Properties

Label 325.6.b.i.274.12
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.12
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.i.274.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.979695i q^{2} -20.7822i q^{3} +31.0402 q^{4} +20.3602 q^{6} -233.896i q^{7} +61.7601i q^{8} -188.898 q^{9} +O(q^{10})\) \(q+0.979695i q^{2} -20.7822i q^{3} +31.0402 q^{4} +20.3602 q^{6} -233.896i q^{7} +61.7601i q^{8} -188.898 q^{9} +621.155 q^{11} -645.082i q^{12} -169.000i q^{13} +229.147 q^{14} +932.780 q^{16} +287.693i q^{17} -185.063i q^{18} +2632.19 q^{19} -4860.87 q^{21} +608.542i q^{22} -2164.84i q^{23} +1283.51 q^{24} +165.568 q^{26} -1124.35i q^{27} -7260.18i q^{28} -2475.24 q^{29} +7148.94 q^{31} +2890.16i q^{32} -12908.9i q^{33} -281.851 q^{34} -5863.44 q^{36} +2727.11i q^{37} +2578.74i q^{38} -3512.19 q^{39} +6104.22 q^{41} -4762.17i q^{42} +2663.13i q^{43} +19280.8 q^{44} +2120.88 q^{46} +29613.8i q^{47} -19385.2i q^{48} -37900.4 q^{49} +5978.87 q^{51} -5245.79i q^{52} +11712.3i q^{53} +1101.52 q^{54} +14445.5 q^{56} -54702.5i q^{57} -2424.98i q^{58} -28664.9 q^{59} +30545.9 q^{61} +7003.78i q^{62} +44182.6i q^{63} +27017.5 q^{64} +12646.8 q^{66} +22127.6i q^{67} +8930.03i q^{68} -44990.0 q^{69} -62434.6 q^{71} -11666.4i q^{72} -40511.4i q^{73} -2671.73 q^{74} +81703.6 q^{76} -145286. i q^{77} -3440.87i q^{78} +1895.66 q^{79} -69268.7 q^{81} +5980.27i q^{82} +6639.87i q^{83} -150882. q^{84} -2609.05 q^{86} +51440.9i q^{87} +38362.6i q^{88} -139830. q^{89} -39528.5 q^{91} -67197.1i q^{92} -148570. i q^{93} -29012.5 q^{94} +60063.9 q^{96} +51749.0i q^{97} -37130.8i q^{98} -117335. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 374 q^{4} + 702 q^{6} - 2744 q^{9} + 2552 q^{11} - 1156 q^{14} + 11414 q^{16} - 7040 q^{19} + 3412 q^{21} - 15446 q^{24} + 1690 q^{26} - 36850 q^{29} + 18136 q^{31} + 28910 q^{34} + 75368 q^{36} - 3718 q^{39} - 20020 q^{41} - 121302 q^{44} - 19716 q^{46} - 146626 q^{49} + 73212 q^{51} - 96026 q^{54} - 2524 q^{56} - 263284 q^{59} - 86730 q^{61} - 360142 q^{64} - 117214 q^{66} - 118690 q^{69} + 136840 q^{71} - 742792 q^{74} + 45034 q^{76} - 104478 q^{79} + 215014 q^{81} - 1705432 q^{84} + 404492 q^{86} - 655424 q^{89} + 70304 q^{91} - 1299948 q^{94} + 1799326 q^{96} - 853396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.979695i 0.173187i 0.996244 + 0.0865936i \(0.0275982\pi\)
−0.996244 + 0.0865936i \(0.972402\pi\)
\(3\) − 20.7822i − 1.33318i −0.745426 0.666588i \(-0.767754\pi\)
0.745426 0.666588i \(-0.232246\pi\)
\(4\) 31.0402 0.970006
\(5\) 0 0
\(6\) 20.3602 0.230889
\(7\) − 233.896i − 1.80417i −0.431556 0.902086i \(-0.642035\pi\)
0.431556 0.902086i \(-0.357965\pi\)
\(8\) 61.7601i 0.341180i
\(9\) −188.898 −0.777359
\(10\) 0 0
\(11\) 621.155 1.54781 0.773906 0.633300i \(-0.218300\pi\)
0.773906 + 0.633300i \(0.218300\pi\)
\(12\) − 645.082i − 1.29319i
\(13\) − 169.000i − 0.277350i
\(14\) 229.147 0.312459
\(15\) 0 0
\(16\) 932.780 0.910918
\(17\) 287.693i 0.241438i 0.992687 + 0.120719i \(0.0385201\pi\)
−0.992687 + 0.120719i \(0.961480\pi\)
\(18\) − 185.063i − 0.134629i
\(19\) 2632.19 1.67276 0.836378 0.548153i \(-0.184669\pi\)
0.836378 + 0.548153i \(0.184669\pi\)
\(20\) 0 0
\(21\) −4860.87 −2.40528
\(22\) 608.542i 0.268061i
\(23\) − 2164.84i − 0.853309i −0.904415 0.426654i \(-0.859692\pi\)
0.904415 0.426654i \(-0.140308\pi\)
\(24\) 1283.51 0.454853
\(25\) 0 0
\(26\) 165.568 0.0480335
\(27\) − 1124.35i − 0.296820i
\(28\) − 7260.18i − 1.75006i
\(29\) −2475.24 −0.546541 −0.273271 0.961937i \(-0.588105\pi\)
−0.273271 + 0.961937i \(0.588105\pi\)
\(30\) 0 0
\(31\) 7148.94 1.33610 0.668048 0.744119i \(-0.267130\pi\)
0.668048 + 0.744119i \(0.267130\pi\)
\(32\) 2890.16i 0.498939i
\(33\) − 12908.9i − 2.06351i
\(34\) −281.851 −0.0418140
\(35\) 0 0
\(36\) −5863.44 −0.754043
\(37\) 2727.11i 0.327490i 0.986503 + 0.163745i \(0.0523574\pi\)
−0.986503 + 0.163745i \(0.947643\pi\)
\(38\) 2578.74i 0.289700i
\(39\) −3512.19 −0.369757
\(40\) 0 0
\(41\) 6104.22 0.567114 0.283557 0.958955i \(-0.408486\pi\)
0.283557 + 0.958955i \(0.408486\pi\)
\(42\) − 4762.17i − 0.416564i
\(43\) 2663.13i 0.219645i 0.993951 + 0.109822i \(0.0350282\pi\)
−0.993951 + 0.109822i \(0.964972\pi\)
\(44\) 19280.8 1.50139
\(45\) 0 0
\(46\) 2120.88 0.147782
\(47\) 29613.8i 1.95546i 0.209862 + 0.977731i \(0.432699\pi\)
−0.209862 + 0.977731i \(0.567301\pi\)
\(48\) − 19385.2i − 1.21441i
\(49\) −37900.4 −2.25504
\(50\) 0 0
\(51\) 5978.87 0.321880
\(52\) − 5245.79i − 0.269031i
\(53\) 11712.3i 0.572736i 0.958120 + 0.286368i \(0.0924479\pi\)
−0.958120 + 0.286368i \(0.907552\pi\)
\(54\) 1101.52 0.0514054
\(55\) 0 0
\(56\) 14445.5 0.615547
\(57\) − 54702.5i − 2.23008i
\(58\) − 2424.98i − 0.0946539i
\(59\) −28664.9 −1.07206 −0.536031 0.844198i \(-0.680077\pi\)
−0.536031 + 0.844198i \(0.680077\pi\)
\(60\) 0 0
\(61\) 30545.9 1.05106 0.525531 0.850775i \(-0.323867\pi\)
0.525531 + 0.850775i \(0.323867\pi\)
\(62\) 7003.78i 0.231395i
\(63\) 44182.6i 1.40249i
\(64\) 27017.5 0.824508
\(65\) 0 0
\(66\) 12646.8 0.357373
