Properties

Label 325.6.b.i.274.13
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.13
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.i.274.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.96479i q^{2} -29.7675i q^{3} +28.1396 q^{4} +58.4868 q^{6} -176.972i q^{7} +118.162i q^{8} -643.103 q^{9} +O(q^{10})\) \(q+1.96479i q^{2} -29.7675i q^{3} +28.1396 q^{4} +58.4868 q^{6} -176.972i q^{7} +118.162i q^{8} -643.103 q^{9} -62.7908 q^{11} -837.645i q^{12} +169.000i q^{13} +347.712 q^{14} +668.304 q^{16} +1825.19i q^{17} -1263.56i q^{18} -2509.78 q^{19} -5268.00 q^{21} -123.371i q^{22} +137.706i q^{23} +3517.37 q^{24} -332.049 q^{26} +11910.0i q^{27} -4979.91i q^{28} -5978.98 q^{29} -5203.47 q^{31} +5094.25i q^{32} +1869.12i q^{33} -3586.12 q^{34} -18096.7 q^{36} +4275.33i q^{37} -4931.19i q^{38} +5030.70 q^{39} +16780.1 q^{41} -10350.5i q^{42} -21508.6i q^{43} -1766.91 q^{44} -270.563 q^{46} -16741.5i q^{47} -19893.7i q^{48} -14511.9 q^{49} +54331.4 q^{51} +4755.59i q^{52} +2749.61i q^{53} -23400.7 q^{54} +20911.2 q^{56} +74709.8i q^{57} -11747.4i q^{58} -16631.5 q^{59} -25005.7 q^{61} -10223.7i q^{62} +113811. i q^{63} +11376.6 q^{64} -3672.44 q^{66} -29425.1i q^{67} +51360.2i q^{68} +4099.16 q^{69} -26909.1 q^{71} -75990.1i q^{72} +33664.0i q^{73} -8400.13 q^{74} -70624.2 q^{76} +11112.2i q^{77} +9884.27i q^{78} +13528.9 q^{79} +198258. q^{81} +32969.4i q^{82} +790.985i q^{83} -148239. q^{84} +42259.9 q^{86} +177979. i q^{87} -7419.47i q^{88} +72223.8 q^{89} +29908.2 q^{91} +3874.99i q^{92} +154894. i q^{93} +32893.6 q^{94} +151643. q^{96} +5458.83i q^{97} -28512.9i q^{98} +40380.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9} + 2552 q^{11} - 1156 q^{14} + 11414 q^{16} - 7040 q^{19} + 3412 q^{21} - 15446 q^{24} + 1690 q^{26} - 36850 q^{29} + 18136 q^{31} + 28910 q^{34} + 75368 q^{36} - 3718 q^{39} - 20020 q^{41} - 121302 q^{44} - 19716 q^{46} - 146626 q^{49} + 73212 q^{51} - 96026 q^{54} - 2524 q^{56} - 263284 q^{59} - 86730 q^{61} - 360142 q^{64} - 117214 q^{66} - 118690 q^{69} + 136840 q^{71} - 742792 q^{74} + 45034 q^{76} - 104478 q^{79} + 215014 q^{81} - 1705432 q^{84} + 404492 q^{86} - 655424 q^{89} + 70304 q^{91} - 1299948 q^{94} + 1799326 q^{96} - 853396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.96479i 0.347329i 0.984805 + 0.173664i \(0.0555608\pi\)
−0.984805 + 0.173664i \(0.944439\pi\)
\(3\) − 29.7675i − 1.90958i −0.297274 0.954792i \(-0.596077\pi\)
0.297274 0.954792i \(-0.403923\pi\)
\(4\) 28.1396 0.879363
\(5\) 0 0
\(6\) 58.4868 0.663254
\(7\) − 176.972i − 1.36508i −0.730848 0.682540i \(-0.760875\pi\)
0.730848 0.682540i \(-0.239125\pi\)
\(8\) 118.162i 0.652757i
\(9\) −643.103 −2.64651
\(10\) 0 0
\(11\) −62.7908 −0.156464 −0.0782320 0.996935i \(-0.524927\pi\)
−0.0782320 + 0.996935i \(0.524927\pi\)
\(12\) − 837.645i − 1.67922i
\(13\) 169.000i 0.277350i
\(14\) 347.712 0.474132
\(15\) 0 0
\(16\) 668.304 0.652641
\(17\) 1825.19i 1.53175i 0.642992 + 0.765873i \(0.277693\pi\)
−0.642992 + 0.765873i \(0.722307\pi\)
\(18\) − 1263.56i − 0.919211i
\(19\) −2509.78 −1.59497 −0.797483 0.603342i \(-0.793835\pi\)
−0.797483 + 0.603342i \(0.793835\pi\)
\(20\) 0 0
\(21\) −5268.00 −2.60674
\(22\) − 123.371i − 0.0543445i
\(23\) 137.706i 0.0542791i 0.999632 + 0.0271396i \(0.00863985\pi\)
−0.999632 + 0.0271396i \(0.991360\pi\)
\(24\) 3517.37 1.24649
\(25\) 0 0
\(26\) −332.049 −0.0963317
\(27\) 11910.0i 3.14416i
\(28\) − 4979.91i − 1.20040i
\(29\) −5978.98 −1.32018 −0.660088 0.751188i \(-0.729481\pi\)
−0.660088 + 0.751188i \(0.729481\pi\)
\(30\) 0 0
\(31\) −5203.47 −0.972499 −0.486249 0.873820i \(-0.661635\pi\)
−0.486249 + 0.873820i \(0.661635\pi\)
\(32\) 5094.25i 0.879438i
\(33\) 1869.12i 0.298781i
\(34\) −3586.12 −0.532020
\(35\) 0 0
\(36\) −18096.7 −2.32724
\(37\) 4275.33i 0.513412i 0.966490 + 0.256706i \(0.0826371\pi\)
−0.966490 + 0.256706i \(0.917363\pi\)
\(38\) − 4931.19i − 0.553978i
\(39\) 5030.70 0.529623
\(40\) 0 0
\(41\) 16780.1 1.55896 0.779481 0.626426i \(-0.215483\pi\)
0.779481 + 0.626426i \(0.215483\pi\)
\(42\) − 10350.5i − 0.905395i
\(43\) − 21508.6i − 1.77395i −0.461819 0.886974i \(-0.652803\pi\)
0.461819 0.886974i \(-0.347197\pi\)
\(44\) −1766.91 −0.137589
\(45\) 0 0
\(46\) −270.563 −0.0188527
\(47\) − 16741.5i − 1.10548i −0.833354 0.552739i \(-0.813583\pi\)
0.833354 0.552739i \(-0.186417\pi\)
\(48\) − 19893.7i − 1.24627i
\(49\) −14511.9 −0.863445
\(50\) 0 0
\(51\) 54331.4 2.92500
\(52\) 4755.59i 0.243891i
\(53\) 2749.61i 0.134457i 0.997738 + 0.0672283i \(0.0214156\pi\)
−0.997738 + 0.0672283i \(0.978584\pi\)
\(54\) −23400.7 −1.09206
\(55\) 0 0
\(56\) 20911.2 0.891066
\(57\) 74709.8i 3.04572i
\(58\) − 11747.4i − 0.458536i
\(59\) −16631.5 −0.622015 −0.311007 0.950407i \(-0.600666\pi\)
−0.311007 + 0.950407i \(0.600666\pi\)
\(60\) 0 0
\(61\) −25005.7 −0.860429 −0.430214 0.902727i \(-0.641562\pi\)
−0.430214 + 0.902727i \(0.641562\pi\)
\(62\) − 10223.7i − 0.337777i
\(63\) 113811.i 3.61270i
\(64\) 11376.6 0.347187
\(65\) 0 0
\(66\) −3672.44 −0.103775
\(67\) − 29425.1i − 0.800812i −0.916338 0.400406i \(-0.868869\pi\)
