\(109\) −25083.5 −0.202219 −0.101109 0.994875i \(-0.532239\pi\)
−0.101109 + 0.994875i \(0.532239\pi\)
\(110\) 0 0
\(111\) −17211.6 −0.132591
\(112\) − 43129.6i − 0.324885i
\(113\) 39258.9i 0.289229i 0.989488 + 0.144615i \(0.0461942\pi\)
−0.989488 + 0.144615i \(0.953806\pi\)
\(114\) 14003.8 0.100921
\(115\) 0 0
\(116\) −76528.3 −0.528053
\(117\) − 39047.0i − 0.263708i
\(118\) − 144067.i − 0.952490i
\(119\) −167850. −1.08656
\(120\) 0 0
\(121\) 346831. 2.15355
\(122\) − 7279.29i − 0.0442782i
\(123\) − 53795.4i − 0.320614i
\(124\) −188517. −1.10102
\(125\) 0 0
\(126\) 99098.4 0.556084
\(127\) − 267258.i − 1.47035i −0.677875 0.735177i \(-0.737099\pi\)
0.677875 0.735177i \(-0.262901\pi\)
\(128\) 168501.i 0.909031i
\(129\) −7981.55 −0.0422292
\(130\) 0 0
\(131\) −157114. −0.799903 −0.399952 0.916536i \(-0.630973\pi\)
−0.399952 + 0.916536i \(0.630973\pi\)
\(132\) − 58231.1i − 0.290884i
\(133\) 207661.i 1.01795i
\(134\) 111501. 0.536433
\(135\) 0 0
\(136\) 182145. 0.844441
\(137\) 132383.i 0.602603i 0.953529 + 0.301302i \(0.0974211\pi\)
−0.953529 + 0.301302i \(0.902579\pi\)
\(138\) 8975.65i 0.0401207i
\(139\) 285040. 1.25132 0.625661 0.780095i \(-0.284829\pi\)
0.625661 + 0.780095i \(0.284829\pi\)
\(140\) 0 0
\(141\) 26284.2 0.111339
\(142\) 196709.i 0.818658i
\(143\) 120439.i 0.492525i
\(144\) 67200.1 0.270062
\(145\) 0 0
\(146\) −61623.4 −0.239256
\(147\) − 17916.9i − 0.0683864i
\(148\) 117658.i 0.441537i
\(149\) 156686. 0.578180 0.289090 0.957302i \(-0.406647\pi\)
0.289090 + 0.957302i \(0.406647\pi\)
\(150\) 0 0
\(151\) 422557. 1.50814 0.754072 0.656792i \(-0.228087\pi\)
0.754072 + 0.656792i \(0.228087\pi\)
\(152\) − 225345.i − 0.791115i
\(153\) − 261527.i − 0.903209i
\(154\) −305666. −1.03859
\(155\) 0 0
\(156\) 13808.9 0.0454306
\(157\) − 129540.i − 0.419427i −0.977763 0.209713i \(-0.932747\pi\)
0.977763 0.209713i \(-0.0672531\pi\)
\(158\) − 11525.1i − 0.0367284i
\(159\) −48879.7 −0.153333
\(160\) 0 0
\(161\) −133099. −0.404679
\(162\) 146004.i 0.437096i
\(163\) − 616763.i − 1.81823i −0.416542 0.909116i \(-0.636758\pi\)
0.416542 0.909116i \(-0.363242\pi\)
\(164\) −367743. −1.06766
\(165\) 0 0
\(166\) −40136.9 −0.113051
\(167\) 512670.i 1.42248i 0.702948 + 0.711241i \(0.251867\pi\)
−0.702948 + 0.711241i \(0.748133\pi\)
\(168\) 82498.0i 0.225512i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −323556. −0.846172
\(172\) 54561.5i 0.140626i
\(173\) 462817.i 1.17569i 0.808973 + 0.587846i \(0.200024\pi\)
−0.808973 + 0.587846i \(0.799976\pi\)
\(174\) 32380.5 0.0810793
\(175\) 0 0
\(176\) −207277. −0.504393
\(177\) − 172204.i − 0.413151i
\(178\) − 258263.i − 0.610959i
\(179\) −413926. −0.965584 −0.482792 0.875735i \(-0.660377\pi\)
−0.482792 + 0.875735i \(0.660377\pi\)
\(180\) 0 0
\(181\) −167089. −0.379099 −0.189549 0.981871i \(-0.560703\pi\)
−0.189549 + 0.981871i \(0.560703\pi\)
\(182\) − 72485.8i − 0.162209i
\(183\) − 8700.93i − 0.0192061i
\(184\) 144434. 0.314503
\(185\) 0 0
\(186\) 79764.7 0.169055
\(187\) 806673.i 1.68692i
\(188\) − 179678.i − 0.370766i
\(189\) 243033. 0.494892
\(190\) 0 0
\(191\) 30723.8 0.0609385 0.0304692 0.999536i \(-0.490300\pi\)
0.0304692 + 0.999536i \(0.490300\pi\)
\(192\) − 27727.6i − 0.0542825i
\(193\) 1.01259e6i 1.95677i 0.206784 + 0.978387i \(0.433700\pi\)
−0.206784 + 0.978387i \(0.566300\pi\)
\(194\) 426772. 0.814125
\(195\) 0 0
\(196\) −122479. −0.227731
\(197\) − 422275.i − 0.775229i −0.921822 0.387614i \(-0.873299\pi\)
0.921822 0.387614i \(-0.126701\pi\)
\(198\) − 476258.i − 0.863335i
\(199\) −553506. −0.990808 −0.495404 0.868663i \(-0.664980\pi\)
−0.495404 + 0.868663i \(0.664980\pi\)
\(200\) 0 0
\(201\) 133277. 0.232683
\(202\) − 29167.6i − 0.0502947i
\(203\) 480167.i 0.817809i
\(204\) 92488.9 0.155602
\(205\) 0 0
\(206\) 506402. 0.831434
\(207\) − 207381.i − 0.336390i
\(208\) − 49153.7i − 0.0787767i
\(209\) 997998. 1.58039
\(210\) 0 0
\(211\) −758171. −1.17236 −0.586180 0.810181i \(-0.699369\pi\)
−0.586180 + 0.810181i \(0.699369\pi\)
\(212\) 334140.i 0.510609i
\(213\) 235126.i 0.355100i
\(214\) 651132. 0.971928
\(215\) 0 0
\(216\) −263729. −0.384613
\(217\) 1.18282e6i 1.70518i
\(218\) − 72551.8i − 0.103397i
\(219\) −73658.4 −0.103780
\(220\) 0 0
\(221\) −191295. −0.263465