\(67\) 22127.6i 0.602210i 0.953591 + 0.301105i \(0.0973554\pi\)
−0.953591 + 0.301105i \(0.902645\pi\)
\(68\) 8930.03i 0.234197i
\(69\) −44990.0 −1.13761
\(70\) 0 0
\(71\) −62434.6 −1.46987 −0.734936 0.678137i \(-0.762788\pi\)
−0.734936 + 0.678137i \(0.762788\pi\)
\(72\) − 11666.4i − 0.265219i
\(73\) − 40511.4i − 0.889754i −0.895592 0.444877i \(-0.853247\pi\)
0.895592 0.444877i \(-0.146753\pi\)
\(74\) −2671.73 −0.0567170
\(75\) 0 0
\(76\) 81703.6 1.62258
\(77\) − 145286.i − 2.79252i
\(78\) − 3440.87i − 0.0640371i
\(79\) 1895.66 0.0341737 0.0170869 0.999854i \(-0.494561\pi\)
0.0170869 + 0.999854i \(0.494561\pi\)
\(80\) 0 0
\(81\) −69268.7 −1.17307
\(82\) 5980.27i 0.0982168i
\(83\) 6639.87i 0.105795i 0.998600 + 0.0528974i \(0.0168456\pi\)
−0.998600 + 0.0528974i \(0.983154\pi\)
\(84\) −150882. −2.33314
\(85\) 0 0
\(86\) −2609.05 −0.0380396
\(87\) 51440.9i 0.728636i
\(88\) 38362.6i 0.528082i
\(89\) −139830. −1.87123 −0.935613 0.353028i \(-0.885152\pi\)
−0.935613 + 0.353028i \(0.885152\pi\)
\(90\) 0 0
\(91\) −39528.5 −0.500387
\(92\) − 67197.1i − 0.827715i
\(93\) − 148570.i − 1.78125i
\(94\) −29012.5 −0.338661
\(95\) 0 0
\(96\) 60063.9 0.665174
\(97\) 51749.0i 0.558436i 0.960228 + 0.279218i \(0.0900751\pi\)
−0.960228 + 0.279218i \(0.909925\pi\)
\(98\) − 37130.8i − 0.390544i
\(99\) −117335. −1.20321
\(100\) 0 0
\(101\) −127703. −1.24565 −0.622826 0.782360i \(-0.714016\pi\)
−0.622826 + 0.782360i \(0.714016\pi\)
\(102\) 5857.47i 0.0557455i
\(103\) 47897.1i 0.444853i 0.974949 + 0.222426i \(0.0713977\pi\)
−0.974949 + 0.222426i \(0.928602\pi\)
\(104\) 10437.5 0.0946263
\(105\) 0 0
\(106\) −11474.5 −0.0991905
\(107\) 65909.7i 0.556532i 0.960504 + 0.278266i \(0.0897596\pi\)
−0.960504 + 0.278266i \(0.910240\pi\)
\(108\) − 34900.1i − 0.287917i
\(109\) 48669.5 0.392365 0.196183 0.980567i \(-0.437145\pi\)
0.196183 + 0.980567i \(0.437145\pi\)
\(110\) 0 0
\(111\) 56675.2 0.436602
\(112\) − 218174.i − 1.64345i
\(113\) 76457.5i 0.563279i 0.959520 + 0.281640i \(0.0908783\pi\)
−0.959520 + 0.281640i \(0.909122\pi\)
\(114\) 53591.7 0.386221
\(115\) 0 0
\(116\) −76832.1 −0.530148
\(117\) 31923.8i 0.215601i
\(118\) − 28082.8i − 0.185667i
\(119\) 67290.2 0.435596
\(120\) 0 0
\(121\) 224783. 1.39572
\(122\) 29925.6i 0.182030i
\(123\) − 126859.i − 0.756063i
\(124\) 221905. 1.29602
\(125\) 0 0
\(126\) −43285.4 −0.242893
\(127\) − 242910.i − 1.33640i −0.743982 0.668199i \(-0.767065\pi\)
0.743982 0.668199i \(-0.232935\pi\)
\(128\) 118954.i 0.641733i
\(129\) 55345.5 0.292825
\(130\) 0 0
\(131\) 80066.9 0.407638 0.203819 0.979009i \(-0.434665\pi\)
0.203819 + 0.979009i \(0.434665\pi\)
\(132\) − 400696.i − 2.00161i
\(133\) − 615658.i − 3.01794i
\(134\) −21678.3 −0.104295
\(135\) 0 0
\(136\) −17767.9 −0.0823739
\(137\) − 394611.i − 1.79625i −0.439736 0.898127i \(-0.644928\pi\)
0.439736 0.898127i \(-0.355072\pi\)
\(138\) − 44076.5i − 0.197020i
\(139\) −420116. −1.84430 −0.922151 0.386830i \(-0.873570\pi\)
−0.922151 + 0.386830i \(0.873570\pi\)
\(140\) 0 0
\(141\) 615439. 2.60698
\(142\) − 61166.8i − 0.254563i
\(143\) − 104975.i − 0.429286i
\(144\) −176201. −0.708110
\(145\) 0 0
\(146\) 39688.8 0.154094
\(147\) 787653.i 3.00636i
\(148\) 84649.9i 0.317667i
\(149\) −164639. −0.607528 −0.303764 0.952747i \(-0.598243\pi\)
−0.303764 + 0.952747i \(0.598243\pi\)
\(150\) 0 0
\(151\) 475633. 1.69758 0.848789 0.528732i \(-0.177332\pi\)
0.848789 + 0.528732i \(0.177332\pi\)
\(152\) 162564.i 0.570710i
\(153\) − 54344.6i − 0.187684i
\(154\) 142336. 0.483629
\(155\) 0 0
\(156\) −109019. −0.358666
\(157\) 314374.i 1.01788i 0.860802 + 0.508940i \(0.169963\pi\)
−0.860802 + 0.508940i \(0.830037\pi\)
\(158\) 1857.17i 0.00591845i
\(159\) 243408. 0.763557
\(160\) 0 0
\(161\) −506348. −1.53952
\(162\) − 67862.2i − 0.203161i
\(163\) 118428.i 0.349130i 0.984646 + 0.174565i \(0.0558518\pi\)
−0.984646 + 0.174565i \(0.944148\pi\)
\(164\) 189476. 0.550104
\(165\) 0 0
\(166\) −6505.05 −0.0183223
\(167\) 311247.i 0.863603i 0.901969 + 0.431802i \(0.142122\pi\)
−0.901969 + 0.431802i \(0.857878\pi\)
\(168\) − 300208.i − 0.820633i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −497215. −1.30033
\(172\) 82664.0i 0.213057i
\(173\) 658492.i 1.67277i 0.548145 + 0.836383i \(0.315334\pi\)
−0.548145 + 0.836383i \(0.684666\pi\)
\(174\) −50396.4 −0.126190
\(175\) 0 0
\(176\) 579401. 1.40993
\(177\) 595718.i 1.42925i
\(178\) − 136991.i − 0.324072i
\(179\) −240265. −0.560478 −0.280239 0.959930i \(-0.590414\pi\)
−0.280239 + 0.959930i \(0.590414\pi\)
\(180\) 0 0
\(181\) −125020. −0.283651 −0.141825 0.989892i \(-0.545297\pi\)
−0.141825 + 0.989892i \(0.545297\pi\)
\(182\) − 38725.8i − 0.0866607i
\(183\) − 634810.i − 1.40125i
\(184\) 133701. 0.291132
\(185\) 0 0
\(186\) 145554. 0.308490
\(187\) 178702.i 0.373701i
\(188\) 919218.i 1.89681i
\(189\) −262982. −0.535514
\(190\) 0 0
\(191\) −175558. −0.348207 −0.174103 0.984727i \(-0.555703\pi\)
−0.174103 + 0.984727i \(0.555703\pi\)
\(192\) − 561482.i − 1.09921i
\(193\) 394803.i 0.762935i 0.924382 + 0.381467i \(0.124581\pi\)
−0.924382 + 0.381467i \(0.875419\pi\)
\(194\) −50698.3 −0.0967139