0.916338 0.400406i \(-0.131131\pi\)
\(68\) 51360.2i 1.34696i
\(69\) 4099.16 0.103651
\(70\) 0 0
\(71\) −26909.1 −0.633509 −0.316754 0.948508i \(-0.602593\pi\)
−0.316754 + 0.948508i \(0.602593\pi\)
\(72\) − 75990.1i − 1.72753i
\(73\) 33664.0i 0.739365i 0.929158 + 0.369683i \(0.120534\pi\)
−0.929158 + 0.369683i \(0.879466\pi\)
\(74\) −8400.13 −0.178323
\(75\) 0 0
\(76\) −70624.2 −1.40255
\(77\) 11112.2i 0.213586i
\(78\) 9884.27i 0.183954i
\(79\) 13528.9 0.243891 0.121945 0.992537i \(-0.461087\pi\)
0.121945 + 0.992537i \(0.461087\pi\)
\(80\) 0 0
\(81\) 198258. 3.35752
\(82\) 32969.4i 0.541473i
\(83\) 790.985i 0.0126030i 0.999980 + 0.00630148i \(0.00200584\pi\)
−0.999980 + 0.00630148i \(0.997994\pi\)
\(84\) −148239. −2.29227
\(85\) 0 0
\(86\) 42259.9 0.616144
\(87\) 177979.i 2.52099i
\(88\) − 7419.47i − 0.102133i
\(89\) 72223.8 0.966508 0.483254 0.875480i \(-0.339455\pi\)
0.483254 + 0.875480i \(0.339455\pi\)
\(90\) 0 0
\(91\) 29908.2 0.378605
\(92\) 3874.99i 0.0477310i
\(93\) 154894.i 1.85707i
\(94\) 32893.6 0.383965
\(95\) 0 0
\(96\) 151643. 1.67936
\(97\) 5458.83i 0.0589075i 0.999566 + 0.0294538i \(0.00937678\pi\)
−0.999566 + 0.0294538i \(0.990623\pi\)
\(98\) − 28512.9i − 0.299899i
\(99\) 40380.9 0.414084
\(100\) 0 0
\(101\) −87461.4 −0.853125 −0.426563 0.904458i \(-0.640276\pi\)
−0.426563 + 0.904458i \(0.640276\pi\)
\(102\) 106750.i 1.01594i
\(103\) − 75287.7i − 0.699248i −0.936890 0.349624i \(-0.886309\pi\)
0.936890 0.349624i \(-0.113691\pi\)
\(104\) −19969.3 −0.181042
\(105\) 0 0
\(106\) −5402.41 −0.0467007
\(107\) − 77781.0i − 0.656771i −0.944544 0.328386i \(-0.893495\pi\)
0.944544 0.328386i \(-0.106505\pi\)
\(108\) 335144.i 2.76485i
\(109\) −175666. −1.41619 −0.708096 0.706116i \(-0.750446\pi\)
−0.708096 + 0.706116i \(0.750446\pi\)
\(110\) 0 0
\(111\) 127266. 0.980403
\(112\) − 118271.i − 0.890908i
\(113\) − 2350.11i − 0.0173138i −0.999963 0.00865691i \(-0.997244\pi\)
0.999963 0.00865691i \(-0.00275561\pi\)
\(114\) −146789. −1.05787
\(115\) 0 0
\(116\) −168246. −1.16091
\(117\) − 108684.i − 0.734011i
\(118\) − 32677.4i − 0.216044i
\(119\) 323007. 2.09096
\(120\) 0 0
\(121\) −157108. −0.975519
\(122\) − 49131.0i − 0.298852i
\(123\) − 499502.i − 2.97697i
\(124\) −146424. −0.855179
\(125\) 0 0
\(126\) −223614. −1.25480
\(127\) 266534.i 1.46637i 0.680031 + 0.733183i \(0.261966\pi\)
−0.680031 + 0.733183i \(0.738034\pi\)
\(128\) 185369.i 1.00003i
\(129\) −640257. −3.38750
\(130\) 0 0
\(131\) 118703. 0.604341 0.302170 0.953254i \(-0.402289\pi\)
0.302170 + 0.953254i \(0.402289\pi\)
\(132\) 52596.4i 0.262737i
\(133\) 444159.i 2.17726i
\(134\) 57814.1 0.278145
\(135\) 0 0
\(136\) −215668. −0.999858
\(137\) 163850.i 0.745838i 0.927864 + 0.372919i \(0.121643\pi\)
−0.927864 + 0.372919i \(0.878357\pi\)
\(138\) 8053.98i 0.0360008i
\(139\) −218277. −0.958231 −0.479115 0.877752i \(-0.659042\pi\)
−0.479115 + 0.877752i \(0.659042\pi\)
\(140\) 0 0
\(141\) −498353. −2.11100
\(142\) − 52870.6i − 0.220036i
\(143\) − 10611.6i − 0.0433953i
\(144\) −429788. −1.72722
\(145\) 0 0
\(146\) −66142.7 −0.256803
\(147\) 431983.i 1.64882i
\(148\) 120306.i 0.451475i
\(149\) 79310.9 0.292663 0.146331 0.989236i \(-0.453253\pi\)
0.146331 + 0.989236i \(0.453253\pi\)
\(150\) 0 0
\(151\) 368505. 1.31523 0.657615 0.753355i \(-0.271566\pi\)
0.657615 + 0.753355i \(0.271566\pi\)
\(152\) − 296560.i − 1.04113i
\(153\) − 1.17379e6i − 4.05378i
\(154\) −21833.1 −0.0741846
\(155\) 0 0
\(156\) 141562. 0.465731
\(157\) − 30957.2i − 0.100233i −0.998743 0.0501166i \(-0.984041\pi\)
0.998743 0.0501166i \(-0.0159593\pi\)
\(158\) 26581.5i 0.0847103i
\(159\) 81849.1 0.256756
\(160\) 0 0
\(161\) 24370.0 0.0740954
\(162\) 389535.i 1.16616i
\(163\) − 204546.i − 0.603006i −0.953465 0.301503i \(-0.902512\pi\)
0.953465 0.301503i \(-0.0974883\pi\)
\(164\) 472186. 1.37089
\(165\) 0 0
\(166\) −1554.12 −0.00437738
\(167\) − 158449.i − 0.439641i −0.975540 0.219821i \(-0.929453\pi\)
0.975540 0.219821i \(-0.0705472\pi\)
\(168\) − 622475.i − 1.70157i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 1.61404e6 4.22110
\(172\) − 605243.i − 1.55994i
\(173\) 230663.i 0.585952i 0.956120 + 0.292976i \(0.0946456\pi\)
−0.956120 + 0.292976i \(0.905354\pi\)
\(174\) −349692. −0.875613
\(175\) 0 0
\(176\) −41963.4 −0.102115
\(177\) 495077.i 1.18779i
\(178\) 141905.i 0.335696i
\(179\) −791891. −1.84728 −0.923640 0.383260i \(-0.874801\pi\)
−0.923640 + 0.383260i \(0.874801\pi\)
\(180\) 0 0
\(181\) −272694. −0.618699 −0.309350 0.950948i \(-0.600111\pi\)
−0.309350 + 0.950948i \(0.600111\pi\)
\(182\) 58763.3i 0.131501i
\(183\) 744358.i 1.64306i
\(184\) −16271.5 −0.0354311
\(185\) 0 0
\(186\) −304335. −0.645014
\(187\) − 114605.i − 0.239663i
\(188\) − 471100.i − 0.972116i
\(189\) 2.10774e6 4.29203
\(190\) 0 0
\(191\) 603069. 1.19614 0.598072 0.801442i \(-0.295933\pi\)
0.598072 + 0.801442i \(0.295933\pi\)
\(192\) − 338653.i − 0.662982i
\(193\) − 59043.0i − 0.114097i −0.998371 0.0570486i \(-0.981831\pi\)
0.998371 0.0570486i \(-0.0181690\pi\)
\(194\) −10725.5 −0.0204603
\(195\) 0 0