\(222\) − 49783.2i − 0.0677954i
\(223\) 142765.i 0.192247i 0.995369 + 0.0961236i \(0.0306444\pi\)
−0.995369 + 0.0961236i \(0.969356\pi\)
\(224\) 888332. 1.18292
\(225\) 0 0
\(226\) −113553. −0.147886
\(227\) 578969.i 0.745746i 0.927882 + 0.372873i \(0.121627\pi\)
−0.927882 + 0.372873i \(0.878373\pi\)
\(228\) − 114425.i − 0.145775i
\(229\) 242404. 0.305457 0.152729 0.988268i \(-0.451194\pi\)
0.152729 + 0.988268i \(0.451194\pi\)
\(230\) 0 0
\(231\) −365363. −0.450500
\(232\) − 521058.i − 0.635574i
\(233\) 540278.i 0.651970i 0.945375 + 0.325985i \(0.105696\pi\)
−0.945375 + 0.325985i \(0.894304\pi\)
\(234\) 112940. 0.134837
\(235\) 0 0
\(236\) −1.17718e6 −1.37582
\(237\) − 13776.0i − 0.0159313i
\(238\) − 485493.i − 0.555572i
\(239\) 223034. 0.252567 0.126284 0.991994i \(-0.459695\pi\)
0.126284 + 0.991994i \(0.459695\pi\)
\(240\) 0 0
\(241\) 1.31596e6 1.45948 0.729742 0.683723i \(-0.239640\pi\)
0.729742 + 0.683723i \(0.239640\pi\)
\(242\) 1.00318e6i 1.10113i
\(243\) 572776.i 0.622256i
\(244\) −59479.2 −0.0639574
\(245\) 0 0
\(246\) 155598. 0.163933
\(247\) 236666.i 0.246827i
\(248\) − 1.28355e6i − 1.32521i
\(249\) −47975.6 −0.0490368
\(250\) 0 0
\(251\) 475886. 0.476781 0.238390 0.971169i \(-0.423380\pi\)
0.238390 + 0.971169i \(0.423380\pi\)
\(252\) − 809735.i − 0.803233i
\(253\) 639661.i 0.628274i
\(254\) 773021. 0.751808
\(255\) 0 0
\(256\) −744016. −0.709549
\(257\) − 184678.i − 0.174415i −0.996190 0.0872074i \(-0.972206\pi\)
0.996190 0.0872074i \(-0.0277943\pi\)
\(258\) − 23085.9i − 0.0215923i
\(259\) 738230. 0.683821
\(260\) 0 0
\(261\) −748146. −0.679806
\(262\) − 454439.i − 0.408999i
\(263\) − 541222.i − 0.482487i −0.970465 0.241244i \(-0.922445\pi\)
0.970465 0.241244i \(-0.0775553\pi\)
\(264\) 396477. 0.350113
\(265\) 0 0
\(266\) −600641. −0.520488
\(267\) − 308702.i − 0.265009i
\(268\) − 911073.i − 0.774848i
\(269\) −198419. −0.167187 −0.0835934 0.996500i \(-0.526640\pi\)
−0.0835934 + 0.996500i \(0.526640\pi\)
\(270\) 0 0
\(271\) −258403. −0.213734 −0.106867 0.994273i \(-0.534082\pi\)
−0.106867 + 0.994273i \(0.534082\pi\)
\(272\) − 329219.i − 0.269813i
\(273\) − 86642.3i − 0.0703596i
\(274\) −382907. −0.308118
\(275\) 0 0
\(276\) 73340.2 0.0579521
\(277\) 2.19835e6i 1.72146i 0.509063 + 0.860729i \(0.329992\pi\)
−0.509063 + 0.860729i \(0.670008\pi\)
\(278\) 824454.i 0.639815i
\(279\) −1.84295e6 −1.41744
\(280\) 0 0
\(281\) −842.387 −0.000636423 0 −0.000318211 1.00000i \(-0.500101\pi\)
−0.000318211 1.00000i \(0.500101\pi\)
\(282\) 76024.7i 0.0569288i
\(283\) 1.93205e6i 1.43401i 0.697067 + 0.717006i \(0.254488\pi\)
−0.697067 + 0.717006i \(0.745512\pi\)
\(284\) 1.60731e6 1.18251
\(285\) 0 0
\(286\) −348360. −0.251833
\(287\) 2.30735e6i 1.65352i
\(288\) 1.38411e6i 0.983305i
\(289\) 138611. 0.0976230
\(290\) 0 0
\(291\) 510120. 0.353134
\(292\) 503526.i 0.345593i
\(293\) 1.01321e6i 0.689493i 0.938696 + 0.344747i \(0.112035\pi\)
−0.938696 + 0.344747i \(0.887965\pi\)
\(294\) 51823.1 0.0349667
\(295\) 0 0
\(296\) −801098. −0.531443
\(297\) − 1.16799e6i − 0.768332i
\(298\) 453199.i 0.295630i
\(299\) −151689. −0.0981245
\(300\) 0 0
\(301\) 342339. 0.217791
\(302\) 1.22221e6i 0.771131i
\(303\) − 34864.0i − 0.0218158i
\(304\) −407303. −0.252775
\(305\) 0 0
\(306\) 756444. 0.461821
\(307\) − 386274.i − 0.233910i −0.993137 0.116955i \(-0.962687\pi\)
0.993137 0.116955i \(-0.0373134\pi\)
\(308\) 2.49761e6i 1.50019i
\(309\) 605303. 0.360642
\(310\) 0 0
\(311\) 1.37666e6 0.807099 0.403550 0.914958i \(-0.367776\pi\)
0.403550 + 0.914958i \(0.367776\pi\)
\(312\) 94020.8i 0.0546811i
\(313\) − 541373.i − 0.312346i −0.987730 0.156173i \(-0.950084\pi\)
0.987730 0.156173i \(-0.0499157\pi\)
\(314\) 374684. 0.214458
\(315\) 0 0
\(316\) −94171.8 −0.0530522
\(317\) − 1.91853e6i − 1.07231i −0.844120 0.536154i \(-0.819876\pi\)
0.844120 0.536154i \(-0.180124\pi\)
\(318\) − 141380.i − 0.0784009i
\(319\) 2.30764e6 1.26967
\(320\) 0 0
\(321\) 778297. 0.421583
\(322\) − 384977.i − 0.206917i
\(323\) 1.58513e6i 0.845392i
\(324\) 1.19300e6 0.631361
\(325\) 0 0
\(326\) 1.78393e6 0.929683
\(327\) − 86721.2i − 0.0448493i
\(328\) − 2.50385e6i − 1.28506i
\(329\) −1.12736e6 −0.574215
\(330\) 0 0
\(331\) −2.40144e6 −1.20477 −0.602383 0.798207i \(-0.705782\pi\)