\(195\) 0 0
\(196\) −1.17644e6 −2.18740
\(197\) − 371003.i − 0.681102i −0.940226 0.340551i \(-0.889386\pi\)
0.940226 0.340551i \(-0.110614\pi\)
\(198\) − 114953.i − 0.208380i
\(199\) −54437.1 −0.0974456 −0.0487228 0.998812i \(-0.515515\pi\)
−0.0487228 + 0.998812i \(0.515515\pi\)
\(200\) 0 0
\(201\) 459860. 0.802852
\(202\) − 125110.i − 0.215731i
\(203\) 578950.i 0.986055i
\(204\) 185585. 0.312225
\(205\) 0 0
\(206\) −46924.6 −0.0770428
\(207\) 408934.i 0.663327i
\(208\) − 157640.i − 0.252643i
\(209\) 1.63500e6 2.58911
\(210\) 0 0
\(211\) 69737.6 0.107835 0.0539176 0.998545i \(-0.482829\pi\)
0.0539176 + 0.998545i \(0.482829\pi\)
\(212\) 363554.i 0.555557i
\(213\) 1.29753e6i 1.95960i
\(214\) −64571.4 −0.0963841
\(215\) 0 0
\(216\) 69440.1 0.101269
\(217\) − 1.67211e6i − 2.41055i
\(218\) 47681.2i 0.0679526i
\(219\) −841915. −1.18620
\(220\) 0 0
\(221\) 48620.0 0.0669630
\(222\) 55524.4i 0.0756138i
\(223\) 175963.i 0.236951i 0.992957 + 0.118476i \(0.0378007\pi\)
−0.992957 + 0.118476i \(0.962199\pi\)
\(224\) 675998. 0.900172
\(225\) 0 0
\(226\) −74905.0 −0.0975528
\(227\) − 113441.i − 0.146118i −0.997328 0.0730591i \(-0.976724\pi\)
0.997328 0.0730591i \(-0.0232762\pi\)
\(228\) − 1.69798e6i − 2.16319i
\(229\) −597110. −0.752430 −0.376215 0.926532i \(-0.622775\pi\)
−0.376215 + 0.926532i \(0.622775\pi\)
\(230\) 0 0
\(231\) −3.01935e6 −3.72292
\(232\) − 152871.i − 0.186469i
\(233\) 1.04890e6i 1.26574i 0.774259 + 0.632868i \(0.218123\pi\)
−0.774259 + 0.632868i \(0.781877\pi\)
\(234\) −31275.6 −0.0373393
\(235\) 0 0
\(236\) −889764. −1.03991
\(237\) − 39395.9i − 0.0455596i
\(238\) 65923.8i 0.0754397i
\(239\) 887699. 1.00524 0.502622 0.864507i \(-0.332369\pi\)
0.502622 + 0.864507i \(0.332369\pi\)
\(240\) 0 0
\(241\) −186313. −0.206633 −0.103317 0.994649i \(-0.532946\pi\)
−0.103317 + 0.994649i \(0.532946\pi\)
\(242\) 220218.i 0.241721i
\(243\) 1.16634e6i 1.26709i
\(244\) 948150. 1.01954
\(245\) 0 0
\(246\) 124283. 0.130940
\(247\) − 444839.i − 0.463939i
\(248\) 441520.i 0.455849i
\(249\) 137991. 0.141043
\(250\) 0 0
\(251\) 1.51057e6 1.51341 0.756703 0.653758i \(-0.226809\pi\)
0.756703 + 0.653758i \(0.226809\pi\)
\(252\) 1.37144e6i 1.36042i
\(253\) − 1.34470e6i − 1.32076i
\(254\) 237978. 0.231447
\(255\) 0 0
\(256\) 748021. 0.713368
\(257\) 1.81310e6i 1.71233i 0.516700 + 0.856166i \(0.327160\pi\)
−0.516700 + 0.856166i \(0.672840\pi\)
\(258\) 54221.7i 0.0507135i
\(259\) 637860. 0.590848
\(260\) 0 0
\(261\) 467569. 0.424859
\(262\) 78441.1i 0.0705977i
\(263\) − 132233.i − 0.117883i −0.998261 0.0589414i \(-0.981227\pi\)
0.998261 0.0589414i \(-0.0187725\pi\)
\(264\) 797258. 0.704027
\(265\) 0 0
\(266\) 603157. 0.522668
\(267\) 2.90598e6i 2.49467i
\(268\) 686846.i 0.584147i
\(269\) 971922. 0.818937 0.409469 0.912324i \(-0.365714\pi\)
0.409469 + 0.912324i \(0.365714\pi\)
\(270\) 0 0
\(271\) −919603. −0.760637 −0.380318 0.924856i \(-0.624186\pi\)
−0.380318 + 0.924856i \(0.624186\pi\)
\(272\) 268354.i 0.219931i
\(273\) 821487.i 0.667105i
\(274\) 386598. 0.311088
\(275\) 0 0
\(276\) −1.39650e6 −1.10349
\(277\) − 165694.i − 0.129750i −0.997893 0.0648748i \(-0.979335\pi\)
0.997893 0.0648748i \(-0.0206648\pi\)
\(278\) − 411585.i − 0.319409i
\(279\) −1.35042e6 −1.03863
\(280\) 0 0
\(281\) 949022. 0.716986 0.358493 0.933533i \(-0.383291\pi\)
0.358493 + 0.933533i \(0.383291\pi\)
\(282\) 602942.i 0.451495i
\(283\) 1.59906e6i 1.18686i 0.804886 + 0.593429i \(0.202226\pi\)
−0.804886 + 0.593429i \(0.797774\pi\)
\(284\) −1.93798e6 −1.42578
\(285\) 0 0
\(286\) 102844. 0.0743468
\(287\) − 1.42775e6i − 1.02317i
\(288\) − 545947.i − 0.387855i
\(289\) 1.33709e6 0.941708
\(290\) 0 0
\(291\) 1.07546e6 0.744493
\(292\) − 1.25748e6i − 0.863067i
\(293\) − 1.67468e6i − 1.13963i −0.821774 0.569814i \(-0.807015\pi\)
0.821774 0.569814i \(-0.192985\pi\)
\(294\) −771659. −0.520663
\(295\) 0 0
\(296\) −168427. −0.111733
\(297\) − 698397.i − 0.459421i
\(298\) − 161296.i − 0.105216i
\(299\) −365858. −0.236665
\(300\) 0 0
\(301\) 622895. 0.396277
\(302\) 465975.i 0.293999i
\(303\) 2.65394e6i 1.66067i
\(304\) 2.45525e6 1.52374
\(305\) 0 0
\(306\) 53241.1 0.0325045
\(307\) 2.14086e6i 1.29641i 0.761467 + 0.648203i \(0.224479\pi\)
−0.761467 + 0.648203i \(0.775521\pi\)
\(308\) − 4.50970e6i − 2.70876i
\(309\) 995406. 0.593067
\(310\) 0 0
\(311\) 573238. 0.336073 0.168037 0.985781i \(-0.446257\pi\)
0.168037 + 0.985781i \(0.446257\pi\)
\(312\) − 216913.i − 0.126153i
\(313\) − 2.90875e6i − 1.67821i −0.543970 0.839104i \(-0.683080\pi\)
0.543970 0.839104i \(-0.316920\pi\)
\(314\) −307990. −0.176284
\(315\) 0 0
\(316\) 58841.6 0.0331487
\(317\) 739814.i 0.413499i 0.978394 + 0.206749i \(0.0662885\pi\)
−0.978394 + 0.206749i \(0.933711\pi\)
\(318\) 238465.i 0.132238i
\(319\) −1.53751e6 −0.845943
\(320\) 0 0
\(321\) 1.36975e6 0.741955
\(322\) − 496066.i − 0.266624i
\(323\) 757260.i 0.403867i
\(324\) −2.15012e6 −1.13789
\(325\) 0 0
\(326\) −116024. −0.0604648
\(327\) − 1.01146e6i − 0.523092i
\(328\) 376997.i 0.193488i
\(329\) 6.92655e6 3.52799
\(330\) 0 0
\(331\) 2.93930e6 1.47460 0.737299 0.675566i \(-0.236101\pi\)
