Properties

Label 325.6.b.h.274.9
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 378 x^{16} + 59175 x^{14} + 4956036 x^{12} + 239061247 x^{10} + 6629044458 x^{8} + \cdots + 134659641600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.9
Root \(0.603392i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.h.274.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.396608i q^{2} -11.4974i q^{3} +31.8427 q^{4} -4.55994 q^{6} -8.04695i q^{7} -25.3205i q^{8} +110.811 q^{9} +O(q^{10})\) \(q-0.396608i q^{2} -11.4974i q^{3} +31.8427 q^{4} -4.55994 q^{6} -8.04695i q^{7} -25.3205i q^{8} +110.811 q^{9} +335.903 q^{11} -366.107i q^{12} -169.000i q^{13} -3.19148 q^{14} +1008.92 q^{16} -38.1592i q^{17} -43.9484i q^{18} -1178.86 q^{19} -92.5186 q^{21} -133.222i q^{22} +1679.35i q^{23} -291.119 q^{24} -67.0267 q^{26} -4067.89i q^{27} -256.237i q^{28} +6705.42 q^{29} +7858.95 q^{31} -1210.40i q^{32} -3861.99i q^{33} -15.1342 q^{34} +3528.51 q^{36} +1715.81i q^{37} +467.545i q^{38} -1943.05 q^{39} -10076.9 q^{41} +36.6936i q^{42} +10822.3i q^{43} +10696.0 q^{44} +666.042 q^{46} -12999.2i q^{47} -11600.0i q^{48} +16742.2 q^{49} -438.730 q^{51} -5381.42i q^{52} +2639.19i q^{53} -1613.36 q^{54} -203.753 q^{56} +13553.8i q^{57} -2659.42i q^{58} -4956.81 q^{59} -43787.4 q^{61} -3116.92i q^{62} -891.687i q^{63} +31805.5 q^{64} -1531.70 q^{66} +9170.90i q^{67} -1215.09i q^{68} +19308.0 q^{69} -13030.5 q^{71} -2805.78i q^{72} -41726.8i q^{73} +680.503 q^{74} -37538.1 q^{76} -2702.99i q^{77} +770.630i q^{78} +49809.7 q^{79} -19843.0 q^{81} +3996.58i q^{82} -86196.9i q^{83} -2946.04 q^{84} +4292.19 q^{86} -77094.6i q^{87} -8505.22i q^{88} +67287.2 q^{89} -1359.93 q^{91} +53474.9i q^{92} -90357.2i q^{93} -5155.58 q^{94} -13916.4 q^{96} -175537. i q^{97} -6640.10i q^{98} +37221.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9} - 2844 q^{11} + 684 q^{14} - 2122 q^{16} + 816 q^{19} - 7824 q^{21} + 16938 q^{24} - 1690 q^{26} + 17474 q^{29} + 1496 q^{31} + 35578 q^{34} + 1024 q^{36} + 3718 q^{39} - 57352 q^{41} + 61198 q^{44} - 24112 q^{46} + 81814 q^{49} - 62012 q^{51} + 205522 q^{54} - 46004 q^{56} + 176284 q^{59} + 56330 q^{61} + 201690 q^{64} + 85154 q^{66} + 363494 q^{69} - 141124 q^{71} + 271352 q^{74} + 92746 q^{76} + 328146 q^{79} - 139870 q^{81} + 691312 q^{84} - 589840 q^{86} + 505396 q^{89} + 4056 q^{91} + 1003212 q^{94} - 638362 q^{96} + 1515552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.396608i − 0.0701110i −0.999385 0.0350555i \(-0.988839\pi\)
0.999385 0.0350555i \(-0.0111608\pi\)
\(3\) − 11.4974i − 0.737556i −0.929517 0.368778i \(-0.879776\pi\)