−0.602383 + 0.798207i \(0.705782\pi\)
\(332\) 327959.i 0.163296i
\(333\) 1.15023e6i 0.568428i
\(334\) −1.48285e6 −0.727331
\(335\) 0 0
\(336\) 149112. 0.0720550
\(337\) − 3.84325e6i − 1.84342i −0.387882 0.921709i \(-0.626793\pi\)
0.387882 0.921709i \(-0.373207\pi\)
\(338\) − 82610.2i − 0.0393316i
\(339\) −135730. −0.0641469
\(340\) 0 0
\(341\) 5.68454e6 2.64734
\(342\) − 935856.i − 0.432657i
\(343\) − 1.72380e6i − 0.791136i
\(344\) −371493. −0.169260
\(345\) 0 0
\(346\) −1.33866e6 −0.601144
\(347\) 1.02696e6i 0.457858i 0.973443 + 0.228929i \(0.0735224\pi\)
−0.973443 + 0.228929i \(0.926478\pi\)
\(348\) − 264581.i − 0.117115i
\(349\) −1.24908e6 −0.548944 −0.274472 0.961595i \(-0.588503\pi\)
−0.274472 + 0.961595i \(0.588503\pi\)
\(350\) 0 0
\(351\) 276978. 0.119999
\(352\) − 4.26924e6i − 1.83651i
\(353\) − 3.13090e6i − 1.33731i −0.743573 0.668654i \(-0.766871\pi\)
0.743573 0.668654i \(-0.233129\pi\)
\(354\) 498084. 0.211249
\(355\) 0 0
\(356\) −2.11027e6 −0.882497
\(357\) − 580309.i − 0.240984i
\(358\) − 1.19724e6i − 0.493714i
\(359\) 2.63535e6 1.07920 0.539600 0.841921i \(-0.318575\pi\)
0.539600 + 0.841921i \(0.318575\pi\)
\(360\) 0 0
\(361\) −515013. −0.207994
\(362\) − 483291.i − 0.193837i
\(363\) 1.19910e6i 0.477626i
\(364\) −592283. −0.234302
\(365\) 0 0
\(366\) 25166.7 0.00982027
\(367\) 2.23239e6i 0.865175i 0.901592 + 0.432588i \(0.142399\pi\)
−0.901592 + 0.432588i \(0.857601\pi\)
\(368\) − 261059.i − 0.100489i
\(369\) −3.59508e6 −1.37449
\(370\) 0 0
\(371\) 2.09651e6 0.790794
\(372\) − 651759.i − 0.244191i
\(373\) − 3.72332e6i − 1.38566i −0.721099 0.692832i \(-0.756363\pi\)
0.721099 0.692832i \(-0.243637\pi\)
\(374\) −2.33323e6 −0.862539
\(375\) 0 0
\(376\) 1.22337e6 0.446260
\(377\) 547233.i 0.198298i
\(378\) 702951.i 0.253044i
\(379\) 2.11153e6 0.755089 0.377545 0.925991i \(-0.376768\pi\)
0.377545 + 0.925991i \(0.376768\pi\)
\(380\) 0 0
\(381\) 923992. 0.326104
\(382\) 88865.9i 0.0311585i
\(383\) − 414336.i − 0.144330i −0.997393 0.0721648i \(-0.977009\pi\)
0.997393 0.0721648i \(-0.0229908\pi\)
\(384\) −582560. −0.201610
\(385\) 0 0
\(386\) −2.92883e6 −1.00052
\(387\) 533397.i 0.181039i
\(388\) − 3.48716e6i − 1.17596i
\(389\) −4.10572e6 −1.37567 −0.687837 0.725865i \(-0.741440\pi\)
−0.687837 + 0.725865i \(0.741440\pi\)
\(390\) 0 0
\(391\) −1.01598e6 −0.336080
\(392\) − 833924.i − 0.274101i
\(393\) − 543191.i − 0.177407i
\(394\) 1.22139e6 0.396383
\(395\) 0 0
\(396\) −3.89151e6 −1.24704
\(397\) 5.78249e6i 1.84136i 0.390317 + 0.920681i \(0.372365\pi\)
−0.390317 + 0.920681i \(0.627635\pi\)
\(398\) − 1.60097e6i − 0.506611i
\(399\) −717945. −0.225766
\(400\) 0 0
\(401\) −3.48722e6 −1.08298 −0.541488 0.840708i \(-0.682139\pi\)
−0.541488 + 0.840708i \(0.682139\pi\)
\(402\) 385491.i 0.118973i
\(403\) 1.34803e6i 0.413464i
\(404\) −238329. −0.0726479
\(405\) 0 0
\(406\) −1.38884e6 −0.418155
\(407\) − 3.54786e6i − 1.06165i
\(408\) 629729.i 0.187285i
\(409\) 3.23381e6 0.955886 0.477943 0.878391i \(-0.341382\pi\)
0.477943 + 0.878391i \(0.341382\pi\)
\(410\) 0 0
\(411\) −457688. −0.133649
\(412\) − 4.13782e6i − 1.20096i
\(413\) 7.38603e6i 2.13077i
\(414\) 599832. 0.172000
\(415\) 0 0
\(416\) 1.01241e6 0.286829
\(417\) 985470.i 0.277526i
\(418\) 2.88662e6i 0.808070i
\(419\) −3.63720e6 −1.01212 −0.506060 0.862498i \(-0.668899\pi\)
−0.506060 + 0.862498i \(0.668899\pi\)
\(420\) 0 0
\(421\) 2.11596e6 0.581839 0.290920 0.956747i \(-0.406039\pi\)
0.290920 + 0.956747i \(0.406039\pi\)
\(422\) − 2.19294e6i − 0.599441i
\(423\) − 1.75654e6i − 0.477318i
\(424\) −2.27505e6 −0.614578
\(425\) 0 0
\(426\) −680081. −0.181567
\(427\) 373194.i 0.0990525i
\(428\) − 5.32041e6i − 1.40390i
\(429\) −416395. −0.109235
\(430\) 0 0
\(431\) 6.14425e6 1.59322 0.796609 0.604495i \(-0.206625\pi\)
0.796609 + 0.604495i \(0.206625\pi\)
\(432\) 476681.i 0.122890i
\(433\) − 6.08667e6i − 1.56013i −0.625700 0.780064i \(-0.715187\pi\)
0.625700 0.780064i \(-0.284813\pi\)
\(434\) −3.42121e6 −0.871878
\(435\) 0 0
\(436\) −592822. −0.149351
\(437\) 1.25695e6i 0.314857i
\(438\) − 213050.i − 0.0530636i
\(439\) −5.46357e6 −1.35305 −0.676527 0.736418i \(-0.736516\pi\)
−0.676527 + 0.736418i \(0.736516\pi\)
\(440\) 0 0
\(441\) −1.19737e6 −0.293177