0.737299 + 0.675566i \(0.236101\pi\)
\(332\) 206103.i 0.102622i
\(333\) − 515146.i − 0.254577i
\(334\) −304927. −0.149565
\(335\) 0 0
\(336\) −4.53412e6 −2.19101
\(337\) 982760.i 0.471382i 0.971828 + 0.235691i \(0.0757352\pi\)
−0.971828 + 0.235691i \(0.924265\pi\)
\(338\) − 27981.1i − 0.0133221i
\(339\) 1.58895e6 0.750951
\(340\) 0 0
\(341\) 4.44060e6 2.06803
\(342\) − 487119.i − 0.225201i
\(343\) 4.93367e6i 2.26430i
\(344\) −164475. −0.0749383
\(345\) 0 0
\(346\) −645121. −0.289702
\(347\) − 2.67215e6i − 1.19135i −0.803227 0.595673i \(-0.796885\pi\)
0.803227 0.595673i \(-0.203115\pi\)
\(348\) 1.59674e6i 0.706781i
\(349\) −2.71620e6 −1.19371 −0.596854 0.802350i \(-0.703583\pi\)
−0.596854 + 0.802350i \(0.703583\pi\)
\(350\) 0 0
\(351\) −190015. −0.0823230
\(352\) 1.79524e6i 0.772264i
\(353\) 2.78459e6i 1.18939i 0.803951 + 0.594696i \(0.202728\pi\)
−0.803951 + 0.594696i \(0.797272\pi\)
\(354\) −583622. −0.247527
\(355\) 0 0
\(356\) −4.34036e6 −1.81510
\(357\) − 1.39844e6i − 0.580727i
\(358\) − 235387.i − 0.0970676i
\(359\) 1.18365e6 0.484714 0.242357 0.970187i \(-0.422079\pi\)
0.242357 + 0.970187i \(0.422079\pi\)
\(360\) 0 0
\(361\) 4.45230e6 1.79811
\(362\) − 122482.i − 0.0491247i
\(363\) − 4.67147e6i − 1.86075i
\(364\) −1.22697e6 −0.485379
\(365\) 0 0
\(366\) 621920. 0.242679
\(367\) − 1.42155e6i − 0.550932i −0.961311 0.275466i \(-0.911168\pi\)
0.961311 0.275466i \(-0.0888322\pi\)
\(368\) − 2.01932e6i − 0.777294i
\(369\) −1.15308e6 −0.440851
\(370\) 0 0
\(371\) 2.73947e6 1.03331
\(372\) − 4.61166e6i − 1.72782i
\(373\) 488425.i 0.181772i 0.995861 + 0.0908858i \(0.0289698\pi\)
−0.995861 + 0.0908858i \(0.971030\pi\)
\(374\) −175073. −0.0647203
\(375\) 0 0
\(376\) −1.82895e6 −0.667164
\(377\) 418316.i 0.151583i
\(378\) − 257642.i − 0.0927442i
\(379\) −3.64996e6 −1.30524 −0.652619 0.757686i \(-0.726330\pi\)
−0.652619 + 0.757686i \(0.726330\pi\)
\(380\) 0 0
\(381\) −5.04819e6 −1.78165
\(382\) − 171993.i − 0.0603049i
\(383\) − 4.54415e6i − 1.58291i −0.611228 0.791455i \(-0.709324\pi\)
0.611228 0.791455i \(-0.290676\pi\)
\(384\) 2.47212e6 0.855544
\(385\) 0 0
\(386\) −386786. −0.132130
\(387\) − 503060.i − 0.170743i
\(388\) 1.60630e6i 0.541686i
\(389\) −360319. −0.120729 −0.0603646 0.998176i \(-0.519226\pi\)
−0.0603646 + 0.998176i \(0.519226\pi\)
\(390\) 0 0
\(391\) 622808. 0.206021
\(392\) − 2.34074e6i − 0.769373i
\(393\) − 1.66396e6i − 0.543453i
\(394\) 363470. 0.117958
\(395\) 0 0
\(396\) −3.64210e6 −1.16712
\(397\) − 3.31026e6i − 1.05411i −0.849831 0.527055i \(-0.823296\pi\)
0.849831 0.527055i \(-0.176704\pi\)
\(398\) − 53331.7i − 0.0168763i
\(399\) −1.27947e7 −4.02344
\(400\) 0 0
\(401\) 3.77349e6 1.17188 0.585938 0.810356i \(-0.300726\pi\)
0.585938 + 0.810356i \(0.300726\pi\)
\(402\) 450522.i 0.139044i
\(403\) − 1.20817e6i − 0.370566i
\(404\) −3.96392e6 −1.20829
\(405\) 0 0
\(406\) −567194. −0.170772
\(407\) 1.69396e6i 0.506893i
\(408\) 369256.i 0.109819i
\(409\) −2.46939e6 −0.729932 −0.364966 0.931021i \(-0.618919\pi\)
−0.364966 + 0.931021i \(0.618919\pi\)
\(410\) 0 0
\(411\) −8.20087e6 −2.39472
\(412\) 1.48674e6i 0.431510i
\(413\) 6.70461e6i 1.93419i
\(414\) −400631. −0.114880
\(415\) 0 0
\(416\) 488438. 0.138381
\(417\) 8.73092e6i 2.45878i
\(418\) 1.60180e6i 0.448401i
\(419\) −2.12907e6 −0.592455 −0.296227 0.955117i \(-0.595729\pi\)
−0.296227 + 0.955117i \(0.595729\pi\)
\(420\) 0 0
\(421\) −4.89905e6 −1.34712 −0.673560 0.739133i \(-0.735236\pi\)
−0.673560 + 0.739133i \(0.735236\pi\)
\(422\) 68321.5i 0.0186757i
\(423\) − 5.59399e6i − 1.52010i
\(424\) −723356. −0.195406
\(425\) 0 0
\(426\) −1.27118e6 −0.339377
\(427\) − 7.14457e6i − 1.89630i
\(428\) 2.04585e6i 0.539839i
\(429\) −2.18161e6 −0.572314
\(430\) 0 0
\(431\) 519640. 0.134744 0.0673720 0.997728i \(-0.478539\pi\)
0.0673720 + 0.997728i \(0.478539\pi\)
\(432\) − 1.04877e6i − 0.270379i
\(433\) − 2.08313e6i − 0.533946i −0.963704 0.266973i \(-0.913977\pi\)
0.963704 0.266973i \(-0.0860234\pi\)
\(434\) 1.63816e6 0.417476
\(435\) 0 0
\(436\) 1.51071e6 0.380597
\(437\) − 5.69826e6i − 1.42738i
\(438\) − 824819.i − 0.205435i
\(439\) 5.11967e6 1.26789 0.633944 0.773379i \(-0.281435\pi\)
0.633944 + 0.773379i \(0.281435\pi\)
\(440\) 0 0
\(441\) 7.15932e6 1.75297
\(442\) 47632.8i 0.0115971i
\(443\) 8.00110e6i 1.93705i 0.248922 + 0.968523i \(0.419924\pi\)
−0.248922 + 0.968523i \(0.580076\pi\)
\(444\) 1.75921e6 0.423506
\(445\) 0 0
\(446\) −172390. −0.0410369
\(447\) 3.42155e6i 0.809942i
\(448\) − 6.31929e6i − 1.48756i
\(449\) −6.98258e6 −1.63456 −0.817279 0.576242i \(-0.804519\pi\)
−0.817279 + 0.576242i \(0.804519\pi\)
\(450\) 0 0
\(451\) 3.79166e6 0.877786
\(452\) 2.37326e6i 0.546384i
\(453\) − 9.88469e6i − 2.26317i
\(454\) 111137. 0.0253058
\(455\) 0 0
\(456\) 3.37843e6 0.760858
\(457\) 1.37626e6i 0.308256i 0.988051 + 0.154128i \(0.0492568\pi\)
−0.988051 + 0.154128i \(0.950743\pi\)
\(458\) − 584986.i − 0.130311i
\(459\) 323468. 0.0716637
\(460\) 0 0
\(461\) −2.50047e6 −0.547987 −0.273993 0.961732i \(-0.588345\pi\)
−0.273993 + 0.961732i \(0.588345\pi\)