0.929517 0.368778i \(-0.120224\pi\)
\(4\) 31.8427 0.995084
\(5\) 0 0
\(6\) −4.55994 −0.0517108
\(7\) − 8.04695i − 0.0620706i −0.999518 0.0310353i \(-0.990120\pi\)
0.999518 0.0310353i \(-0.00988043\pi\)
\(8\) − 25.3205i − 0.139877i
\(9\) 110.811 0.456011
\(10\) 0 0
\(11\) 335.903 0.837012 0.418506 0.908214i \(-0.362554\pi\)
0.418506 + 0.908214i \(0.362554\pi\)
\(12\) − 366.107i − 0.733931i
\(13\) − 169.000i − 0.277350i
\(14\) −3.19148 −0.00435183
\(15\) 0 0
\(16\) 1008.92 0.985278
\(17\) − 38.1592i − 0.0320241i −0.999872 0.0160121i \(-0.994903\pi\)
0.999872 0.0160121i \(-0.00509702\pi\)
\(18\) − 43.9484i − 0.0319714i
\(19\) −1178.86 −0.749167 −0.374584 0.927193i \(-0.622214\pi\)
−0.374584 + 0.927193i \(0.622214\pi\)
\(20\) 0 0
\(21\) −92.5186 −0.0457806
\(22\) − 133.222i − 0.0586837i
\(23\) 1679.35i 0.661943i 0.943641 + 0.330972i \(0.107376\pi\)
−0.943641 + 0.330972i \(0.892624\pi\)
\(24\) −291.119 −0.103167
\(25\) 0 0
\(26\) −67.0267 −0.0194453
\(27\) − 4067.89i − 1.07389i
\(28\) − 256.237i − 0.0617655i
\(29\) 6705.42 1.48058 0.740288 0.672290i \(-0.234689\pi\)
0.740288 + 0.672290i \(0.234689\pi\)
\(30\) 0 0
\(31\) 7858.95 1.46879 0.734396 0.678721i \(-0.237465\pi\)
0.734396 + 0.678721i \(0.237465\pi\)
\(32\) − 1210.40i − 0.208956i
\(33\) − 3861.99i − 0.617343i
\(34\) −15.1342 −0.00224524
\(35\) 0 0
\(36\) 3528.51 0.453769
\(37\) 1715.81i 0.206046i 0.994679 + 0.103023i \(0.0328516\pi\)
−0.994679 + 0.103023i \(0.967148\pi\)
\(38\) 467.545i 0.0525249i
\(39\) −1943.05 −0.204561
\(40\) 0 0
\(41\) −10076.9 −0.936198 −0.468099 0.883676i \(-0.655061\pi\)
−0.468099 + 0.883676i \(0.655061\pi\)
\(42\) 36.6936i 0.00320972i
\(43\) 10822.3i 0.892579i 0.894889 + 0.446289i \(0.147255\pi\)
−0.894889 + 0.446289i \(0.852745\pi\)
\(44\) 10696.0 0.832897
\(45\) 0 0
\(46\) 666.042 0.0464095
\(47\) − 12999.2i − 0.858364i −0.903218 0.429182i \(-0.858802\pi\)
0.903218 0.429182i \(-0.141198\pi\)
\(48\) − 11600.0i − 0.726697i
\(49\) 16742.2 0.996147
\(50\) 0 0
\(51\) −438.730 −0.0236196
\(52\) − 5381.42i − 0.275987i
\(53\) 2639.19i 0.129057i 0.997916 + 0.0645285i \(0.0205543\pi\)
−0.997916 + 0.0645285i \(0.979446\pi\)
\(54\) −1613.36 −0.0752915
\(55\) 0 0
\(56\) −203.753 −0.00868227
\(57\) 13553.8i 0.552553i
\(58\) − 2659.42i − 0.103805i
\(59\) −4956.81 −0.185384 −0.0926919 0.995695i \(-0.529547\pi\)
−0.0926919 + 0.995695i \(0.529547\pi\)
\(60\) 0 0
\(61\) −43787.4 −1.50669 −0.753346 0.657625i \(-0.771561\pi\)
−0.753346 + 0.657625i \(0.771561\pi\)
\(62\) − 3116.92i − 0.102979i
\(63\) − 891.687i − 0.0283049i
\(64\) 31805.5 0.970627