\(196\) −408360. −0.759281
\(197\) − 815964.i − 1.49798i −0.662582 0.748989i \(-0.730539\pi\)
0.662582 0.748989i \(-0.269461\pi\)
\(198\) 79340.1i 0.143823i
\(199\) −490593. −0.878190 −0.439095 0.898441i \(-0.644701\pi\)
−0.439095 + 0.898441i \(0.644701\pi\)
\(200\) 0 0
\(201\) −875911. −1.52922
\(202\) − 171843.i − 0.296315i
\(203\) 1.05811e6i 1.80215i
\(204\) 1.52886e6 2.57213
\(205\) 0 0
\(206\) 147925. 0.242869
\(207\) − 88559.0i − 0.143650i
\(208\) 112943.i 0.181010i
\(209\) 157591. 0.249555
\(210\) 0 0
\(211\) 593914. 0.918370 0.459185 0.888341i \(-0.348142\pi\)
0.459185 + 0.888341i \(0.348142\pi\)
\(212\) 77373.0i 0.118236i
\(213\) 801015.i 1.20974i
\(214\) 152823. 0.228116
\(215\) 0 0
\(216\) −1.40731e6 −2.05237
\(217\) 920866.i 1.32754i
\(218\) − 345147.i − 0.491884i
\(219\) 1.00209e6 1.41188
\(220\) 0 0
\(221\) −308458. −0.424830
\(222\) 250051.i 0.340522i
\(223\) − 893543.i − 1.20324i −0.798781 0.601621i \(-0.794522\pi\)
0.798781 0.601621i \(-0.205478\pi\)
\(224\) 901537. 1.20050
\(225\) 0 0
\(226\) 4617.48 0.00601359
\(227\) − 1.10400e6i − 1.42201i −0.703186 0.711006i \(-0.748240\pi\)
0.703186 0.711006i \(-0.251760\pi\)
\(228\) 2.10230e6i 2.67829i
\(229\) 662093. 0.834315 0.417158 0.908834i \(-0.363026\pi\)
0.417158 + 0.908834i \(0.363026\pi\)
\(230\) 0 0
\(231\) 330782. 0.407860
\(232\) − 706486.i − 0.861755i
\(233\) 828333.i 0.999574i 0.866148 + 0.499787i \(0.166588\pi\)
−0.866148 + 0.499787i \(0.833412\pi\)
\(234\) 213542. 0.254943
\(235\) 0 0
\(236\) −468003. −0.546977
\(237\) − 402722.i − 0.465730i
\(238\) 634641.i 0.726250i
\(239\) −359216. −0.406781 −0.203391 0.979098i \(-0.565196\pi\)
−0.203391 + 0.979098i \(0.565196\pi\)
\(240\) 0 0
\(241\) −928812. −1.03011 −0.515057 0.857156i \(-0.672229\pi\)
−0.515057 + 0.857156i \(0.672229\pi\)
\(242\) − 308685.i − 0.338826i
\(243\) − 3.00750e6i − 3.26731i
\(244\) −703651. −0.756629
\(245\) 0 0
\(246\) 981416. 1.03399
\(247\) − 424152.i − 0.442364i
\(248\) − 614851.i − 0.634805i
\(249\) 23545.6 0.0240664
\(250\) 0 0
\(251\) −102334. −0.102526 −0.0512631 0.998685i \(-0.516325\pi\)
−0.0512631 + 0.998685i \(0.516325\pi\)
\(252\) 3.20259e6i 3.17688i
\(253\) − 8646.66i − 0.00849273i
\(254\) −523682. −0.509312
\(255\) 0 0
\(256\) −158.767 −0.000151412 0
\(257\) − 1.17461e6i − 1.10933i −0.832075 0.554664i \(-0.812847\pi\)
0.832075 0.554664i \(-0.187153\pi\)
\(258\) − 1.25797e6i − 1.17658i
\(259\) 756612. 0.700848
\(260\) 0 0
\(261\) 3.84510e6 3.49387
\(262\) 233226.i 0.209905i
\(263\) 99506.0i 0.0887074i 0.999016 + 0.0443537i \(0.0141229\pi\)
−0.999016 + 0.0443537i \(0.985877\pi\)
\(264\) −220859. −0.195032
\(265\) 0 0
\(266\) −872679. −0.756224
\(267\) − 2.14992e6i − 1.84563i
\(268\) − 828010.i − 0.704204i
\(269\) 558985. 0.470999 0.235499 0.971874i \(-0.424327\pi\)
0.235499 + 0.971874i \(0.424327\pi\)
\(270\) 0 0
\(271\) −503763. −0.416680 −0.208340 0.978056i \(-0.566806\pi\)
−0.208340 + 0.978056i \(0.566806\pi\)
\(272\) 1.21978e6i 0.999680i
\(273\) − 890291.i − 0.722979i
\(274\) −321930. −0.259051
\(275\) 0 0
\(276\) 115349. 0.0911464
\(277\) 1.08351e6i 0.848466i 0.905553 + 0.424233i \(0.139456\pi\)
−0.905553 + 0.424233i \(0.860544\pi\)
\(278\) − 428867.i − 0.332821i
\(279\) 3.34637e6 2.57373
\(280\) 0 0
\(281\) −1.46593e6 −1.10751 −0.553756 0.832679i \(-0.686806\pi\)
−0.553756 + 0.832679i \(0.686806\pi\)
\(282\) − 979158.i − 0.733213i
\(283\) 2.11337e6i 1.56859i 0.620390 + 0.784294i \(0.286974\pi\)
−0.620390 + 0.784294i \(0.713026\pi\)
\(284\) −757210. −0.557084
\(285\) 0 0
\(286\) 20849.7 0.0150724
\(287\) − 2.96960e6i − 2.12811i
\(288\) − 3.27613e6i − 2.32744i
\(289\) −1.91147e6 −1.34624
\(290\) 0 0
\(291\) 162496. 0.112489
\(292\) 947293.i 0.650170i
\(293\) − 2.71115e6i − 1.84495i −0.386057 0.922475i \(-0.626163\pi\)
0.386057 0.922475i \(-0.373837\pi\)
\(294\) −848756. −0.572683
\(295\) 0 0
\(296\) −505180. −0.335133
\(297\) − 747842.i − 0.491947i
\(298\) 155829.i 0.101650i
\(299\) −23272.3 −0.0150543
\(300\) 0 0
\(301\) −3.80641e6 −2.42158
\(302\) 724035.i 0.456817i
\(303\) 2.60350e6i 1.62911i
\(304\) −1.67730e6 −1.04094
\(305\) 0 0
\(306\) 2.30624e6 1.40800
\(307\) − 1.55774e6i − 0.943297i −0.881787 0.471648i \(-0.843659\pi\)
0.881787 0.471648i \(-0.156341\pi\)
\(308\) 312693.i 0.187820i
\(309\) −2.24113e6 −1.33527
\(310\) 0 0
\(311\) −2.57327e6 −1.50863 −0.754316 0.656511i \(-0.772032\pi\)
−0.754316 + 0.656511i \(0.772032\pi\)
\(312\) 594436.i 0.345715i
\(313\) − 563667.i − 0.325208i −0.986691 0.162604i \(-0.948011\pi\)
0.986691 0.162604i \(-0.0519894\pi\)
\(314\) 60824.3 0.0348139
\(315\) 0 0
\(316\) 380698. 0.214468
\(317\) 1.49727e6i 0.836858i 0.908250 + 0.418429i \(0.137419\pi\)
−0.908250 + 0.418429i \(0.862581\pi\)
\(318\) 160816.i 0.0891789i
\(319\) 375425. 0.206560
\(320\) 0 0
\(321\) −2.31534e6 −1.25416
\(322\) 47881.9i 0.0257355i
\(323\) − 4.58083e6i − 2.44308i
\(324\) 5.57890e6 2.95248
\(325\) 0 0
\(326\) 401889. 0.209441
\(327\) 5.22914e6i 2.70434i
\(328\) 1.98277e6i 1.01762i
\(329\) −2.96277e6 −1.50907
\(330\) 0 0
\(331\) 2.48241e6 1.24538 0.622692 0.782467i \(-0.286039\pi\)