\(462\) − 2.95804e6i − 0.644762i
\(463\) − 865000.i − 0.187527i −0.995595 0.0937635i \(-0.970110\pi\)
0.995595 0.0937635i \(-0.0298897\pi\)
\(464\) −2.30886e6 −0.497854
\(465\) 0 0
\(466\) −1.02760e6 −0.219209
\(467\) − 4.99073e6i − 1.05894i −0.848328 0.529470i \(-0.822391\pi\)
0.848328 0.529470i \(-0.177609\pi\)
\(468\) 990921.i 0.209134i
\(469\) 5.17557e6 1.08649
\(470\) 0 0
\(471\) 6.53336e6 1.35701
\(472\) − 1.77035e6i − 0.365766i
\(473\) 1.65421e6i 0.339969i
\(474\) 38595.9 0.00789033
\(475\) 0 0
\(476\) 2.08870e6 0.422531
\(477\) − 2.21244e6i − 0.445221i
\(478\) 869674.i 0.174095i
\(479\) −2.74347e6 −0.546337 −0.273169 0.961966i \(-0.588072\pi\)
−0.273169 + 0.961966i \(0.588072\pi\)
\(480\) 0 0
\(481\) 460881. 0.0908293
\(482\) − 182530.i − 0.0357862i
\(483\) 1.05230e7i 2.05245i
\(484\) 6.97730e6 1.35386
\(485\) 0 0
\(486\) −1.14265e6 −0.219444
\(487\) − 7.22585e6i − 1.38060i −0.723525 0.690298i \(-0.757479\pi\)
0.723525 0.690298i \(-0.242521\pi\)
\(488\) 1.88652e6i 0.358601i
\(489\) 2.46120e6 0.465451
\(490\) 0 0
\(491\) 7.90576e6 1.47993 0.739963 0.672647i \(-0.234843\pi\)
0.739963 + 0.672647i \(0.234843\pi\)
\(492\) − 3.93772e6i − 0.733385i
\(493\) − 712109.i − 0.131956i
\(494\) 435807. 0.0803483
\(495\) 0 0
\(496\) 6.66839e6 1.21707
\(497\) 1.46032e7i 2.65190i
\(498\) 135189.i 0.0244269i
\(499\) −505183. −0.0908234 −0.0454117 0.998968i \(-0.514460\pi\)
−0.0454117 + 0.998968i \(0.514460\pi\)
\(500\) 0 0
\(501\) 6.46839e6 1.15134
\(502\) 1.47989e6i 0.262103i
\(503\) 2.15590e6i 0.379934i 0.981790 + 0.189967i \(0.0608381\pi\)
−0.981790 + 0.189967i \(0.939162\pi\)
\(504\) −2.72872e6 −0.478501
\(505\) 0 0
\(506\) 1.31740e6 0.228739
\(507\) 593559.i 0.102552i
\(508\) − 7.53997e6i − 1.29631i
\(509\) −3.81217e6 −0.652195 −0.326097 0.945336i \(-0.605734\pi\)
−0.326097 + 0.945336i \(0.605734\pi\)
\(510\) 0 0
\(511\) −9.47546e6 −1.60527
\(512\) 4.53936e6i 0.765280i
\(513\) − 2.95950e6i − 0.496507i
\(514\) −1.77628e6 −0.296554
\(515\) 0 0
\(516\) 1.71794e6 0.284042
\(517\) 1.83948e7i 3.02669i
\(518\) 624908.i 0.102327i
\(519\) 1.36849e7 2.23009
\(520\) 0 0
\(521\) 2.81958e6 0.455083 0.227541 0.973768i \(-0.426931\pi\)
0.227541 + 0.973768i \(0.426931\pi\)
\(522\) 458075.i 0.0735801i
\(523\) − 6.85609e6i − 1.09603i −0.836468 0.548015i \(-0.815384\pi\)
0.836468 0.548015i \(-0.184616\pi\)
\(524\) 2.48529e6 0.395411
\(525\) 0 0
\(526\) 129548. 0.0204158
\(527\) 2.05670e6i 0.322585i
\(528\) − 1.20412e7i − 1.87969i
\(529\) 1.74981e6 0.271864
\(530\) 0 0
\(531\) 5.41474e6 0.833377
\(532\) − 1.91101e7i − 2.92742i
\(533\) − 1.03161e6i − 0.157289i
\(534\) −2.84697e6 −0.432046
\(535\) 0 0
\(536\) −1.36661e6 −0.205462
\(537\) 4.99323e6i 0.747216i
\(538\) 952187.i 0.141829i
\(539\) −2.35420e7 −3.49038
\(540\) 0 0
\(541\) −9.25845e6 −1.36002 −0.680010 0.733203i \(-0.738025\pi\)
−0.680010 + 0.733203i \(0.738025\pi\)
\(542\) − 900930.i − 0.131733i
\(543\) 2.59819e6i 0.378157i
\(544\) −831479. −0.120463
\(545\) 0 0
\(546\) −804806. −0.115534
\(547\) 311761.i 0.0445506i 0.999752 + 0.0222753i \(0.00709103\pi\)
−0.999752 + 0.0222753i \(0.992909\pi\)
\(548\) − 1.22488e7i − 1.74238i
\(549\) −5.77006e6 −0.817052
\(550\) 0 0
\(551\) −6.51530e6 −0.914230
\(552\) − 2.77859e6i − 0.388130i
\(553\) − 443387.i − 0.0616552i
\(554\) 162329. 0.0224710
\(555\) 0 0
\(556\) −1.30405e7 −1.78898
\(557\) − 6.50976e6i − 0.889051i −0.895766 0.444526i \(-0.853372\pi\)
0.895766 0.444526i \(-0.146628\pi\)
\(558\) − 1.32300e6i − 0.179877i
\(559\) 450068. 0.0609185
\(560\) 0 0
\(561\) 3.71381e6 0.498210
\(562\) 929752.i 0.124173i
\(563\) 1.11564e6i 0.148338i 0.997246 + 0.0741691i \(0.0236305\pi\)
−0.997246 + 0.0741691i \(0.976370\pi\)
\(564\) 1.91033e7 2.52878
\(565\) 0 0
\(566\) −1.56659e6 −0.205549
\(567\) 1.62017e7i 2.11642i
\(568\) − 3.85597e6i − 0.501491i
\(569\) −3.26296e6 −0.422504 −0.211252 0.977432i \(-0.567754\pi\)
−0.211252 + 0.977432i \(0.567754\pi\)
\(570\) 0 0
\(571\) −1.19763e6 −0.153721 −0.0768605 0.997042i \(-0.524490\pi\)
−0.0768605 + 0.997042i \(0.524490\pi\)
\(572\) − 3.25845e6i − 0.416410i
\(573\) 3.64847e6i 0.464221i
\(574\) 1.39876e6 0.177200
\(575\) 0 0
\(576\) −5.10356e6 −0.640939
\(577\) 6.91253e6i 0.864365i 0.901786 + 0.432183i \(0.142256\pi\)
−0.901786 + 0.432183i \(0.857744\pi\)
\(578\) 1.30994e6i 0.163092i
\(579\) 8.20486e6 1.01713
\(580\) 0 0
\(581\) 1.55304e6 0.190872
\(582\) 1.05362e6i 0.128937i
\(583\) 7.27518e6i 0.886487i
\(584\) 2.50199e6 0.303566
\(585\) 0 0
\(586\) 1.64068e6 0.197369
\(587\) − 9.02641e6i − 1.08123i −0.841269 0.540617i \(-0.818191\pi\)
0.841269 0.540617i \(-0.181809\pi\)
\(588\) 2.44489e7i 2.91619i
\(589\) 1.88173e7 2.23496
\(590\) 0 0
\(591\) −7.71025e6 −0.908029
\(592\) 2.54379e6i 0.298316i
\(593\) 1.37184e6i 0.160202i 0.996787 + 0.0801010i \(0.0255243\pi\)
−0.996787 + 0.0801010i \(0.974476\pi\)
\(594\) 684216. 0.0795659
\(595\) 0 0
\(596\) −5.11042e6 −0.589306
\(597\) 1.13132e6i 0.129912i
\(598\) − 358429.i − 0.0409874i
\(599\) −1.17573e6 −0.133887 −0.0669436 0.997757i \(-0.521325\pi\)
−0.0669436 + 0.997757i \(0.521325\pi\)