\(65\) 0 0
\(66\) −1531.70 −0.0432825
\(67\) 9170.90i 0.249589i 0.992183 + 0.124794i \(0.0398271\pi\)
−0.992183 + 0.124794i \(0.960173\pi\)
\(68\) − 1215.09i − 0.0318667i
\(69\) 19308.0 0.488220
\(70\) 0 0
\(71\) −13030.5 −0.306772 −0.153386 0.988166i \(-0.549018\pi\)
−0.153386 + 0.988166i \(0.549018\pi\)
\(72\) − 2805.78i − 0.0637856i
\(73\) − 41726.8i − 0.916447i −0.888837 0.458224i \(-0.848486\pi\)
0.888837 0.458224i \(-0.151514\pi\)
\(74\) 680.503 0.0144461
\(75\) 0 0
\(76\) −37538.1 −0.745485
\(77\) − 2702.99i − 0.0519538i
\(78\) 770.630i 0.0143420i
\(79\) 49809.7 0.897938 0.448969 0.893547i \(-0.351791\pi\)
0.448969 + 0.893547i \(0.351791\pi\)
\(80\) 0 0
\(81\) −19843.0 −0.336043
\(82\) 3996.58i 0.0656378i
\(83\) − 86196.9i − 1.37340i −0.726942 0.686699i \(-0.759059\pi\)
0.726942 0.686699i \(-0.240941\pi\)
\(84\) −2946.04 −0.0455555
\(85\) 0 0
\(86\) 4292.19 0.0625796
\(87\) − 77094.6i − 1.09201i
\(88\) − 8505.22i − 0.117079i
\(89\) 67287.2 0.900446 0.450223 0.892916i \(-0.351344\pi\)
0.450223 + 0.892916i \(0.351344\pi\)
\(90\) 0 0
\(91\) −1359.93 −0.0172153
\(92\) 53474.9i 0.658689i
\(93\) − 90357.2i − 1.08332i
\(94\) −5155.58 −0.0601808
\(95\) 0 0
\(96\) −13916.4 −0.154117
\(97\) − 175537.i − 1.89426i −0.320850 0.947130i \(-0.603969\pi\)
0.320850 0.947130i \(-0.396031\pi\)
\(98\) − 6640.10i − 0.0698409i
\(99\) 37221.6 0.381687
\(100\) 0 0
\(101\) −20550.4 −0.200455 −0.100227 0.994965i \(-0.531957\pi\)
−0.100227 + 0.994965i \(0.531957\pi\)
\(102\) 174.004i 0.00165599i
\(103\) − 73661.4i − 0.684143i −0.939674 0.342071i \(-0.888872\pi\)
0.939674 0.342071i \(-0.111128\pi\)
\(104\) −4279.17 −0.0387950
\(105\) 0 0
\(106\) 1046.72 0.00904831
\(107\) − 141079.i − 1.19125i −0.803262 0.595626i \(-0.796904\pi\)
0.803262 0.595626i \(-0.203096\pi\)
\(108\) − 129533.i − 1.06861i
\(109\) 3329.82 0.0268444 0.0134222 0.999910i \(-0.495727\pi\)
0.0134222 + 0.999910i \(0.495727\pi\)
\(110\) 0 0
\(111\) 19727.3 0.151971
\(112\) − 8118.76i − 0.0611568i
\(113\) 80229.6i 0.591070i 0.955332 + 0.295535i \(0.0954978\pi\)
−0.955332 + 0.295535i \(0.904502\pi\)
\(114\) 5375.54 0.0387400
\(115\) 0 0
\(116\) 213519. 1.47330
\(117\) − 18727.0i − 0.126475i
\(118\) 1965.91i 0.0129974i
\(119\) −307.065 −0.00198776
\(120\) 0 0
\(121\) −48220.5 −0.299411
\(122\) 17366.4i 0.105636i
\(123\) 115858.i 0.690499i
\(124\) 250250. 1.46157
\(125\) 0 0
\(126\) −353.650 −0.00198448
\(127\) 91691.7i 0.504453i 0.967668 + 0.252227i \(0.0811628\pi\)
−0.967668 + 0.252227i \(0.918837\pi\)
\(128\) − 51347.2i − 0.277008i
\(129\) 124427. 0.658327
\(130\) 0 0