0.622692 + 0.782467i \(0.286039\pi\)
\(332\) 22258.0i 0.0110826i
\(333\) − 2.74948e6i − 1.35875i
\(334\) 311319. 0.152700
\(335\) 0 0
\(336\) −3.52063e6 −1.70126
\(337\) − 2.17057e6i − 1.04112i −0.853827 0.520558i \(-0.825724\pi\)
0.853827 0.520558i \(-0.174276\pi\)
\(338\) − 56116.4i − 0.0267176i
\(339\) −69957.0 −0.0330622
\(340\) 0 0
\(341\) 326730. 0.152161
\(342\) 3.17126e6i 1.46611i
\(343\) − 406164.i − 0.186409i
\(344\) 2.54149e6 1.15796
\(345\) 0 0
\(346\) −453204. −0.203518
\(347\) − 3.93089e6i − 1.75254i −0.481821 0.876269i \(-0.660025\pi\)
0.481821 0.876269i \(-0.339975\pi\)
\(348\) 5.00826e6i 2.21686i
\(349\) −378915. −0.166524 −0.0832622 0.996528i \(-0.526534\pi\)
−0.0832622 + 0.996528i \(0.526534\pi\)
\(350\) 0 0
\(351\) −2.01280e6 −0.872032
\(352\) − 319872.i − 0.137600i
\(353\) − 1.13031e6i − 0.482792i −0.970427 0.241396i \(-0.922395\pi\)
0.970427 0.241396i \(-0.0776053\pi\)
\(354\) −972722. −0.412554
\(355\) 0 0
\(356\) 2.03235e6 0.849911
\(357\) − 9.61511e6i − 3.99286i
\(358\) − 1.55590e6i − 0.641614i
\(359\) −3.35579e6 −1.37423 −0.687114 0.726550i \(-0.741123\pi\)
−0.687114 + 0.726550i \(0.741123\pi\)
\(360\) 0 0
\(361\) 3.82289e6 1.54391
\(362\) − 535787.i − 0.214892i
\(363\) 4.67672e6i 1.86284i
\(364\) 841605. 0.332931
\(365\) 0 0
\(366\) −1.46251e6 −0.570683
\(367\) − 1.99093e6i − 0.771597i −0.922583 0.385799i \(-0.873926\pi\)
0.922583 0.385799i \(-0.126074\pi\)
\(368\) 92029.4i 0.0354248i
\(369\) −1.07913e7 −4.12581
\(370\) 0 0
\(371\) 486603. 0.183544
\(372\) 4.35866e6i 1.63304i
\(373\) 1.39554e6i 0.519362i 0.965694 + 0.259681i \(0.0836175\pi\)
−0.965694 + 0.259681i \(0.916383\pi\)
\(374\) 225175. 0.0832419
\(375\) 0 0
\(376\) 1.97821e6 0.721609
\(377\) − 1.01045e6i − 0.366151i
\(378\) 4.14126e6i 1.49075i
\(379\) −3.81965e6 −1.36592 −0.682960 0.730455i \(-0.739308\pi\)
−0.682960 + 0.730455i \(0.739308\pi\)
\(380\) 0 0
\(381\) 7.93403e6 2.80015
\(382\) 1.18490e6i 0.415456i
\(383\) 4.30052e6i 1.49804i 0.662547 + 0.749020i \(0.269475\pi\)
−0.662547 + 0.749020i \(0.730525\pi\)
\(384\) 5.51796e6 1.90963
\(385\) 0 0
\(386\) 116007. 0.0396293
\(387\) 1.38322e7i 4.69478i
\(388\) 153609.i 0.0518011i
\(389\) −5.63218e6 −1.88713 −0.943567 0.331182i \(-0.892553\pi\)
−0.943567 + 0.331182i \(0.892553\pi\)
\(390\) 0 0
\(391\) −251340. −0.0831418
\(392\) − 1.71475e6i − 0.563620i
\(393\) − 3.53348e6i − 1.15404i
\(394\) 1.60320e6 0.520291
\(395\) 0 0
\(396\) 1.13630e6 0.364130
\(397\) − 1.02692e6i − 0.327011i −0.986542 0.163505i \(-0.947720\pi\)
0.986542 0.163505i \(-0.0522801\pi\)
\(398\) − 963911.i − 0.305021i
\(399\) 1.32215e7 4.15766
\(400\) 0 0
\(401\) −1.07636e6 −0.334269 −0.167134 0.985934i \(-0.553451\pi\)
−0.167134 + 0.985934i \(0.553451\pi\)
\(402\) − 1.72098e6i − 0.531142i
\(403\) − 879387.i − 0.269723i
\(404\) −2.46113e6 −0.750206
\(405\) 0 0
\(406\) −2.07896e6 −0.625938
\(407\) − 268452.i − 0.0803304i
\(408\) 6.41989e6i 1.90931i
\(409\) 4.48956e6 1.32708 0.663538 0.748143i \(-0.269054\pi\)
0.663538 + 0.748143i \(0.269054\pi\)
\(410\) 0 0
\(411\) 4.87739e6 1.42424
\(412\) − 2.11857e6i − 0.614892i
\(413\) 2.94330e6i 0.849100i
\(414\) 174000. 0.0498939
\(415\) 0 0
\(416\) −860928. −0.243912
\(417\) 6.49754e6i 1.82982i
\(418\) 309633.i 0.0866776i
\(419\) 2.90095e6 0.807245 0.403622 0.914926i \(-0.367751\pi\)
0.403622 + 0.914926i \(0.367751\pi\)
\(420\) 0 0
\(421\) −5.69840e6 −1.56692 −0.783461 0.621441i \(-0.786548\pi\)
−0.783461 + 0.621441i \(0.786548\pi\)
\(422\) 1.16692e6i 0.318977i
\(423\) 1.07665e7i 2.92566i
\(424\) −324899. −0.0877675
\(425\) 0 0
\(426\) −1.57383e6 −0.420177
\(427\) 4.42530e6i 1.17455i
\(428\) − 2.18873e6i − 0.577540i
\(429\) −315882. −0.0828670
\(430\) 0 0
\(431\) 7.25477e6 1.88118 0.940590 0.339545i \(-0.110273\pi\)
0.940590 + 0.339545i \(0.110273\pi\)
\(432\) 7.95954e6i 2.05201i
\(433\) 2.92650e6i 0.750115i 0.927001 + 0.375058i \(0.122377\pi\)
−0.927001 + 0.375058i \(0.877623\pi\)
\(434\) −1.80931e6 −0.461093
\(435\) 0 0
\(436\) −4.94318e6 −1.24535
\(437\) − 345611.i − 0.0865733i
\(438\) 1.96890e6i 0.490387i
\(439\) −2.15422e6 −0.533492 −0.266746 0.963767i \(-0.585949\pi\)
−0.266746 + 0.963767i \(0.585949\pi\)
\(440\) 0 0
\(441\) 9.33266e6 2.28512
\(442\) − 606054.i − 0.147556i
\(443\) 7.40975e6i 1.79388i 0.442148 + 0.896942i \(0.354217\pi\)
−0.442148 + 0.896942i \(0.645783\pi\)
\(444\) 3.58121e6 0.862130
\(445\) 0 0
\(446\) 1.75562e6 0.417921
\(447\) − 2.36088e6i − 0.558864i
\(448\) − 2.01334e6i − 0.473938i
\(449\) 1.90284e6 0.445438 0.222719 0.974883i \(-0.428507\pi\)
0.222719 + 0.974883i \(0.428507\pi\)
\(450\) 0 0
\(451\) −1.05364e6 −0.243921
\(452\) − 66131.3i − 0.0152251i
\(453\) − 1.09695e7i − 2.51154i
\(454\) 2.16912e6 0.493906
\(455\) 0 0
\(456\) −8.82783e6 −1.98812
\(457\) − 2.79693e6i − 0.626457i −0.949678 0.313229i \(-0.898589\pi\)
0.949678 0.313229i \(-0.101411\pi\)
\(458\) 1.30087e6i 0.289782i
\(459\) −2.17381e7 −4.81605
\(460\) 0 0
\(461\) 4.18307e6 0.916733 0.458366 0.888763i \(-0.348435\pi\)
0.458366 + 0.888763i \(0.348435\pi\)