\(442\) − 553303.i − 0.134712i
\(443\) − 4.25637e6i − 1.03046i −0.857052 0.515229i \(-0.827707\pi\)
0.857052 0.515229i \(-0.172293\pi\)
\(444\) −406779. −0.0979268
\(445\) 0 0
\(446\) −412935. −0.0982981
\(447\) 541709.i 0.128232i
\(448\) 1.18927e6i 0.279954i
\(449\) −3.07736e6 −0.720382 −0.360191 0.932879i \(-0.617288\pi\)
−0.360191 + 0.932879i \(0.617288\pi\)
\(450\) 0 0
\(451\) 1.10889e7 2.56713
\(452\) 927843.i 0.213613i
\(453\) 1.46091e6i 0.334485i
\(454\) −1.67462e6 −0.381308
\(455\) 0 0
\(456\) 779086. 0.175458
\(457\) 1.92830e6i 0.431901i 0.976404 + 0.215951i \(0.0692850\pi\)
−0.976404 + 0.215951i \(0.930715\pi\)
\(458\) 701132.i 0.156184i
\(459\) 1.85513e6 0.411001
\(460\) 0 0
\(461\) 1.53125e6 0.335578 0.167789 0.985823i \(-0.446337\pi\)
0.167789 + 0.985823i \(0.446337\pi\)
\(462\) − 1.05678e6i − 0.230346i
\(463\) − 2.13296e6i − 0.462412i −0.972905 0.231206i \(-0.925733\pi\)
0.972905 0.231206i \(-0.0742672\pi\)
\(464\) −941792. −0.203077
\(465\) 0 0
\(466\) −1.56271e6 −0.333359
\(467\) 2.47557e6i 0.525270i 0.964895 + 0.262635i \(0.0845916\pi\)
−0.964895 + 0.262635i \(0.915408\pi\)
\(468\) − 922834.i − 0.194764i
\(469\) −5.71641e6 −1.20003
\(470\) 0 0
\(471\) 447860. 0.0930230
\(472\) − 8.01503e6i − 1.65596i
\(473\) − 1.64525e6i − 0.338126i
\(474\) 39845.7 0.00814584
\(475\) 0 0
\(476\) −3.96697e6 −0.802493
\(477\) 3.26657e6i 0.657349i
\(478\) 645108.i 0.129140i
\(479\) −6.52504e6 −1.29940 −0.649702 0.760189i \(-0.725106\pi\)
−0.649702 + 0.760189i \(0.725106\pi\)
\(480\) 0 0
\(481\) 841341. 0.165810
\(482\) 3.80629e6i 0.746250i
\(483\) − 460163.i − 0.0897520i
\(484\) 8.19699e6 1.59053
\(485\) 0 0
\(486\) −1.65671e6 −0.318167
\(487\) − 5.50061e6i − 1.05097i −0.850804 0.525483i \(-0.823885\pi\)
0.850804 0.525483i \(-0.176115\pi\)
\(488\) − 404976.i − 0.0769803i
\(489\) 2.13233e6 0.403258
\(490\) 0 0
\(491\) 8.54562e6 1.59970 0.799852 0.600197i \(-0.204911\pi\)
0.799852 + 0.600197i \(0.204911\pi\)
\(492\) − 1.27140e6i − 0.236793i
\(493\) 3.66524e6i 0.679180i
\(494\) −684534. −0.126205
\(495\) 0 0
\(496\) −2.31997e6 −0.423427
\(497\) − 1.00848e7i − 1.83138i
\(498\) − 138765.i − 0.0250730i
\(499\) −2.98189e6 −0.536094 −0.268047 0.963406i \(-0.586378\pi\)
−0.268047 + 0.963406i \(0.586378\pi\)
\(500\) 0 0
\(501\) −1.77245e6 −0.315486
\(502\) 1.37646e6i 0.243783i
\(503\) 4.24939e6i 0.748871i 0.927253 + 0.374436i \(0.122164\pi\)
−0.927253 + 0.374436i \(0.877836\pi\)
\(504\) 5.51324e6 0.966786
\(505\) 0 0
\(506\) −1.85016e6 −0.321243
\(507\) − 98743.9i − 0.0170604i
\(508\) − 6.31637e6i − 1.08595i
\(509\) 1.22747e6 0.209999 0.105000 0.994472i \(-0.466516\pi\)
0.105000 + 0.994472i \(0.466516\pi\)
\(510\) 0 0
\(511\) 3.15930e6 0.535228
\(512\) 3.24004e6i 0.546230i
\(513\) − 2.29513e6i − 0.385047i
\(514\) 534166. 0.0891802
\(515\) 0 0
\(516\) −188635. −0.0311888
\(517\) 5.41800e6i 0.891483i
\(518\) 2.13527e6i 0.349645i
\(519\) −1.60010e6 −0.260752
\(520\) 0 0
\(521\) −7.91981e6 −1.27826 −0.639131 0.769097i \(-0.720706\pi\)
−0.639131 + 0.769097i \(0.720706\pi\)
\(522\) − 2.16395e6i − 0.347592i
\(523\) 4.76548e6i 0.761821i 0.924612 + 0.380910i \(0.124389\pi\)
−0.924612 + 0.380910i \(0.875611\pi\)
\(524\) −3.71323e6 −0.590777
\(525\) 0 0
\(526\) 1.56544e6 0.246701
\(527\) 9.02880e6i 1.41613i
\(528\) − 716618.i − 0.111867i
\(529\) 5.63071e6 0.874831
\(530\) 0 0
\(531\) −1.15082e7 −1.77121
\(532\) 4.90784e6i 0.751816i
\(533\) 2.62963e6i 0.400938i
\(534\) 892892. 0.135502
\(535\) 0 0
\(536\) 6.20322e6 0.932621
\(537\) − 1.43107e6i − 0.214153i
\(538\) − 573909.i − 0.0854845i
\(539\) 3.69324e6 0.547565
\(540\) 0 0
\(541\) −5.85407e6 −0.859934 −0.429967 0.902845i \(-0.641475\pi\)
−0.429967 + 0.902845i \(0.641475\pi\)
\(542\) − 747408.i − 0.109285i
\(543\) − 577678.i − 0.0840787i
\(544\) 6.78087e6 0.982399
\(545\) 0 0
\(546\) 250605. 0.0359756
\(547\) − 587042.i − 0.0838882i −0.999120 0.0419441i \(-0.986645\pi\)
0.999120 0.0419441i \(-0.0133551\pi\)
\(548\) 3.12874e6i 0.445059i
\(549\) −581473. −0.0823377
\(550\) 0 0
\(551\) 4.53455e6 0.636290
\(552\) 499351.i 0.0697522i
\(553\) 590868.i 0.0821633i
\(554\) −6.35852e6 −0.880201
\(555\) 0 0
\(556\) 6.73663e6 0.924178
\(557\) 3.23702e6i 0.442086i 0.975264 + 0.221043i \(0.0709462\pi\)