\(131\) −150911. −0.768319 −0.384160 0.923267i \(-0.625509\pi\)
−0.384160 + 0.923267i \(0.625509\pi\)
\(132\) − 122976.i − 0.614309i
\(133\) 9486.23i 0.0465013i
\(134\) 3637.25 0.0174989
\(135\) 0 0
\(136\) −966.211 −0.00447945
\(137\) − 20446.3i − 0.0930710i −0.998917 0.0465355i \(-0.985182\pi\)
0.998917 0.0465355i \(-0.0148181\pi\)
\(138\) − 7657.72i − 0.0342296i
\(139\) 142881. 0.627245 0.313623 0.949548i \(-0.398457\pi\)
0.313623 + 0.949548i \(0.398457\pi\)
\(140\) 0 0
\(141\) −149456. −0.633092
\(142\) 5168.00i 0.0215081i
\(143\) − 56767.5i − 0.232145i
\(144\) 111800. 0.449297
\(145\) 0 0
\(146\) −16549.2 −0.0642530
\(147\) − 192492.i − 0.734714i
\(148\) 54636.0i 0.205033i
\(149\) 175152. 0.646321 0.323161 0.946344i \(-0.395255\pi\)
0.323161 + 0.946344i \(0.395255\pi\)
\(150\) 0 0
\(151\) −3588.76 −0.0128086 −0.00640431 0.999979i \(-0.502039\pi\)
−0.00640431 + 0.999979i \(0.502039\pi\)
\(152\) 29849.4i 0.104792i
\(153\) − 4228.45i − 0.0146034i
\(154\) −1072.03 −0.00364253
\(155\) 0 0
\(156\) −61872.1 −0.203556
\(157\) − 232402.i − 0.752473i −0.926524 0.376236i \(-0.877218\pi\)
0.926524 0.376236i \(-0.122782\pi\)
\(158\) − 19754.9i − 0.0629554i
\(159\) 30343.7 0.0951867
\(160\) 0 0
\(161\) 13513.6 0.0410872
\(162\) 7869.89i 0.0235603i
\(163\) 144816.i 0.426921i 0.976952 + 0.213460i \(0.0684735\pi\)
−0.976952 + 0.213460i \(0.931527\pi\)
\(164\) −320876. −0.931596
\(165\) 0 0
\(166\) −34186.3 −0.0962903
\(167\) 413472.i 1.14724i 0.819121 + 0.573621i \(0.194462\pi\)
−0.819121 + 0.573621i \(0.805538\pi\)
\(168\) 2342.62i 0.00640366i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −130630. −0.341628
\(172\) 344610.i 0.888191i
\(173\) 686615.i 1.74421i 0.489322 + 0.872103i \(0.337244\pi\)
−0.489322 + 0.872103i \(0.662756\pi\)
\(174\) −30576.3 −0.0765618
\(175\) 0 0
\(176\) 338900. 0.824689
\(177\) 56990.2i 0.136731i
\(178\) − 26686.6i − 0.0631312i
\(179\) −217412. −0.507168 −0.253584 0.967313i \(-0.581609\pi\)
−0.253584 + 0.967313i \(0.581609\pi\)
\(180\) 0 0
\(181\) −282439. −0.640807 −0.320404 0.947281i \(-0.603819\pi\)
−0.320404 + 0.947281i \(0.603819\pi\)
\(182\) 539.360i 0.00120698i
\(183\) 503439.i 1.11127i
\(184\) 42521.9 0.0925908
\(185\) 0 0
\(186\) −35836.4 −0.0759524
\(187\) − 12817.8i − 0.0268046i
\(188\) − 413929.i − 0.854145i
\(189\) −32734.1 −0.0666570
\(190\) 0 0
\(191\) −141669. −0.280990 −0.140495 0.990081i \(-0.544869\pi\)
−0.140495 + 0.990081i \(0.544869\pi\)
\(192\) − 365680.i − 0.715892i
\(193\) − 817556.i − 1.57988i −0.613183 0.789941i \(-0.710111\pi\)
0.613183 0.789941i \(-0.289889\pi\)
\(194\) −69619.4 −0.132808
\(195\) 0 0