\(462\) 649917.i 0.141662i
\(463\) − 2.51126e6i − 0.544427i −0.962237 0.272213i \(-0.912244\pi\)
0.962237 0.272213i \(-0.0877557\pi\)
\(464\) −3.99578e6 −0.861602
\(465\) 0 0
\(466\) −1.62750e6 −0.347181
\(467\) − 2.17175e6i − 0.460806i −0.973095 0.230403i \(-0.925996\pi\)
0.973095 0.230403i \(-0.0740044\pi\)
\(468\) − 3.05833e6i − 0.645462i
\(469\) −5.20740e6 −1.09317
\(470\) 0 0
\(471\) −921517. −0.191404
\(472\) − 1.96520e6i − 0.406025i
\(473\) 1.35054e6i 0.277559i
\(474\) 791263. 0.161761
\(475\) 0 0
\(476\) 9.08930e6 1.83871
\(477\) − 1.76828e6i − 0.355841i
\(478\) − 705784.i − 0.141287i
\(479\) 9.46791e6 1.88545 0.942726 0.333568i \(-0.108253\pi\)
0.942726 + 0.333568i \(0.108253\pi\)
\(480\) 0 0
\(481\) −722531. −0.142395
\(482\) − 1.82492e6i − 0.357788i
\(483\) − 725434.i − 0.141491i
\(484\) −4.42097e6 −0.857835
\(485\) 0 0
\(486\) 5.90911e6 1.13483
\(487\) − 4.87785e6i − 0.931979i −0.884790 0.465989i \(-0.845698\pi\)
0.884790 0.465989i \(-0.154302\pi\)
\(488\) − 2.95472e6i − 0.561651i
\(489\) −6.08881e6 −1.15149
\(490\) 0 0
\(491\) −3.86456e6 −0.723429 −0.361715 0.932289i \(-0.617808\pi\)
−0.361715 + 0.932289i \(0.617808\pi\)
\(492\) − 1.40558e7i − 2.61784i
\(493\) − 1.09128e7i − 2.02217i
\(494\) 833370. 0.153646
\(495\) 0 0
\(496\) −3.47750e6 −0.634693
\(497\) 4.76214e6i 0.864791i
\(498\) 46262.2i 0.00835897i
\(499\) −5.75229e6 −1.03416 −0.517082 0.855936i \(-0.672982\pi\)
−0.517082 + 0.855936i \(0.672982\pi\)
\(500\) 0 0
\(501\) −4.71663e6 −0.839532
\(502\) − 201064.i − 0.0356103i
\(503\) − 5.93696e6i − 1.04627i −0.852249 0.523136i \(-0.824762\pi\)
0.852249 0.523136i \(-0.175238\pi\)
\(504\) −1.34481e7 −2.35822
\(505\) 0 0
\(506\) 16988.9 0.00294977
\(507\) 850189.i 0.146891i
\(508\) 7.50015e6i 1.28947i
\(509\) 563930. 0.0964785 0.0482393 0.998836i \(-0.484639\pi\)
0.0482393 + 0.998836i \(0.484639\pi\)
\(510\) 0 0
\(511\) 5.95758e6 1.00929
\(512\) 5.93149e6i 0.999974i
\(513\) − 2.98916e7i − 5.01482i
\(514\) 2.30786e6 0.385302
\(515\) 0 0
\(516\) −1.80166e7 −2.97884
\(517\) 1.05121e6i 0.172968i
\(518\) 1.48658e6i 0.243425i
\(519\) 6.86625e6 1.11892
\(520\) 0 0
\(521\) 1.09272e6 0.176366 0.0881828 0.996104i \(-0.471894\pi\)
0.0881828 + 0.996104i \(0.471894\pi\)
\(522\) 7.55481e6i 1.21352i
\(523\) 2.47626e6i 0.395861i 0.980216 + 0.197930i \(0.0634220\pi\)
−0.980216 + 0.197930i \(0.936578\pi\)
\(524\) 3.34024e6 0.531435
\(525\) 0 0
\(526\) −195508. −0.0308107
\(527\) − 9.49734e6i − 1.48962i
\(528\) 1.24914e6i 0.194997i
\(529\) 6.41738e6 0.997054
\(530\) 0 0
\(531\) 1.06957e7 1.64617
\(532\) 1.24985e7i 1.91460i
\(533\) 2.83584e6i 0.432378i
\(534\) 4.22414e6 0.641041
\(535\) 0 0
\(536\) 3.47692e6 0.522736
\(537\) 2.35726e7i 3.52754i
\(538\) 1.09829e6i 0.163592i
\(539\) 911215. 0.135098
\(540\) 0 0
\(541\) −5.78515e6 −0.849810 −0.424905 0.905238i \(-0.639692\pi\)
−0.424905 + 0.905238i \(0.639692\pi\)
\(542\) − 989788.i − 0.144725i
\(543\) 8.11742e6i 1.18146i
\(544\) −9.29799e6 −1.34708
\(545\) 0 0
\(546\) 1.74923e6 0.251111
\(547\) 1.26151e7i 1.80269i 0.433102 + 0.901345i \(0.357419\pi\)
−0.433102 + 0.901345i \(0.642581\pi\)
\(548\) 4.61067e6i 0.655862i
\(549\) 1.60813e7 2.27714
\(550\) 0 0
\(551\) 1.50059e7 2.10564
\(552\) 484363.i 0.0676586i
\(553\) − 2.39423e6i − 0.332930i
\(554\) −2.12887e6 −0.294697
\(555\) 0 0
\(556\) −6.14222e6 −0.842632
\(557\) 9.93482e6i 1.35682i 0.734684 + 0.678409i \(0.237330\pi\)
−0.734684 + 0.678409i \(0.762670\pi\)
\(558\) 6.57491e6i 0.893931i
\(559\) 3.63495e6 0.492005
\(560\) 0 0
\(561\) −3.41151e6 −0.457657
\(562\) − 2.88025e6i − 0.384671i
\(563\) 8.72418e6i 1.15999i 0.814621 + 0.579994i \(0.196945\pi\)
−0.814621 + 0.579994i \(0.803055\pi\)
\(564\) −1.40234e7 −1.85634
\(565\) 0 0
\(566\) −4.15232e6 −0.544816
\(567\) − 3.50860e7i − 4.58328i
\(568\) − 3.17962e6i − 0.413527i
\(569\) −5.33272e6 −0.690508 −0.345254 0.938509i \(-0.612207\pi\)
−0.345254 + 0.938509i \(0.612207\pi\)
\(570\) 0 0
\(571\) −1.46290e7 −1.87769 −0.938847 0.344334i \(-0.888105\pi\)
−0.938847 + 0.344334i \(0.888105\pi\)
\(572\) − 298608.i − 0.0381602i
\(573\) − 1.79519e7i − 2.28414i
\(574\) 5.83465e6 0.739154
\(575\) 0 0
\(576\) −7.31633e6 −0.918834
\(577\) − 7.62278e6i − 0.953177i −0.879126 0.476589i \(-0.841873\pi\)
0.879126 0.476589i \(-0.158127\pi\)
\(578\) − 3.75564e6i − 0.467590i
\(579\) −1.75756e6 −0.217878
\(580\) 0 0
\(581\) 139982. 0.0172041
\(582\) 319270.i 0.0390706i
\(583\) − 172650.i − 0.0210376i
\(584\) −3.97780e6 −0.482626
\(585\) 0 0
\(586\) 5.32684e6 0.640805
\(587\) − 7.92637e6i − 0.949465i −0.880130 0.474732i \(-0.842545\pi\)
0.880130 0.474732i \(-0.157455\pi\)
\(588\) 1.21558e7i 1.44991i
\(589\) 1.30596e7 1.55110
\(590\) 0 0
\(591\) −2.42892e7 −2.86052
\(592\) 2.85722e6i 0.335074i
\(593\) 1.13806e7i 1.32901i 0.747282 + 0.664507i \(0.231358\pi\)
−0.747282 + 0.664507i \(0.768642\pi\)
\(594\) 1.46935e6 0.170868
\(595\) 0 0
\(596\) 2.23178e6 0.257356
\(597\) 1.46037e7i 1.67698i
\(598\) − 45725.1i − 0.00522880i
\(599\) −7.12203e6 −0.811030 −0.405515 0.914088i \(-0.632908\pi\)
−0.405515 + 0.914088i \(0.632908\pi\)