−0.975264 + 0.221043i \(0.929054\pi\)
\(558\) − 5.33058e6i − 0.724751i
\(559\) 390155. 0.0528089
\(560\) 0 0
\(561\) −2.78891e6 −0.374134
\(562\) − 2436.53i 0 0.000325410i
\(563\) 1.09630e7i 1.45767i 0.684689 + 0.728835i \(0.259938\pi\)
−0.684689 + 0.728835i \(0.740062\pi\)
\(564\) 621200. 0.0822306
\(565\) 0 0
\(566\) −5.58829e6 −0.733226
\(567\) − 7.48531e6i − 0.977805i
\(568\) 1.09437e7i 1.42329i
\(569\) −4.35413e6 −0.563795 −0.281897 0.959445i \(-0.590964\pi\)
−0.281897 + 0.959445i \(0.590964\pi\)
\(570\) 0 0
\(571\) 4.59961e6 0.590379 0.295189 0.955439i \(-0.404617\pi\)
0.295189 + 0.955439i \(0.404617\pi\)
\(572\) 2.84646e6i 0.363760i
\(573\) 106221.i 0.0135153i
\(574\) −6.67382e6 −0.845463
\(575\) 0 0
\(576\) −1.85300e6 −0.232713
\(577\) 7.57061e6i 0.946654i 0.880887 + 0.473327i \(0.156947\pi\)
−0.880887 + 0.473327i \(0.843053\pi\)
\(578\) 400919.i 0.0499157i
\(579\) −3.50083e6 −0.433985
\(580\) 0 0
\(581\) 2.05773e6 0.252900
\(582\) 1.47548e6i 0.180561i
\(583\) − 1.00757e7i − 1.22773i
\(584\) −3.42835e6 −0.415962
\(585\) 0 0
\(586\) −2.93062e6 −0.352546
\(587\) − 1.48215e7i − 1.77541i −0.460416 0.887703i \(-0.652300\pi\)
0.460416 0.887703i \(-0.347700\pi\)
\(588\) − 423448.i − 0.0505076i
\(589\) 1.11702e7 1.32670
\(590\) 0 0
\(591\) 1.45993e6 0.171935
\(592\) 1.44795e6i 0.169805i
\(593\) 1.00021e6i 0.116803i 0.998293 + 0.0584017i \(0.0186004\pi\)
−0.998293 + 0.0584017i \(0.981400\pi\)
\(594\) 3.37831e6 0.392856
\(595\) 0 0
\(596\) 3.70310e6 0.427021
\(597\) − 1.91363e6i − 0.219747i
\(598\) − 438749.i − 0.0501721i
\(599\) 8.35745e6 0.951715 0.475857 0.879522i \(-0.342138\pi\)
0.475857 + 0.879522i \(0.342138\pi\)
\(600\) 0 0
\(601\) −6.04104e6 −0.682222 −0.341111 0.940023i \(-0.610803\pi\)
−0.341111 + 0.940023i \(0.610803\pi\)
\(602\) 990185.i 0.111359i
\(603\) − 8.90671e6i − 0.997526i
\(604\) 9.98669e6 1.11386
\(605\) 0 0
\(606\) 100841. 0.0111547
\(607\) 137224.i 0.0151168i 0.999971 + 0.00755838i \(0.00240593\pi\)
−0.999971 + 0.00755838i \(0.997594\pi\)
\(608\) − 8.38914e6i − 0.920361i
\(609\) −1.66008e6 −0.181378
\(610\) 0 0
\(611\) −1.28483e6 −0.139233
\(612\) − 6.18092e6i − 0.667075i
\(613\) 1.09895e7i 1.18121i 0.806960 + 0.590606i \(0.201111\pi\)
−0.806960 + 0.590606i \(0.798889\pi\)
\(614\) 1.11726e6 0.119601
\(615\) 0 0
\(616\) −1.70054e7 −1.80566
\(617\) − 3.42268e6i − 0.361954i −0.983487 0.180977i \(-0.942074\pi\)
0.983487 0.180977i \(-0.0579259\pi\)
\(618\) 1.75078e6i 0.184400i
\(619\) 1.22543e7 1.28547 0.642736 0.766088i \(-0.277799\pi\)
0.642736 + 0.766088i \(0.277799\pi\)
\(620\) 0 0
\(621\) 1.47105e6 0.153073
\(622\) 3.98188e6i 0.412679i
\(623\) 1.32406e7i 1.36675i
\(624\) 169939. 0.0174715
\(625\) 0 0
\(626\) 1.56587e6 0.159706
\(627\) 3.45038e6i 0.350508i
\(628\) − 3.06155e6i − 0.309772i
\(629\) 5.63510e6 0.567904
\(630\) 0 0
\(631\) 7.99788e6 0.799653 0.399827 0.916591i \(-0.369070\pi\)
0.399827 + 0.916591i \(0.369070\pi\)
\(632\) − 641187.i − 0.0638546i
\(633\) − 2.62122e6i − 0.260013i
\(634\) 5.54917e6 0.548283
\(635\) 0 0
\(636\) −1.15522e6 −0.113246
\(637\) 875816.i 0.0855194i
\(638\) 6.67463e6i 0.649196i
\(639\) 1.57132e7 1.52234
\(640\) 0 0
\(641\) 8.18872e6 0.787175 0.393587 0.919287i \(-0.371234\pi\)
0.393587 + 0.919287i \(0.371234\pi\)
\(642\) 2.25116e6i 0.215560i
\(643\) − 1.64743e7i − 1.57137i −0.618626 0.785686i \(-0.712310\pi\)
0.618626 0.785686i \(-0.287690\pi\)
\(644\) −3.14566e6 −0.298880
\(645\) 0 0
\(646\) −4.58485e6 −0.432258
\(647\) 3.65606e6i 0.343362i 0.985153 + 0.171681i \(0.0549199\pi\)
−0.985153 + 0.171681i \(0.945080\pi\)
\(648\) 8.12277e6i 0.759917i
\(649\) 3.54966e7 3.30807
\(650\) 0 0
\(651\) −4.08938e6 −0.378185
\(652\) − 1.45766e7i − 1.34288i
\(653\) 1.22553e7i 1.12471i 0.826896 + 0.562355i \(0.190104\pi\)
−0.826896 + 0.562355i \(0.809896\pi\)
\(654\) 250833. 0.0229319
\(655\) 0 0
\(656\) −4.52561e6 −0.410599
\(657\) 4.92250e6i 0.444910i
\(658\) − 3.26080e6i − 0.293602i
\(659\) −708926. −0.0635898 −0.0317949 0.999494i \(-0.510122\pi\)
−0.0317949 + 0.999494i \(0.510122\pi\)
\(660\) 0 0
\(661\) 1.69284e7 1.50700 0.753500 0.657448i \(-0.228364\pi\)
0.753500 + 0.657448i \(0.228364\pi\)
\(662\) − 6.94597e6i − 0.616010i