\(196\) 533118. 0.991251
\(197\) 566426.i 1.03987i 0.854207 + 0.519933i \(0.174043\pi\)
−0.854207 + 0.519933i \(0.825957\pi\)
\(198\) − 14762.4i − 0.0267604i
\(199\) −400781. −0.717422 −0.358711 0.933449i \(-0.616784\pi\)
−0.358711 + 0.933449i \(0.616784\pi\)
\(200\) 0 0
\(201\) 105441. 0.184086
\(202\) 8150.43i 0.0140541i
\(203\) − 53958.1i − 0.0919002i
\(204\) −13970.4 −0.0235035
\(205\) 0 0
\(206\) −29214.7 −0.0479659
\(207\) 186089.i 0.301853i
\(208\) − 170508.i − 0.273267i
\(209\) −395982. −0.627062
\(210\) 0 0
\(211\) 389440. 0.602191 0.301095 0.953594i \(-0.402648\pi\)
0.301095 + 0.953594i \(0.402648\pi\)
\(212\) 84039.0i 0.128423i
\(213\) 149816.i 0.226261i
\(214\) −55953.1 −0.0835198
\(215\) 0 0
\(216\) −103001. −0.150213
\(217\) − 63240.6i − 0.0911688i
\(218\) − 1320.63i − 0.00188209i
\(219\) −479748. −0.675931
\(220\) 0 0
\(221\) −6448.91 −0.00888190
\(222\) − 7823.99i − 0.0106548i
\(223\) − 312613.i − 0.420964i −0.977598 0.210482i \(-0.932497\pi\)
0.977598 0.210482i \(-0.0675033\pi\)
\(224\) −9740.05 −0.0129700
\(225\) 0 0
\(226\) 31819.7 0.0414405
\(227\) 863698.i 1.11249i 0.831017 + 0.556246i \(0.187759\pi\)
−0.831017 + 0.556246i \(0.812241\pi\)
\(228\) 431589.i 0.549837i
\(229\) 255333. 0.321749 0.160875 0.986975i \(-0.448569\pi\)
0.160875 + 0.986975i \(0.448569\pi\)
\(230\) 0 0
\(231\) −31077.2 −0.0383189
\(232\) − 169785.i − 0.207099i
\(233\) 566258.i 0.683321i 0.939823 + 0.341660i \(0.110989\pi\)
−0.939823 + 0.341660i \(0.889011\pi\)
\(234\) −7427.27 −0.00886727
\(235\) 0 0
\(236\) −157838. −0.184473
\(237\) − 572681.i − 0.662280i
\(238\) 121.784i 0 0.000139364i
\(239\) −1.70328e6 −1.92882 −0.964410 0.264412i \(-0.914822\pi\)
−0.964410 + 0.264412i \(0.914822\pi\)
\(240\) 0 0
\(241\) 189220. 0.209857 0.104929 0.994480i \(-0.466539\pi\)
0.104929 + 0.994480i \(0.466539\pi\)
\(242\) 19124.6i 0.0209920i
\(243\) − 760355.i − 0.826039i
\(244\) −1.39431e6 −1.49928
\(245\) 0 0
\(246\) 45950.1 0.0484116
\(247\) 199228.i 0.207782i
\(248\) − 198993.i − 0.205451i
\(249\) −991037. −1.01296
\(250\) 0 0
\(251\) 807394. 0.808911 0.404456 0.914558i \(-0.367461\pi\)
0.404456 + 0.914558i \(0.367461\pi\)
\(252\) − 28393.7i − 0.0281657i
\(253\) 564097.i 0.554054i
\(254\) 36365.6 0.0353677
\(255\) 0 0
\(256\) 997412. 0.951206
\(257\) 1.71583e6i 1.62047i 0.586107 + 0.810234i \(0.300660\pi\)
−0.586107 + 0.810234i \(0.699340\pi\)
\(258\) − 49348.8i − 0.0461559i
\(259\) 13807.0 0.0127894
\(260\) 0 0
\(261\) 743032. 0.675159
\(262\) 59852.3i 0.0538676i
\(263\) 2.09428e6i 1.86701i 0.358568 + 0.933504i \(0.383265\pi\)
−0.358568 + 0.933504i \(0.616735\pi\)