\(600\) 0 0
\(601\) 1.50084e6 0.169492 0.0847458 0.996403i \(-0.472992\pi\)
0.0847458 + 0.996403i \(0.472992\pi\)
\(602\) − 7.47879e6i − 0.841086i
\(603\) 1.89234e7i 2.11936i
\(604\) 1.03696e7 1.15656
\(605\) 0 0
\(606\) −5.11534e6 −0.565839
\(607\) 1.39958e7i 1.54179i 0.636960 + 0.770897i \(0.280192\pi\)
−0.636960 + 0.770897i \(0.719808\pi\)
\(608\) − 1.27854e7i − 1.40267i
\(609\) 3.14972e7 3.44135
\(610\) 0 0
\(611\) 2.82932e6 0.306604
\(612\) − 3.30299e7i − 3.56475i
\(613\) 4.60575e6i 0.495050i 0.968882 + 0.247525i \(0.0796172\pi\)
−0.968882 + 0.247525i \(0.920383\pi\)
\(614\) 3.06063e6 0.327634
\(615\) 0 0
\(616\) −1.31303e6 −0.139420
\(617\) − 5.55212e6i − 0.587146i −0.955937 0.293573i \(-0.905156\pi\)
0.955937 0.293573i \(-0.0948444\pi\)
\(618\) − 4.40334e6i − 0.463779i
\(619\) 2.71815e6 0.285133 0.142566 0.989785i \(-0.454465\pi\)
0.142566 + 0.989785i \(0.454465\pi\)
\(620\) 0 0
\(621\) −1.64008e6 −0.170662
\(622\) − 5.05592e6i − 0.523992i
\(623\) − 1.27816e7i − 1.31936i
\(624\) 3.36204e6 0.345654
\(625\) 0 0
\(626\) 1.10749e6 0.112954
\(627\) − 4.69109e6i − 0.476546i
\(628\) − 871122.i − 0.0881414i
\(629\) −7.80331e6 −0.786416
\(630\) 0 0
\(631\) −1.93426e6 −0.193393 −0.0966964 0.995314i \(-0.530828\pi\)
−0.0966964 + 0.995314i \(0.530828\pi\)
\(632\) 1.59860e6i 0.159201i
\(633\) − 1.76793e7i − 1.75371i
\(634\) −2.94182e6 −0.290665
\(635\) 0 0
\(636\) 2.30320e6 0.225782
\(637\) − 2.45251e6i − 0.239477i
\(638\) 737631.i 0.0717443i
\(639\) 1.73053e7 1.67659
\(640\) 0 0
\(641\) 9.58248e6 0.921155 0.460578 0.887619i \(-0.347642\pi\)
0.460578 + 0.887619i \(0.347642\pi\)
\(642\) − 4.54916e6i − 0.435606i
\(643\) 2.46659e6i 0.235272i 0.993057 + 0.117636i \(0.0375316\pi\)
−0.993057 + 0.117636i \(0.962468\pi\)
\(644\) 685762. 0.0651567
\(645\) 0 0
\(646\) 9.00037e6 0.848553
\(647\) 2.72804e6i 0.256207i 0.991761 + 0.128103i \(0.0408889\pi\)
−0.991761 + 0.128103i \(0.959111\pi\)
\(648\) 2.34265e7i 2.19164i
\(649\) 1.04430e6 0.0973229
\(650\) 0 0
\(651\) 2.74119e7 2.53505
\(652\) − 5.75584e6i − 0.530261i
\(653\) 9.94071e6i 0.912293i 0.889905 + 0.456147i \(0.150771\pi\)
−0.889905 + 0.456147i \(0.849229\pi\)
\(654\) −1.02742e7 −0.939295
\(655\) 0 0
\(656\) 1.12142e7 1.01744
\(657\) − 2.16494e7i − 1.95674i
\(658\) − 5.82122e6i − 0.524143i
\(659\) −440385. −0.0395019 −0.0197510 0.999805i \(-0.506287\pi\)
−0.0197510 + 0.999805i \(0.506287\pi\)
\(660\) 0 0
\(661\) 4.85089e6 0.431835 0.215918 0.976412i \(-0.430726\pi\)
0.215918 + 0.976412i \(0.430726\pi\)
\(662\) 4.87741e6i 0.432558i
\(663\) 9.18201e6i 0.811248i
\(664\) −93464.0 −0.00822668
\(665\) 0 0
\(666\) 5.40215e6 0.471933
\(667\) − 823340.i − 0.0716580i
\(668\) − 4.45869e6i − 0.386604i
\(669\) −2.65985e7 −2.29769
\(670\) 0 0
\(671\) 1.57013e6 0.134626
\(672\) − 2.68365e7i − 2.29246i
\(673\) 2.15372e6i 0.183296i 0.995791 + 0.0916479i \(0.0292134\pi\)
−0.995791 + 0.0916479i \(0.970787\pi\)
\(674\) 4.26471e6 0.361609
\(675\) 0 0
\(676\) −803695. −0.0676433
\(677\) − 4.93215e6i − 0.413585i −0.978385 0.206792i \(-0.933698\pi\)
0.978385 0.206792i \(-0.0663024\pi\)
\(678\) − 137451.i − 0.0114835i
\(679\) 966058. 0.0804135
\(680\) 0 0
\(681\) −3.28632e7 −2.71545
\(682\) 641956.i 0.0528499i
\(683\) − 1.39352e7i − 1.14304i −0.820588 0.571521i \(-0.806354\pi\)
0.820588 0.571521i \(-0.193646\pi\)
\(684\) 4.54186e7 3.71187
\(685\) 0 0
\(686\) 798026. 0.0647451
\(687\) − 1.97088e7i − 1.59320i
\(688\) − 1.43743e7i − 1.15775i
\(689\) −464685. −0.0372915
\(690\) 0 0
\(691\) 1.71835e7 1.36904 0.684520 0.728994i \(-0.260012\pi\)
0.684520 + 0.728994i \(0.260012\pi\)
\(692\) 6.49076e6i 0.515264i
\(693\) − 7.14628e6i − 0.565258i
\(694\) 7.72338e6 0.608708
\(695\) 0 0
\(696\) −2.10303e7 −1.64559
\(697\) 3.06270e7i 2.38793i
\(698\) − 744488.i − 0.0578387i
\(699\) 2.46574e7 1.90877
\(700\) 0 0
\(701\) 4.18640e6 0.321770 0.160885 0.986973i \(-0.448565\pi\)
0.160885 + 0.986973i \(0.448565\pi\)
\(702\) − 3.95472e6i − 0.302882i
\(703\) − 1.07301e7i − 0.818874i
\(704\) −714347. −0.0543222
\(705\) 0 0
\(706\) 2.22082e6 0.167688
\(707\) 1.54782e7i 1.16458i
\(708\) 1.39313e7i 1.04450i
\(709\) 7.30623e6 0.545855 0.272928 0.962035i \(-0.412008\pi\)
0.272928 + 0.962035i \(0.412008\pi\)
\(710\) 0 0
\(711\) −8.70048e6 −0.645460
\(712\) 8.53409e6i 0.630895i
\(713\) − 716548.i − 0.0527864i
\(714\) 1.88917e7 1.38684
\(715\) 0 0
\(716\) −2.22835e7 −1.62443
\(717\) 1.06930e7i 0.776783i
\(718\) − 6.59342e6i − 0.477309i
\(719\) 1.22435e7 0.883249 0.441625 0.897200i \(-0.354402\pi\)
0.441625 + 0.897200i \(0.354402\pi\)
\(720\) 0 0
\(721\) −1.33238e7 −0.954530
\(722\) 7.51117e6i 0.536246i
\(723\) 2.76484e7i 1.96709i
\(724\) −7.67351e6 −0.544061
\(725\) 0 0
\(726\) −9.18877e6 −0.647017
\(727\) − 612630.i − 0.0429895i −0.999769 0.0214947i \(-0.993157\pi\)
0.999769 0.0214947i \(-0.00684251\pi\)
\(728\) 3.53400e6i 0.247137i
\(729\) −4.13490e7 −2.88169
\(730\) 0 0
\(731\) 3.92574e7 2.71724
\(732\) 2.09459e7i 1.44485i
\(733\) 1.54190e7i 1.05998i 0.848004 + 0.529989i \(0.177804\pi\)
−0.848004 + 0.529989i \(0.822196\pi\)