\(663\) − 661363.i − 0.0584327i
\(664\) −2.23297e6 −0.196546
\(665\) 0 0
\(666\) −3.32695e6 −0.290644
\(667\) 2.90639e6i 0.252953i
\(668\) 1.21164e7i 1.05059i
\(669\) −493582. −0.0426377
\(670\) 0 0
\(671\) 1.79354e6 0.153781
\(672\) 3.07123e6i 0.262355i
\(673\) − 1.00330e7i − 0.853873i −0.904281 0.426937i \(-0.859593\pi\)
0.904281 0.426937i \(-0.140407\pi\)
\(674\) 1.11163e7 0.942560
\(675\) 0 0
\(676\) −675009. −0.0568124
\(677\) 1.54623e7i 1.29659i 0.761388 + 0.648296i \(0.224518\pi\)
−0.761388 + 0.648296i \(0.775482\pi\)
\(678\) − 392586.i − 0.0327990i
\(679\) −2.18797e7 −1.82124
\(680\) 0 0
\(681\) −2.00167e6 −0.165396
\(682\) 1.64420e7i 1.35361i
\(683\) 9.19066e6i 0.753868i 0.926240 + 0.376934i \(0.123022\pi\)
−0.926240 + 0.376934i \(0.876978\pi\)
\(684\) −7.64689e6 −0.624949
\(685\) 0 0
\(686\) 4.98593e6 0.404516
\(687\) 838062.i 0.0677461i
\(688\) 671459.i 0.0540814i
\(689\) 2.38934e6 0.191748
\(690\) 0 0
\(691\) −1.38192e7 −1.10100 −0.550502 0.834834i \(-0.685564\pi\)
−0.550502 + 0.834834i \(0.685564\pi\)
\(692\) 1.09382e7i 0.868320i
\(693\) 2.44168e7i 1.93132i
\(694\) −2.97040e6 −0.234108
\(695\) 0 0
\(696\) 1.80145e6 0.140961
\(697\) 1.76126e7i 1.37323i
\(698\) − 3.61286e6i − 0.280681i
\(699\) −1.86790e6 −0.144598
\(700\) 0 0
\(701\) 1.58946e7 1.22167 0.610834 0.791758i \(-0.290834\pi\)
0.610834 + 0.791758i \(0.290834\pi\)
\(702\) 801134.i 0.0613568i
\(703\) − 6.97162e6i − 0.532041i
\(704\) 5.71554e6 0.434636
\(705\) 0 0
\(706\) 9.05584e6 0.683781
\(707\) 1.49536e6i 0.112512i
\(708\) − 4.06985e6i − 0.305137i
\(709\) −1.20549e7 −0.900635 −0.450317 0.892869i \(-0.648689\pi\)
−0.450317 + 0.892869i \(0.648689\pi\)
\(710\) 0 0
\(711\) −920630. −0.0682985
\(712\) − 1.43682e7i − 1.06219i
\(713\) 7.15950e6i 0.527423i
\(714\) 1.67849e6 0.123218
\(715\) 0 0
\(716\) −9.78271e6 −0.713143
\(717\) 771097.i 0.0560159i
\(718\) 7.62252e6i 0.551807i
\(719\) −1.21480e7 −0.876357 −0.438178 0.898888i \(-0.644376\pi\)
−0.438178 + 0.898888i \(0.644376\pi\)
\(720\) 0 0
\(721\) −2.59622e7 −1.85996
\(722\) − 1.48963e6i − 0.106350i
\(723\) 4.54966e6i 0.323693i
\(724\) −3.94898e6 −0.279988
\(725\) 0 0
\(726\) −3.46829e6 −0.244216
\(727\) − 1.37550e7i − 0.965215i −0.875837 0.482607i \(-0.839690\pi\)
0.875837 0.482607i \(-0.160310\pi\)
\(728\) − 4.03267e6i − 0.282010i
\(729\) 1.02859e7 0.716845
\(730\) 0 0
\(731\) 2.61316e6 0.180873
\(732\) − 205637.i − 0.0141848i
\(733\) − 5.10914e6i − 0.351227i −0.984459 0.175614i \(-0.943809\pi\)
0.984459 0.175614i \(-0.0561909\pi\)
\(734\) −6.45698e6 −0.442374
\(735\) 0 0
\(736\) 5.37697e6 0.365884
\(737\) 2.74725e7i 1.86307i
\(738\) − 1.03985e7i − 0.702794i
\(739\) −4.07246e6 −0.274312 −0.137156 0.990549i \(-0.543796\pi\)
−0.137156 + 0.990549i \(0.543796\pi\)
\(740\) 0 0
\(741\) −818224. −0.0547427
\(742\) 6.06398e6i 0.404342i
\(743\) − 1.86637e7i − 1.24029i −0.784485 0.620147i \(-0.787073\pi\)
0.784485 0.620147i \(-0.212927\pi\)
\(744\) 4.43763e6 0.293913
\(745\) 0 0
\(746\) 1.07694e7 0.708505
\(747\) 3.20615e6i 0.210224i
\(748\) 1.90649e7i 1.24589i
\(749\) −3.33822e7 −2.17425
\(750\) 0 0
\(751\) −2.20898e7 −1.42919 −0.714597 0.699536i \(-0.753390\pi\)
−0.714597 + 0.699536i \(0.753390\pi\)
\(752\) − 2.21119e6i − 0.142588i
\(753\) 1.64528e6i 0.105743i
\(754\) −1.58282e6 −0.101392
\(755\) 0 0
\(756\) 5.74382e6 0.365508
\(757\) − 2.27912e7i − 1.44553i −0.691094 0.722765i \(-0.742871\pi\)
0.691094 0.722765i \(-0.257129\pi\)
\(758\) 6.10740e6i 0.386085i
\(759\) −2.21150e6 −0.139342
\(760\) 0 0
\(761\) 2.05216e7 1.28455 0.642274 0.766475i \(-0.277991\pi\)
0.642274 + 0.766475i \(0.277991\pi\)
\(762\) 2.67257e6i 0.166740i
\(763\) 3.71958e6i 0.231304i
\(764\) 726125. 0.0450068
\(765\) 0 0
\(766\) 1.19843e6 0.0737973
\(767\) 8.41767e6i 0.516658i
\(768\) − 2.57229e6i − 0.157368i
\(769\) 2.11516e7 1.28982 0.644908 0.764260i \(-0.276896\pi\)
0.644908 + 0.764260i \(0.276896\pi\)
\(770\) 0 0
\(771\) 638488. 0.0386827
\(772\) 2.39315e7i 1.44520i
\(773\) 6.75134e6i 0.406389i 0.979138 + 0.203194i \(0.0651323\pi\)
−0.979138 + 0.203194i \(0.934868\pi\)
\(774\) −1.54280e6 −0.0925675
\(775\) 0 0
\(776\) 2.37430e7 1.41541
\(777\) 2.55228e6i 0.151662i
\(778\) − 1.18754e7i − 0.703398i
\(779\) 2.17900e7 1.28651
\(780\) 0 0