\(600\) 0 0
\(601\) −4.81704e6 −0.543994 −0.271997 0.962298i \(-0.587684\pi\)
−0.271997 + 0.962298i \(0.587684\pi\)
\(602\) 610247.i 0.0686301i
\(603\) − 4.17987e6i − 0.468133i
\(604\) 1.47637e7 1.64666
\(605\) 0 0
\(606\) −2.60005e6 −0.287608
\(607\) 4.41344e6i 0.486189i 0.970003 + 0.243094i \(0.0781625\pi\)
−0.970003 + 0.243094i \(0.921838\pi\)
\(608\) 7.60745e6i 0.834603i
\(609\) 1.20318e7 1.31458
\(610\) 0 0
\(611\) 5.00473e6 0.542348
\(612\) − 1.68687e6i − 0.182055i
\(613\) − 1.06623e7i − 1.14604i −0.819542 0.573020i \(-0.805772\pi\)
0.819542 0.573020i \(-0.194228\pi\)
\(614\) −2.09738e6 −0.224521
\(615\) 0 0
\(616\) 8.97287e6 0.952752
\(617\) 3.10171e6i 0.328011i 0.986459 + 0.164005i \(0.0524414\pi\)
−0.986459 + 0.164005i \(0.947559\pi\)
\(618\) 975194.i 0.102712i
\(619\) −2.68711e6 −0.281876 −0.140938 0.990018i \(-0.545012\pi\)
−0.140938 + 0.990018i \(0.545012\pi\)
\(620\) 0 0
\(621\) −2.43404e6 −0.253279
\(622\) 561598.i 0.0582036i
\(623\) 3.27058e7i 3.37601i
\(624\) −3.27610e6 −0.336818
\(625\) 0 0
\(626\) 2.84969e6 0.290644
\(627\) − 3.39787e7i − 3.45174i
\(628\) 9.75822e6i 0.987351i
\(629\) −784568. −0.0790686
\(630\) 0 0
\(631\) −9.93210e6 −0.993042 −0.496521 0.868025i \(-0.665389\pi\)
−0.496521 + 0.868025i \(0.665389\pi\)
\(632\) 117076.i 0.0116594i
\(633\) − 1.44930e6i − 0.143763i
\(634\) −724792. −0.0716127
\(635\) 0 0
\(636\) 7.55543e6 0.740656
\(637\) 6.40517e6i 0.625435i
\(638\) − 1.50629e6i − 0.146507i
\(639\) 1.17938e7 1.14262
\(640\) 0 0
\(641\) 1.72516e7 1.65838 0.829188 0.558969i \(-0.188803\pi\)
0.829188 + 0.558969i \(0.188803\pi\)
\(642\) 1.34193e6i 0.128497i
\(643\) 3.88223e6i 0.370300i 0.982710 + 0.185150i \(0.0592771\pi\)
−0.982710 + 0.185150i \(0.940723\pi\)
\(644\) −1.57171e7 −1.49334
\(645\) 0 0
\(646\) −741884. −0.0699447
\(647\) − 1.46226e7i − 1.37330i −0.726990 0.686648i \(-0.759081\pi\)
0.726990 0.686648i \(-0.240919\pi\)
\(648\) − 4.27805e6i − 0.400229i
\(649\) −1.78053e7 −1.65935
\(650\) 0 0
\(651\) −3.47501e7 −3.21368
\(652\) 3.67604e6i 0.338658i
\(653\) − 8.45344e6i − 0.775801i −0.921701 0.387901i \(-0.873200\pi\)
0.921701 0.387901i \(-0.126800\pi\)
\(654\) 990919. 0.0905928
\(655\) 0 0
\(656\) 5.69389e6 0.516594
\(657\) 7.65253e6i 0.691659i
\(658\) 6.78591e6i 0.611003i
\(659\) 3.95720e6 0.354956 0.177478 0.984125i \(-0.443206\pi\)
0.177478 + 0.984125i \(0.443206\pi\)
\(660\) 0 0
\(661\) −1.71259e6 −0.152458 −0.0762290 0.997090i \(-0.524288\pi\)
−0.0762290 + 0.997090i \(0.524288\pi\)
\(662\) 2.87962e6i 0.255382i
\(663\) − 1.01043e6i − 0.0892734i
\(664\) −410080. −0.0360951
\(665\) 0 0
\(666\) 504685. 0.0440895
\(667\) 5.35851e6i 0.466368i
\(668\) 9.66117e6i 0.837700i
\(669\) 3.65689e6 0.315898
\(670\) 0 0
\(671\) 1.89737e7 1.62685
\(672\) − 1.40487e7i − 1.20009i
\(673\) − 1.02167e7i − 0.869510i −0.900549 0.434755i \(-0.856835\pi\)
0.900549 0.434755i \(-0.143165\pi\)
\(674\) −962804. −0.0816372
\(675\) 0 0
\(676\) −886539. −0.0746159
\(677\) 1.08748e7i 0.911905i 0.890004 + 0.455952i \(0.150701\pi\)
−0.890004 + 0.455952i \(0.849299\pi\)
\(678\) 1.55669e6i 0.130055i
\(679\) 1.21039e7 1.00751
\(680\) 0 0
\(681\) −2.35754e6 −0.194801
\(682\) 4.35043e6i 0.358155i
\(683\) 1.05416e6i 0.0864675i 0.999065 + 0.0432338i \(0.0137660\pi\)
−0.999065 + 0.0432338i \(0.986234\pi\)
\(684\) −1.54337e7 −1.26133
\(685\) 0 0
\(686\) −4.83349e6 −0.392148
\(687\) 1.24092e7i 1.00312i
\(688\) 2.48411e6i 0.200078i
\(689\) 1.97939e6 0.158848
\(690\) 0 0
\(691\) −2.62440e6 −0.209091 −0.104545 0.994520i \(-0.533339\pi\)
−0.104545 + 0.994520i \(0.533339\pi\)
\(692\) 2.04397e7i 1.62259i
\(693\) 2.74442e7i 2.17079i
\(694\) 2.61790e6 0.206326
\(695\) 0 0
\(696\) −3.17700e6 −0.248596
\(697\) 1.75614e6i 0.136923i
\(698\) − 2.66105e6i − 0.206735i
\(699\) 2.17984e7 1.68745
\(700\) 0 0
\(701\) −1.03468e7 −0.795262 −0.397631 0.917545i \(-0.630168\pi\)
−0.397631 + 0.917545i \(0.630168\pi\)
\(702\) − 186157.i − 0.0142573i
\(703\) 7.17825e6i 0.547810i
\(704\) 1.67821e7 1.27618
\(705\) 0 0
\(706\) −2.72805e6 −0.205988
\(707\) 2.98692e7i 2.24737i
\(708\) 1.84912e7i 1.38638i
\(709\) −1.53654e7 −1.14796 −0.573982 0.818868i \(-0.694602\pi\)
−0.573982 + 0.818868i \(0.694602\pi\)
\(710\) 0 0
\(711\) −358086. −0.0265652
\(712\) − 8.63594e6i − 0.638424i
\(713\) − 1.54763e7i − 1.14010i
\(714\) 1.37004e6 0.100574
\(715\) 0 0
\(716\) −7.45789e6 −0.543667
\(717\) − 1.84483e7i − 1.34017i
\(718\) 1.15961e6i 0.0839463i
\(719\) −1.67683e6 −0.120967 −0.0604835 0.998169i \(-0.519264\pi\)
−0.0604835 + 0.998169i \(0.519264\pi\)
\(720\) 0 0
\(721\) 1.12030e7 0.802591
\(722\) 4.36190e6i 0.311410i
\(723\) 3.87199e6i 0.275479i
\(724\) −3.88066e6 −0.275143
\(725\) 0 0
\(726\) 4.57661e6 0.322257
\(727\) 2.10416e7i 1.47653i 0.674508 + 0.738267i \(0.264356\pi\)
−0.674508 + 0.738267i \(0.735644\pi\)
\(728\) − 2.44128e6i − 0.170722i
\(729\) 7.40669e6 0.516185
\(730\) 0 0
\(731\) −766162. −0.0530306
\(732\) − 1.97046e7i − 1.35922i
\(733\) − 1.39822e7i − 0.961205i −0.876939 0.480602i \(-0.840418\pi\)
0.876939 0.480602i \(-0.159582\pi\)