\(734\) 3.91176e6 0.267998
\(735\) 0 0
\(736\) −701508. −0.0477351
\(737\) 1.84763e6i 0.125298i
\(738\) − 2.12027e7i − 1.43301i
\(739\) −1.10414e7 −0.743724 −0.371862 0.928288i \(-0.621280\pi\)
−0.371862 + 0.928288i \(0.621280\pi\)
\(740\) 0 0
\(741\) −1.26259e7 −0.844731
\(742\) 956073.i 0.0637502i
\(743\) − 1.66010e7i − 1.10322i −0.834102 0.551611i \(-0.814013\pi\)
0.834102 0.551611i \(-0.185987\pi\)
\(744\) −1.83026e7 −1.21221
\(745\) 0 0
\(746\) −2.74194e6 −0.180390
\(747\) − 508684.i − 0.0333539i
\(748\) − 3.22495e6i − 0.210751i
\(749\) −1.37650e7 −0.896546
\(750\) 0 0
\(751\) 1.04497e6 0.0676089 0.0338045 0.999428i \(-0.489238\pi\)
0.0338045 + 0.999428i \(0.489238\pi\)
\(752\) − 1.11884e7i − 0.721481i
\(753\) 3.04622e6i 0.195782i
\(754\) 1.98532e6 0.127175
\(755\) 0 0
\(756\) 5.93109e7 3.77425
\(757\) − 5.93460e6i − 0.376402i −0.982131 0.188201i \(-0.939734\pi\)
0.982131 0.188201i \(-0.0602656\pi\)
\(758\) − 7.50481e6i − 0.474424i
\(759\) −257389. −0.0162176
\(760\) 0 0
\(761\) 5.89549e6 0.369027 0.184514 0.982830i \(-0.440929\pi\)
0.184514 + 0.982830i \(0.440929\pi\)
\(762\) 1.55887e7i 0.972574i
\(763\) 3.10879e7i 1.93322i
\(764\) 1.69701e7 1.05185
\(765\) 0 0
\(766\) −8.44961e6 −0.520313
\(767\) − 2.81072e6i − 0.172516i
\(768\) 4726.10i 0 0.000289134i
\(769\) 1.30498e7 0.795769 0.397884 0.917436i \(-0.369744\pi\)
0.397884 + 0.917436i \(0.369744\pi\)
\(770\) 0 0
\(771\) −3.49651e7 −2.11835
\(772\) − 1.66145e6i − 0.100333i
\(773\) − 2.29371e7i − 1.38067i −0.723491 0.690334i \(-0.757464\pi\)
0.723491 0.690334i \(-0.242536\pi\)
\(774\) −2.71774e7 −1.63063
\(775\) 0 0
\(776\) −645025. −0.0384523
\(777\) − 2.25224e7i − 1.33833i
\(778\) − 1.10661e7i − 0.655456i
\(779\) −4.21144e7 −2.48649
\(780\) 0 0
\(781\) 1.68964e6 0.0991213
\(782\) − 493830.i − 0.0288775i
\(783\) − 7.12099e7i − 4.15084i
\(784\) −9.69838e6 −0.563520
\(785\) 0 0
\(786\) 6.94254e6 0.400831
\(787\) 1.68766e7i 0.971291i 0.874156 + 0.485645i \(0.161415\pi\)
−0.874156 + 0.485645i \(0.838585\pi\)
\(788\) − 2.29609e7i − 1.31727i
\(789\) 2.96204e6 0.169394
\(790\) 0 0
\(791\) −415903. −0.0236348
\(792\) 4.77148e6i 0.270296i
\(793\) − 4.22597e6i − 0.238640i
\(794\) 2.01769e6 0.113580
\(795\) 0 0
\(796\) −1.38051e7 −0.772247
\(797\) 4.13009e6i 0.230311i 0.993348 + 0.115155i \(0.0367366\pi\)
−0.993348 + 0.115155i \(0.963263\pi\)
\(798\) 2.59775e7i 1.44407i
\(799\) 3.05565e7 1.69331
\(800\) 0 0
\(801\) −4.64474e7 −2.55788
\(802\) − 2.11482e6i − 0.116101i
\(803\) − 2.11379e6i − 0.115684i
\(804\) −2.46478e7 −1.34474
\(805\) 0 0
\(806\) 1.72781e6 0.0936825
\(807\) − 1.66396e7i − 0.899412i
\(808\) − 1.03346e7i − 0.556884i
\(809\) −1.01709e7 −0.546369 −0.273185 0.961962i \(-0.588077\pi\)
−0.273185 + 0.961962i \(0.588077\pi\)
\(810\) 0 0
\(811\) −2.22723e7 −1.18909 −0.594543 0.804064i \(-0.702667\pi\)
−0.594543 + 0.804064i \(0.702667\pi\)
\(812\) 2.97748e7i 1.58474i
\(813\) 1.49957e7i 0.795686i
\(814\) 527451. 0.0279011
\(815\) 0 0
\(816\) 3.63099e7 1.90897
\(817\) 5.39818e7i 2.82939i
\(818\) 8.82104e6i 0.460932i
\(819\) −1.92340e7 −1.00198
\(820\) 0 0
\(821\) 3.65506e6 0.189250 0.0946251 0.995513i \(-0.469835\pi\)
0.0946251 + 0.995513i \(0.469835\pi\)
\(822\) 9.58305e6i 0.494680i
\(823\) − 7.29867e6i − 0.375616i −0.982206 0.187808i \(-0.939862\pi\)
0.982206 0.187808i \(-0.0601383\pi\)
\(824\) 8.89612e6 0.456439
\(825\) 0 0
\(826\) −5.78296e6 −0.294917
\(827\) − 3.19608e7i − 1.62500i −0.582958 0.812502i \(-0.698105\pi\)
0.582958 0.812502i \(-0.301895\pi\)
\(828\) − 2.49201e6i − 0.126321i
\(829\) −9.74730e6 −0.492604 −0.246302 0.969193i \(-0.579215\pi\)
−0.246302 + 0.969193i \(0.579215\pi\)
\(830\) 0 0
\(831\) 3.22534e7 1.62022
\(832\) 1.92265e6i 0.0962923i
\(833\) − 2.64871e7i − 1.32258i
\(834\) −1.27663e7 −0.635550
\(835\) 0 0
\(836\) 4.43455e6 0.219449
\(837\) − 6.19736e7i − 3.05769i
\(838\) 5.69976e6i 0.280380i
\(839\) 6.75711e6 0.331403 0.165701 0.986176i \(-0.447011\pi\)
0.165701 + 0.986176i \(0.447011\pi\)
\(840\) 0 0
\(841\) 1.52371e7 0.742867
\(842\) − 1.11962e7i − 0.544238i
\(843\) 4.36371e7i 2.11489i
\(844\) 1.67125e7 0.807580
\(845\) 0 0
\(846\) −2.11539e7 −1.01617
\(847\) 2.78037e7i 1.33166i
\(848\) 1.83758e6i 0.0877519i
\(849\) 6.29096e7 2.99535
\(850\) 0 0
\(851\) −588738. −0.0278675
\(852\) 2.25402e7i 1.06380i
\(853\) 2.85698e7i 1.34442i 0.740362 + 0.672209i \(0.234654\pi\)
−0.740362 + 0.672209i \(0.765346\pi\)
\(854\) −8.69479e6 −0.407957
\(855\) 0 0
\(856\) 9.19073e6 0.428712
\(857\) − 2.35895e6i − 0.109715i −0.998494 0.0548577i \(-0.982529\pi\)
0.998494 0.0548577i \(-0.0174705\pi\)
\(858\) − 620642.i − 0.0287821i
\(859\) −1.07995e7 −0.499368 −0.249684 0.968327i \(-0.580327\pi\)
−0.249684 + 0.968327i \(0.580327\pi\)
\(860\) 0 0
\(861\) −8.83976e7 −4.06380
\(862\) 1.42541e7i 0.653388i
\(863\) − 2.27989e7i − 1.04204i −0.853543 0.521022i \(-0.825551\pi\)
0.853543 0.521022i \(-0.174449\pi\)
\(864\) −6.06728e7 −2.76509
\(865\) 0 0
\(866\) −5.74995e6 −0.260537
\(867\) 5.68998e7i 2.57077i
\(868\) 2.59128e7i 1.16739i
\(869\) −849491. −0.0381601