\(781\) −4.84668e7 −2.84326
\(782\) − 2.93863e6i − 0.171842i
\(783\) − 5.30694e6i − 0.309343i
\(784\) −1.50729e6 −0.0875801
\(785\) 0 0
\(786\) 1.57113e6 0.0907103
\(787\) − 1.78318e7i − 1.02626i −0.858310 0.513132i \(-0.828485\pi\)
0.858310 0.513132i \(-0.171515\pi\)
\(788\) − 9.98003e6i − 0.572554i
\(789\) 1.87117e6 0.107009
\(790\) 0 0
\(791\) 5.82163e6 0.330829
\(792\) − 2.64961e7i − 1.50096i
\(793\) 425320.i 0.0240178i
\(794\) −1.67254e7 −0.941508
\(795\) 0 0
\(796\) −1.30815e7 −0.731772
\(797\) 1.22612e7i 0.683732i 0.939749 + 0.341866i \(0.111059\pi\)
−0.939749 + 0.341866i \(0.888941\pi\)
\(798\) − 2.07659e6i − 0.115437i
\(799\) −8.60546e6 −0.476878
\(800\) 0 0
\(801\) −2.06301e7 −1.13611
\(802\) − 1.00865e7i − 0.553738i
\(803\) − 1.51833e7i − 0.830956i
\(804\) 3.14985e6 0.171850
\(805\) 0 0
\(806\) −3.89907e6 −0.211409
\(807\) − 685993.i − 0.0370797i
\(808\) − 1.62271e6i − 0.0874404i
\(809\) 1.86542e7 1.00208 0.501042 0.865423i \(-0.332950\pi\)
0.501042 + 0.865423i \(0.332950\pi\)
\(810\) 0 0
\(811\) 2.65131e6 0.141550 0.0707748 0.997492i \(-0.477453\pi\)
0.0707748 + 0.997492i \(0.477453\pi\)
\(812\) 1.13482e7i 0.604002i
\(813\) − 893377.i − 0.0474033i
\(814\) 1.02619e7 0.542833
\(815\) 0 0
\(816\) 1.13821e6 0.0598408
\(817\) − 3.23295e6i − 0.169451i
\(818\) 9.35351e6i 0.488755i
\(819\) −5.79020e6 −0.301636
\(820\) 0 0
\(821\) 2.04948e7 1.06117 0.530587 0.847630i \(-0.321972\pi\)
0.530587 + 0.847630i \(0.321972\pi\)
\(822\) − 1.32382e6i − 0.0683361i
\(823\) − 1.26841e7i − 0.652768i −0.945237 0.326384i \(-0.894170\pi\)
0.945237 0.326384i \(-0.105830\pi\)
\(824\) 2.81732e7 1.44550
\(825\) 0 0
\(826\) −2.13635e7 −1.08949
\(827\) 9.90644e6i 0.503679i 0.967769 + 0.251839i \(0.0810355\pi\)
−0.967769 + 0.251839i \(0.918965\pi\)
\(828\) − 4.90124e6i − 0.248445i
\(829\) −8.05866e6 −0.407265 −0.203632 0.979047i \(-0.565275\pi\)
−0.203632 + 0.979047i \(0.565275\pi\)
\(830\) 0 0
\(831\) −7.60034e6 −0.381795
\(832\) 1.35538e6i 0.0678819i
\(833\) 5.86601e6i 0.292907i
\(834\) −2.85039e6 −0.141902
\(835\) 0 0
\(836\) 2.35866e7 1.16721
\(837\) − 1.30729e7i − 0.644998i
\(838\) − 1.05203e7i − 0.517508i
\(839\) −2.15392e7 −1.05639 −0.528196 0.849122i \(-0.677131\pi\)
−0.528196 + 0.849122i \(0.677131\pi\)
\(840\) 0 0
\(841\) −1.00261e7 −0.488811
\(842\) 6.12024e6i 0.297501i
\(843\) − 2912.38i 0 0.000141150i
\(844\) −1.79186e7 −0.865860
\(845\) 0 0
\(846\) 5.08064e6 0.244058
\(847\) − 5.14309e7i − 2.46329i
\(848\) 4.11207e6i 0.196368i
\(849\) −6.67968e6 −0.318044
\(850\) 0 0
\(851\) 4.46842e6 0.211510
\(852\) 5.55695e6i 0.262263i
\(853\) − 1.55629e7i − 0.732351i −0.930546 0.366175i \(-0.880667\pi\)
0.930546 0.366175i \(-0.119333\pi\)
\(854\) −1.07943e6 −0.0506466
\(855\) 0 0
\(856\) 3.62250e7 1.68976
\(857\) − 3.66500e7i − 1.70460i −0.523055 0.852299i \(-0.675208\pi\)
0.523055 0.852299i \(-0.324792\pi\)
\(858\) − 1.20438e6i − 0.0558531i
\(859\) −3.16288e7 −1.46251 −0.731257 0.682102i \(-0.761066\pi\)
−0.731257 + 0.682102i \(0.761066\pi\)
\(860\) 0 0
\(861\) −7.97721e6 −0.366727
\(862\) 1.77717e7i 0.814630i
\(863\) − 1.63149e7i − 0.745691i −0.927894 0.372845i \(-0.878382\pi\)
0.927894 0.372845i \(-0.121618\pi\)
\(864\) −9.81810e6 −0.447448
\(865\) 0 0
\(866\) 1.76052e7 0.797710
\(867\) 479219.i 0.0216514i
\(868\) 2.79548e7i 1.25938i
\(869\) 2.83966e6 0.127561
\(870\) 0 0
\(871\) −6.51484e6 −0.290977
\(872\) − 4.03634e6i − 0.179762i
\(873\) − 3.40907e7i − 1.51391i
\(874\) −3.63561e6 −0.160990
\(875\) 0 0
\(876\) −1.74084e6 −0.0766475
\(877\) − 2.64601e7i − 1.16170i −0.814012 0.580848i \(-0.802721\pi\)
0.814012 0.580848i \(-0.197279\pi\)
\(878\) − 1.58029e7i − 0.691831i
\(879\) −3.50297e6 −0.152920
\(880\) 0 0
\(881\) 1.51155e7 0.656119 0.328059 0.944657i \(-0.393605\pi\)
0.328059 + 0.944657i \(0.393605\pi\)
\(882\) − 3.46328e6i − 0.149905i
\(883\) 2.08156e7i 0.898437i 0.893422 + 0.449218i \(0.148297\pi\)
−0.893422 + 0.449218i \(0.851703\pi\)
\(884\) −4.52105e6 −0.194585
\(885\) 0 0
\(886\) 1.23112e7 0.526885
\(887\) − 1.01116e7i − 0.431529i −0.976445 0.215764i \(-0.930776\pi\)
0.976445 0.215764i \(-0.0692243\pi\)
\(888\) − 2.76964e6i − 0.117866i
\(889\) −3.96312e7 −1.68183
\(890\) 0 0
\(891\) −3.59737e7 −1.51807