\(734\) 1.39269e6 0.0954144
\(735\) 0 0
\(736\) 6.25674e6 0.425749
\(737\) 1.37447e7i 0.932108i
\(738\) − 1.12966e6i − 0.0763497i
\(739\) −1.81147e7 −1.22017 −0.610084 0.792337i \(-0.708864\pi\)
−0.610084 + 0.792337i \(0.708864\pi\)
\(740\) 0 0
\(741\) −9.24472e6 −0.618512
\(742\) 2.68385e6i 0.178957i
\(743\) 1.12917e7i 0.750391i 0.926946 + 0.375196i \(0.122424\pi\)
−0.926946 + 0.375196i \(0.877576\pi\)
\(744\) 9.17573e6 0.607727
\(745\) 0 0
\(746\) −478507. −0.0314805
\(747\) − 1.25426e6i − 0.0822406i
\(748\) 5.54694e6i 0.362493i
\(749\) 1.54160e7 1.00408
\(750\) 0 0
\(751\) 1.94291e7 1.25705 0.628525 0.777789i \(-0.283659\pi\)
0.628525 + 0.777789i \(0.283659\pi\)
\(752\) 2.76232e7i 1.78127i
\(753\) − 3.13928e7i − 2.01764i
\(754\) −409822. −0.0262523
\(755\) 0 0
\(756\) −8.16300e6 −0.519452
\(757\) − 2.19245e7i − 1.39056i −0.718740 0.695279i \(-0.755281\pi\)
0.718740 0.695279i \(-0.244719\pi\)
\(758\) − 3.57584e6i − 0.226051i
\(759\) −2.79458e7 −1.76081
\(760\) 0 0
\(761\) −1.29865e7 −0.812888 −0.406444 0.913676i \(-0.633231\pi\)
−0.406444 + 0.913676i \(0.633231\pi\)
\(762\) − 4.94569e6i − 0.308560i
\(763\) − 1.13836e7i − 0.707894i
\(764\) −5.44935e6 −0.337763
\(765\) 0 0
\(766\) 4.45188e6 0.274140
\(767\) 4.84436e6i 0.297337i
\(768\) − 1.55455e7i − 0.951046i
\(769\) 3.08811e7 1.88311 0.941556 0.336856i \(-0.109364\pi\)
0.941556 + 0.336856i \(0.109364\pi\)
\(770\) 0 0
\(771\) 3.76801e7 2.28284
\(772\) 1.22548e7i 0.740051i
\(773\) − 8.07818e6i − 0.486256i −0.969994 0.243128i \(-0.921827\pi\)
0.969994 0.243128i \(-0.0781735\pi\)
\(774\) 492845. 0.0295704
\(775\) 0 0
\(776\) −3.19603e6 −0.190527
\(777\) − 1.32561e7i − 0.787705i
\(778\) − 353002.i − 0.0209088i
\(779\) 1.60674e7 0.948643
\(780\) 0 0
\(781\) −3.87816e7 −2.27509
\(782\) 610162.i 0.0356803i
\(783\) 2.78305e6i 0.162224i
\(784\) −3.53528e7 −2.05415
\(785\) 0 0
\(786\) 1.63018e6 0.0941191
\(787\) − 5.74061e6i − 0.330386i −0.986261 0.165193i \(-0.947175\pi\)
0.986261 0.165193i \(-0.0528246\pi\)
\(788\) − 1.15160e7i − 0.660673i
\(789\) −2.74809e6 −0.157159
\(790\) 0 0
\(791\) 1.78831e7 1.01625
\(792\) − 7.24663e6i − 0.410510i
\(793\) − 5.16225e6i − 0.291512i
\(794\) 3.24305e6 0.182558
\(795\) 0 0
\(796\) −1.68974e6 −0.0945228
\(797\) − 2.83035e7i − 1.57832i −0.614188 0.789160i \(-0.710516\pi\)
0.614188 0.789160i \(-0.289484\pi\)
\(798\) − 1.25349e7i − 0.696809i
\(799\) −8.51967e6 −0.472124
\(800\) 0 0
\(801\) 2.64137e7 1.45461
\(802\) 3.69686e6i 0.202954i
\(803\) − 2.51639e7i − 1.37717i
\(804\) 1.42741e7 0.778771
\(805\) 0 0
\(806\) 1.18364e6 0.0641773
\(807\) − 2.01986e7i − 1.09179i
\(808\) − 7.88694e6i − 0.424992i
\(809\) −9.64902e6 −0.518336 −0.259168 0.965832i \(-0.583448\pi\)
−0.259168 + 0.965832i \(0.583448\pi\)
\(810\) 0 0
\(811\) −8.69726e6 −0.464334 −0.232167 0.972676i \(-0.574582\pi\)
−0.232167 + 0.972676i \(0.574582\pi\)
\(812\) 1.79707e7i 0.956479i
\(813\) 1.91113e7i 1.01406i
\(814\) −1.65956e6 −0.0877874
\(815\) 0 0
\(816\) 5.57697e6 0.293206
\(817\) 7.00984e6i 0.367412i
\(818\) − 2.41925e6i − 0.126415i
\(819\) 7.46685e6 0.388981
\(820\) 0 0
\(821\) 1.35245e7 0.700269 0.350135 0.936699i \(-0.386136\pi\)
0.350135 + 0.936699i \(0.386136\pi\)
\(822\) − 8.03435e6i − 0.414735i
\(823\) 4.97088e6i 0.255820i 0.991786 + 0.127910i \(0.0408268\pi\)
−0.991786 + 0.127910i \(0.959173\pi\)
\(824\) −2.95813e6 −0.151775
\(825\) 0 0
\(826\) −6.56847e6 −0.334976
\(827\) 2.39690e7i 1.21867i 0.792913 + 0.609335i \(0.208564\pi\)
−0.792913 + 0.609335i \(0.791436\pi\)
\(828\) 1.26934e7i 0.643431i
\(829\) 2.55170e7 1.28956 0.644782 0.764367i \(-0.276948\pi\)
0.644782 + 0.764367i \(0.276948\pi\)
\(830\) 0 0
\(831\) −3.44347e6 −0.172979
\(832\) − 4.56596e6i − 0.228677i
\(833\) − 1.09037e7i − 0.544453i
\(834\) −8.55363e6 −0.425829
\(835\) 0 0
\(836\) 5.07506e7 2.51145
\(837\) − 8.03792e6i − 0.396580i
\(838\) − 2.08584e6i − 0.102606i
\(839\) −2.32753e7 −1.14154 −0.570768 0.821111i \(-0.693354\pi\)
−0.570768 + 0.821111i \(0.693354\pi\)
\(840\) 0 0
\(841\) −1.43843e7 −0.701293
\(842\) − 4.79957e6i − 0.233304i
\(843\) − 1.97227e7i − 0.955868i
\(844\) 2.16467e6 0.104601
\(845\) 0 0
\(846\) 5.48040e6 0.263261
\(847\) − 5.25758e7i − 2.51813i
\(848\) 1.09250e7i 0.521715i
\(849\) 3.32319e7 1.58229
\(850\) 0 0
\(851\) 5.90375e6 0.279450
\(852\) 4.02755e7i 1.90082i
\(853\) 2.63162e7i 1.23837i 0.785245 + 0.619186i \(0.212537\pi\)
−0.785245 + 0.619186i \(0.787463\pi\)
\(854\) 6.99949e6 0.328414
\(855\) 0 0
\(856\) −4.07059e6 −0.189877
\(857\) − 1.31408e7i − 0.611179i −0.952163 0.305589i \(-0.901146\pi\)
0.952163 0.305589i \(-0.0988535\pi\)
\(858\) − 2.13731e6i − 0.0991174i
\(859\) −2.09626e7 −0.969311 −0.484655 0.874705i \(-0.661055\pi\)
−0.484655 + 0.874705i \(0.661055\pi\)
\(860\) 0 0
\(861\) −2.96718e7 −1.36407
\(862\) 509088.i 0.0233359i
\(863\) − 1.62144e7i − 0.741095i −0.928813 0.370548i \(-0.879170\pi\)
0.928813 0.370548i \(-0.120830\pi\)
\(864\) 3.24956e6 0.148095
\(865\) 0 0
\(866\) 2.04083e6 0.0924726
\(867\) − 2.77876e7i − 1.25546i
\(868\) − 5.19026e7i − 2.33824i
\(869\) 1.17750e6 0.0528945