\(870\) 0 0
\(871\) 4.97284e6 0.222105
\(872\) − 2.07570e7i − 0.924429i
\(873\) − 3.51059e6i − 0.155899i
\(874\) 679053. 0.0300694
\(875\) 0 0
\(876\) 2.81985e7 1.24155
\(877\) − 3.23124e7i − 1.41863i −0.704890 0.709317i \(-0.749003\pi\)
0.704890 0.709317i \(-0.250997\pi\)
\(878\) − 4.23258e6i − 0.185297i
\(879\) −8.07041e7 −3.52309
\(880\) 0 0
\(881\) 1.40863e7 0.611447 0.305723 0.952120i \(-0.401102\pi\)
0.305723 + 0.952120i \(0.401102\pi\)
\(882\) 1.83367e7i 0.793688i
\(883\) 4.14803e7i 1.79036i 0.445705 + 0.895180i \(0.352953\pi\)
−0.445705 + 0.895180i \(0.647047\pi\)
\(884\) −8.67988e6 −0.373579
\(885\) 0 0
\(886\) −1.45586e7 −0.623068
\(887\) 6.64591e6i 0.283626i 0.989893 + 0.141813i \(0.0452931\pi\)
−0.989893 + 0.141813i \(0.954707\pi\)
\(888\) 1.50379e7i 0.639965i
\(889\) 4.71689e7 2.00171
\(890\) 0 0
\(891\) −1.24488e7 −0.525331
\(892\) − 2.51439e7i − 1.05809i
\(893\) 4.20175e7i 1.76320i
\(894\) 4.63864e6 0.194110
\(895\) 0 0
\(896\) 3.28050e7 1.36512
\(897\) 692757.i 0.0287475i
\(898\) 3.73869e6i 0.154713i
\(899\) 3.11115e7 1.28387
\(900\) 0 0
\(901\) −5.01858e6 −0.205953
\(902\) − 2.07018e6i − 0.0847210i
\(903\) 1.13307e8i 4.62422i
\(904\) 277693. 0.0113017
\(905\) 0 0
\(906\) 2.15527e7 0.872331
\(907\) − 1.12437e7i − 0.453827i −0.973915 0.226914i \(-0.927137\pi\)
0.973915 0.226914i \(-0.0728635\pi\)
\(908\) − 3.10660e7i − 1.25046i
\(909\) 5.62466e7 2.25781
\(910\) 0 0
\(911\) 2.28294e7 0.911377 0.455689 0.890139i \(-0.349393\pi\)
0.455689 + 0.890139i \(0.349393\pi\)
\(912\) 4.99289e7i 1.98776i
\(913\) − 49666.6i − 0.00197191i
\(914\) 5.49538e6 0.217587
\(915\) 0 0
\(916\) 1.86310e7 0.733666
\(917\) − 2.10070e7i − 0.824974i
\(918\) − 4.27109e7i − 1.67275i
\(919\) −3.58183e7 −1.39899 −0.699497 0.714635i \(-0.746593\pi\)
−0.699497 + 0.714635i \(0.746593\pi\)
\(920\) 0 0
\(921\) −4.63699e7 −1.80130
\(922\) 8.21885e6i 0.318408i
\(923\) − 4.54763e6i − 0.175704i
\(924\) 9.30807e6 0.358657
\(925\) 0 0
\(926\) 4.93410e6 0.189095
\(927\) 4.84177e7i 1.85057i
\(928\) − 3.04584e7i − 1.16101i
\(929\) 1.37009e7 0.520847 0.260424 0.965494i \(-0.416138\pi\)
0.260424 + 0.965494i \(0.416138\pi\)
\(930\) 0 0
\(931\) 3.64217e7 1.37716
\(932\) 2.33090e7i 0.878988i
\(933\) 7.65996e7i 2.88086i
\(934\) 4.26704e6 0.160051
\(935\) 0 0
\(936\) 1.28423e7 0.479131
\(937\) − 2.45732e7i − 0.914352i −0.889376 0.457176i \(-0.848861\pi\)
0.889376 0.457176i \(-0.151139\pi\)
\(938\) − 1.02315e7i − 0.379691i
\(939\) −1.67789e7 −0.621013
\(940\) 0 0
\(941\) 3.53611e7 1.30182 0.650912 0.759153i \(-0.274387\pi\)
0.650912 + 0.759153i \(0.274387\pi\)
\(942\) − 1.81059e6i − 0.0664801i
\(943\) 2.31072e6i 0.0846191i
\(944\) −1.11149e7 −0.405952
\(945\) 0 0
\(946\) −2.65353e6 −0.0964043
\(947\) − 4.90338e7i − 1.77673i −0.459140 0.888364i \(-0.651842\pi\)
0.459140 0.888364i \(-0.348158\pi\)
\(948\) − 1.13324e7i − 0.409545i
\(949\) −5.68922e6 −0.205063
\(950\) 0 0
\(951\) 4.45699e7 1.59805
\(952\) 3.81671e7i 1.36489i
\(953\) − 1.81532e7i − 0.647472i −0.946147 0.323736i \(-0.895061\pi\)
0.946147 0.323736i \(-0.104939\pi\)
\(954\) 3.47431e6 0.123594
\(955\) 0 0
\(956\) −1.01082e7 −0.357708
\(957\) − 1.11755e7i − 0.394444i
\(958\) 1.86025e7i 0.654872i
\(959\) 2.89967e7 1.01813
\(960\) 0 0
\(961\) −1.55304e6 −0.0542466
\(962\) − 1.41962e6i − 0.0494578i
\(963\) 5.00212e7i 1.73815i
\(964\) −2.61364e7 −0.905844
\(965\) 0 0
\(966\) 1.42532e6 0.0491441
\(967\) − 5.23618e7i − 1.80073i −0.435135 0.900365i \(-0.643299\pi\)
0.435135 0.900365i \(-0.356701\pi\)
\(968\) − 1.85642e7i − 0.636777i
\(969\) −1.36360e8 −4.66527
\(970\) 0 0
\(971\) 2.95200e7 1.00477 0.502387 0.864643i \(-0.332455\pi\)
0.502387 + 0.864643i \(0.332455\pi\)
\(972\) − 8.46299e7i − 2.87315i
\(973\) 3.86287e7i 1.30806i
\(974\) 9.58395e6 0.323703
\(975\) 0 0
\(976\) −1.67114e7 −0.561551
\(977\) 1.21759e7i 0.408098i 0.978961 + 0.204049i \(0.0654102\pi\)
−0.978961 + 0.204049i \(0.934590\pi\)
\(978\) − 1.19632e7i − 0.399946i
\(979\) −4.53499e6 −0.151224
\(980\) 0 0
\(981\) 1.12971e8 3.74797
\(982\) − 7.59304e6i − 0.251268i
\(983\) − 1.46087e6i − 0.0482200i −0.999709 0.0241100i \(-0.992325\pi\)
0.999709 0.0241100i \(-0.00767520\pi\)
\(984\) 5.90220e7 1.94324
\(985\) 0 0
\(986\) 2.14413e7 0.702360
\(987\) 8.81942e7i 2.88169i
\(988\) − 1.19355e7i − 0.388998i
\(989\) 2.96186e6 0.0962883
\(990\) 0 0
\(991\) 3.16160e7 1.02264 0.511320 0.859390i \(-0.329157\pi\)
0.511320 + 0.859390i \(0.329157\pi\)
\(992\) − 2.65078e7i − 0.855252i
\(993\) − 7.38951e7i − 2.37817i
\(994\) −9.35660e6 −0.300367
\(995\) 0 0
\(996\) 662564. 0.0211631
\(997\) 3.93744e7i 1.25452i 0.778812 + 0.627258i \(0.215823\pi\)
−0.778812 + 0.627258i \(0.784177\pi\)
\(998\) − 1.13020e7i − 0.359195i
\(999\) −5.09194e7 −1.61425
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.i.274.13 22
5.2 odd 4 325.6.a.k.1.5 yes 11
5.3 odd 4 325.6.a.j.1.7 11
5.4 even 2 inner 325.6.b.i.274.10 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.7 11 5.3 odd 4
325.6.a.k.1.5 yes 11 5.2 odd 4
325.6.b.i.274.10 22 5.4 even 2 inner
325.6.b.i.274.13 22 1.1 even 1 trivial