\(892\) 3.37410e6i 0.141986i
\(893\) 1.06465e7i 0.446763i
\(894\) −1.56684e6 −0.0655665
\(895\) 0 0
\(896\) 2.49867e7 1.03978
\(897\) − 524436.i − 0.0217626i
\(898\) − 8.90100e6i − 0.368339i
\(899\) 2.58285e7 1.06586
\(900\) 0 0
\(901\) 1.60032e7 0.656744
\(902\) 3.20737e7i 1.31260i
\(903\) 1.18357e6i 0.0483030i
\(904\) −6.31740e6 −0.257109
\(905\) 0 0
\(906\) −4.22554e6 −0.171026
\(907\) 3.04365e6i 0.122850i 0.998112 + 0.0614251i \(0.0195645\pi\)
−0.998112 + 0.0614251i \(0.980435\pi\)
\(908\) 1.36833e7i 0.550779i
\(909\) −2.32992e6 −0.0935257
\(910\) 0 0
\(911\) −2.90597e7 −1.16010 −0.580050 0.814581i \(-0.696967\pi\)
−0.580050 + 0.814581i \(0.696967\pi\)
\(912\) − 1.40817e6i − 0.0560618i
\(913\) − 9.88928e6i − 0.392634i
\(914\) −5.57744e6 −0.220836
\(915\) 0 0
\(916\) 5.72896e6 0.225599
\(917\) 2.32982e7i 0.914952i
\(918\) 5.36581e6i 0.210149i
\(919\) −3.38583e7 −1.32244 −0.661220 0.750192i \(-0.729961\pi\)
−0.661220 + 0.750192i \(0.729961\pi\)
\(920\) 0 0
\(921\) 1.33546e6 0.0518780
\(922\) 4.42900e6i 0.171585i
\(923\) − 1.14934e7i − 0.444064i
\(924\) −8.63497e6 −0.332722
\(925\) 0 0
\(926\) 6.16939e6 0.236437
\(927\) − 4.04516e7i − 1.54610i
\(928\) − 1.93979e7i − 0.739409i
\(929\) −3.78136e7 −1.43750 −0.718751 0.695267i \(-0.755286\pi\)
−0.718751 + 0.695267i \(0.755286\pi\)
\(930\) 0 0
\(931\) 7.25729e6 0.274410
\(932\) 1.27689e7i 0.481519i
\(933\) 4.75954e6i 0.179003i
\(934\) −7.16037e6 −0.268577
\(935\) 0 0
\(936\) 6.28329e6 0.234422
\(937\) − 2.00563e7i − 0.746281i −0.927775 0.373140i \(-0.878281\pi\)
0.927775 0.373140i \(-0.121719\pi\)
\(938\) − 1.65342e7i − 0.613587i
\(939\) 1.87169e6 0.0692739
\(940\) 0 0
\(941\) −2.54644e7 −0.937473 −0.468737 0.883338i \(-0.655291\pi\)
−0.468737 + 0.883338i \(0.655291\pi\)
\(942\) 1.29540e6i 0.0475637i
\(943\) 1.39662e7i 0.511443i
\(944\) −1.44869e7 −0.529108
\(945\) 0 0
\(946\) 4.75874e6 0.172888
\(947\) 1.42435e7i 0.516110i 0.966130 + 0.258055i \(0.0830815\pi\)
−0.966130 + 0.258055i \(0.916918\pi\)
\(948\) − 325580.i − 0.0117662i
\(949\) 3.60058e6 0.129780
\(950\) 0 0
\(951\) 6.63292e6 0.237823
\(952\) − 2.70099e7i − 0.965896i
\(953\) 3.95389e7i 1.41024i 0.709089 + 0.705119i \(0.249106\pi\)
−0.709089 + 0.705119i \(0.750894\pi\)
\(954\) −9.44827e6 −0.336110
\(955\) 0 0
\(956\) 5.27119e6 0.186536
\(957\) 7.97819e6i 0.281595i
\(958\) − 1.88731e7i − 0.664399i
\(959\) 1.96308e7 0.689275
\(960\) 0 0
\(961\) 3.49958e7 1.22238
\(962\) 2.43351e6i 0.0847803i
\(963\) − 5.20127e7i − 1.80735i
\(964\) 3.11013e7 1.07792
\(965\) 0 0
\(966\) 1.33098e6 0.0458912
\(967\) 4.28774e7i 1.47456i 0.675588 + 0.737279i \(0.263890\pi\)
−0.675588 + 0.737279i \(0.736110\pi\)
\(968\) 5.58108e7i 1.91439i
\(969\) −5.48027e6 −0.187496
\(970\) 0 0
\(971\) 1.56895e7 0.534023 0.267011 0.963693i \(-0.413964\pi\)
0.267011 + 0.963693i \(0.413964\pi\)
\(972\) 1.35370e7i 0.459574i
\(973\) − 4.22681e7i − 1.43130i
\(974\) 1.59100e7 0.537370
\(975\) 0 0
\(976\) −731978. −0.0245965
\(977\) − 2.22874e7i − 0.747004i −0.927629 0.373502i \(-0.878157\pi\)
0.927629 0.373502i \(-0.121843\pi\)
\(978\) 6.16759e6i 0.206190i
\(979\) 6.36331e7 2.12191
\(980\) 0 0
\(981\) −5.79547e6 −0.192272
\(982\) 2.47174e7i 0.817946i
\(983\) − 2.46890e6i − 0.0814929i −0.999170 0.0407465i \(-0.987026\pi\)
0.999170 0.0407465i \(-0.0129736\pi\)
\(984\) 8.65656e6 0.285008
\(985\) 0 0
\(986\) −1.06014e7 −0.347272
\(987\) − 3.89763e6i − 0.127353i
\(988\) 5.59334e6i 0.182297i
\(989\) 2.07214e6 0.0673640
\(990\) 0 0
\(991\) 1.73304e7 0.560563 0.280281 0.959918i \(-0.409572\pi\)
0.280281 + 0.959918i \(0.409572\pi\)
\(992\) − 4.77840e7i − 1.54171i
\(993\) − 8.30251e6i − 0.267200i
\(994\) 2.91695e7 0.936405
\(995\) 0 0
\(996\) −1.13385e6 −0.0362166
\(997\) − 5.90647e7i − 1.88187i −0.338586 0.940936i \(-0.609948\pi\)
0.338586 0.940936i \(-0.390052\pi\)
\(998\) − 8.62487e6i − 0.274111i
\(999\) −8.15913e6 −0.258661
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.i.274.14 22
5.2 odd 4 325.6.a.j.1.5 11
5.3 odd 4 325.6.a.k.1.7 yes 11
5.4 even 2 inner 325.6.b.i.274.9 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.5 11 5.2 odd 4
325.6.a.k.1.7 yes 11 5.3 odd 4
325.6.b.i.274.9 22 5.4 even 2 inner
325.6.b.i.274.14 22 1.1 even 1 trivial