\(870\) 0 0
\(871\) 3.73957e6 0.167023
\(872\) 3.00583e6i 0.133867i
\(873\) − 9.77530e6i − 0.434105i
\(874\) 5.58255e6 0.247203
\(875\) 0 0
\(876\) −2.61332e7 −1.15062
\(877\) − 1.83511e7i − 0.805682i −0.915270 0.402841i \(-0.868023\pi\)
0.915270 0.402841i \(-0.131977\pi\)
\(878\) 5.01571e6i 0.219582i
\(879\) −3.48035e7 −1.51933
\(880\) 0 0
\(881\) −2.38315e7 −1.03445 −0.517227 0.855848i \(-0.673036\pi\)
−0.517227 + 0.855848i \(0.673036\pi\)
\(882\) 7.01395e6i 0.303593i
\(883\) 2.82191e6i 0.121798i 0.998144 + 0.0608992i \(0.0193968\pi\)
−0.998144 + 0.0608992i \(0.980603\pi\)
\(884\) 1.50918e6 0.0649545
\(885\) 0 0
\(886\) −7.83863e6 −0.335472
\(887\) − 2.51901e7i − 1.07503i −0.843253 0.537516i \(-0.819363\pi\)
0.843253 0.537516i \(-0.180637\pi\)
\(888\) 3.50027e6i 0.148960i
\(889\) −5.68157e7 −2.41109
\(890\) 0 0
\(891\) −4.30266e7 −1.81570
\(892\) 5.46192e6i 0.229844i
\(893\) 7.79490e7i 3.27101i
\(894\) −3.35207e6 −0.140272
\(895\) 0 0
\(896\) 2.78229e7 1.15780
\(897\) 7.60332e6i 0.315516i
\(898\) − 6.84080e6i − 0.283085i
\(899\) −1.76954e7 −0.730231
\(900\) 0 0
\(901\) −3.36955e6 −0.138280
\(902\) 3.71467e6i 0.152021i
\(903\) − 1.29451e7i − 0.528307i
\(904\) −4.72202e6 −0.192180
\(905\) 0 0
\(906\) 9.68397e6 0.391952
\(907\) 1.27183e7i 0.513346i 0.966498 + 0.256673i \(0.0826264\pi\)
−0.966498 + 0.256673i \(0.917374\pi\)
\(908\) − 3.52122e6i − 0.141735i
\(909\) 2.41228e7 0.968319
\(910\) 0 0
\(911\) 1.25714e7 0.501864 0.250932 0.968005i \(-0.419263\pi\)
0.250932 + 0.968005i \(0.419263\pi\)
\(912\) − 5.10254e7i − 2.03142i
\(913\) 4.12439e6i 0.163751i
\(914\) −1.34832e6 −0.0533860
\(915\) 0 0
\(916\) −1.85344e7 −0.729861
\(917\) − 1.87273e7i − 0.735449i
\(918\) 316900.i 0.0124112i
\(919\) 4.77489e7 1.86498 0.932491 0.361194i \(-0.117631\pi\)
0.932491 + 0.361194i \(0.117631\pi\)
\(920\) 0 0
\(921\) 4.44916e7 1.72834
\(922\) − 2.44970e6i − 0.0949042i
\(923\) 1.05514e7i 0.407669i
\(924\) −9.37213e7 −3.61126
\(925\) 0 0
\(926\) 847436. 0.0324773
\(927\) − 9.04768e6i − 0.345810i
\(928\) − 7.15386e6i − 0.272691i
\(929\) 4.02091e7 1.52857 0.764284 0.644880i \(-0.223093\pi\)
0.764284 + 0.644880i \(0.223093\pi\)
\(930\) 0 0
\(931\) −9.97609e7 −3.77213
\(932\) 3.25580e7i 1.22777i
\(933\) − 1.19131e7i − 0.448045i
\(934\) 4.88939e6 0.183395
\(935\) 0 0
\(936\) −1.97162e6 −0.0735586
\(937\) 2.41476e7i 0.898514i 0.893403 + 0.449257i \(0.148311\pi\)
−0.893403 + 0.449257i \(0.851689\pi\)
\(938\) 5.07047e6i 0.188166i
\(939\) −6.04502e7 −2.23735
\(940\) 0 0
\(941\) 5.26445e7 1.93811 0.969055 0.246843i \(-0.0793932\pi\)
0.969055 + 0.246843i \(0.0793932\pi\)
\(942\) 6.40070e6i 0.235017i
\(943\) − 1.32146e7i − 0.483923i
\(944\) −2.67380e7 −0.976561
\(945\) 0 0
\(946\) −1.62063e6 −0.0588782
\(947\) 3.68602e7i 1.33562i 0.744331 + 0.667811i \(0.232768\pi\)
−0.744331 + 0.667811i \(0.767232\pi\)
\(948\) − 1.22286e6i − 0.0441931i
\(949\) −6.84643e6 −0.246773
\(950\) 0 0
\(951\) 1.53749e7 0.551267
\(952\) 4.15585e6i 0.148617i
\(953\) 1.39818e7i 0.498691i 0.968415 + 0.249346i \(0.0802155\pi\)
−0.968415 + 0.249346i \(0.919784\pi\)
\(954\) 2.16752e6 0.0771066
\(955\) 0 0
\(956\) 2.75544e7 0.975092
\(957\) 3.19528e7i 1.12779i
\(958\) − 2.68776e6i − 0.0946186i
\(959\) −9.22980e7 −3.24075
\(960\) 0 0
\(961\) 2.24782e7 0.785150
\(962\) 451523.i 0.0157305i
\(963\) − 1.24502e7i − 0.432625i
\(964\) −5.78319e6 −0.200436
\(965\) 0 0
\(966\) −1.03093e7 −0.355457
\(967\) − 4.58056e7i − 1.57526i −0.616147 0.787631i \(-0.711307\pi\)
0.616147 0.787631i \(-0.288693\pi\)
\(968\) 1.38826e7i 0.476193i
\(969\) 1.57375e7 0.538426
\(970\) 0 0
\(971\) 4.00170e7 1.36206 0.681030 0.732256i \(-0.261532\pi\)
0.681030 + 0.732256i \(0.261532\pi\)
\(972\) 3.62033e7i 1.22909i
\(973\) 9.82635e7i 3.32744i
\(974\) 7.07913e6 0.239102
\(975\) 0 0
\(976\) 2.84926e7 0.957431
\(977\) 1.23889e7i 0.415236i 0.978210 + 0.207618i \(0.0665711\pi\)
−0.978210 + 0.207618i \(0.933429\pi\)
\(978\) 2.41122e6i 0.0806102i
\(979\) −8.68563e7 −2.89631
\(980\) 0 0
\(981\) −9.19358e6 −0.305008
\(982\) 7.74523e6i 0.256304i
\(983\) − 4.61240e7i − 1.52245i −0.648487 0.761226i \(-0.724598\pi\)
0.648487 0.761226i \(-0.275402\pi\)
\(984\) 7.83482e6 0.257953
\(985\) 0 0
\(986\) 697649. 0.0228531
\(987\) − 1.43949e8i − 4.70343i
\(988\) − 1.38079e7i − 0.450024i
\(989\) 5.76524e6 0.187425
\(990\) 0 0
\(991\) 3.28504e7 1.06257 0.531284 0.847194i \(-0.321710\pi\)
0.531284 + 0.847194i \(0.321710\pi\)
\(992\) 2.06616e7i 0.666630i
\(993\) − 6.10850e7i − 1.96590i
\(994\) −1.43067e7 −0.459275
\(995\) 0 0
\(996\) 4.28327e6 0.136813
\(997\) − 1.53268e7i − 0.488329i −0.969734 0.244164i \(-0.921486\pi\)
0.969734 0.244164i \(-0.0785136\pi\)
\(998\) − 494925.i − 0.0157294i
\(999\) 3.06623e6 0.0972055
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.i.274.12 22
5.2 odd 4 325.6.a.j.1.6 11
5.3 odd 4 325.6.a.k.1.6 yes 11
5.4 even 2 inner 325.6.b.i.274.11 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.6 11 5.2 odd 4
325.6.a.k.1.6 yes 11 5.3 odd 4
325.6.b.i.274.11 22 5.4 even 2 inner
325.6.b.i.274.12 22 1.1 even 1 trivial