\(264\) −97787.6 −0.0863523
\(265\) 0 0
\(266\) 3762.31 0.00326025
\(267\) − 773626.i − 0.664129i
\(268\) 292026.i 0.248362i
\(269\) 431530. 0.363605 0.181803 0.983335i \(-0.441807\pi\)
0.181803 + 0.983335i \(0.441807\pi\)
\(270\) 0 0
\(271\) −290063. −0.239921 −0.119961 0.992779i \(-0.538277\pi\)
−0.119961 + 0.992779i \(0.538277\pi\)
\(272\) − 38499.8i − 0.0315527i
\(273\) 15635.7i 0.0126972i
\(274\) −8109.18 −0.00652530
\(275\) 0 0
\(276\) 614820. 0.485820
\(277\) 1.89373e6i 1.48292i 0.670995 + 0.741462i \(0.265867\pi\)
−0.670995 + 0.741462i \(0.734133\pi\)
\(278\) − 56667.7i − 0.0439768i
\(279\) 870856. 0.669786
\(280\) 0 0
\(281\) −655309. −0.495086 −0.247543 0.968877i \(-0.579623\pi\)
−0.247543 + 0.968877i \(0.579623\pi\)
\(282\) 59275.6i 0.0443867i
\(283\) − 695619.i − 0.516304i −0.966104 0.258152i \(-0.916887\pi\)
0.966104 0.258152i \(-0.0831135\pi\)
\(284\) −414926. −0.305264
\(285\) 0 0
\(286\) −22514.4 −0.0162759
\(287\) 81088.4i 0.0581104i
\(288\) − 134126.i − 0.0952863i
\(289\) 1.41840e6 0.998974
\(290\) 0 0
\(291\) −2.01821e6 −1.39712
\(292\) − 1.32869e6i − 0.911943i
\(293\) 2.44727e6i 1.66538i 0.553742 + 0.832689i \(0.313200\pi\)
−0.553742 + 0.832689i \(0.686800\pi\)
\(294\) −76343.7 −0.0515116
\(295\) 0 0
\(296\) 43445.2 0.0288212
\(297\) − 1.36641e6i − 0.898858i
\(298\) − 69466.5i − 0.0453142i
\(299\) 283809. 0.183590
\(300\) 0 0
\(301\) 87086.1 0.0554029
\(302\) 1423.33i 0 0.000898025i
\(303\) 236275.i 0.147847i
\(304\) −1.18938e6 −0.738138
\(305\) 0 0
\(306\) −1677.04 −0.00102386
\(307\) 1.41799e6i 0.858674i 0.903144 + 0.429337i \(0.141253\pi\)
−0.903144 + 0.429337i \(0.858747\pi\)
\(308\) − 86070.5i − 0.0516984i
\(309\) −846911. −0.504594
\(310\) 0 0
\(311\) −146871. −0.0861062 −0.0430531 0.999073i \(-0.513708\pi\)
−0.0430531 + 0.999073i \(0.513708\pi\)
\(312\) 49199.1i 0.0286135i
\(313\) 2.60983e6i 1.50575i 0.658165 + 0.752873i \(0.271333\pi\)
−0.658165 + 0.752873i \(0.728667\pi\)
\(314\) −92172.4 −0.0527566
\(315\) 0 0
\(316\) 1.58608e6 0.893525
\(317\) 2.85498e6i 1.59571i 0.602847 + 0.797857i \(0.294033\pi\)
−0.602847 + 0.797857i \(0.705967\pi\)
\(318\) − 12034.6i − 0.00667364i
\(319\) 2.25237e6 1.23926
\(320\) 0 0
\(321\) −1.62204e6 −0.878615
\(322\) − 5359.60i − 0.00288066i
\(323\) 44984.4i 0.0239914i
\(324\) −631855. −0.334391
\(325\) 0 0
\(326\) 57435.1 0.0299319
\(327\) − 38284.1i − 0.0197993i
\(328\) 255153.i 0.130953i
\(329\) −104604. −0.0532792
\(330\) 0 0
\(331\) −2.25339e6 −1.13049 −0.565245 0.824923i \(-0.691218\pi\)
−0.565245 + 0.824923i \(0.691218\pi\)
\(332\) − 2.74474e6i − 1.36665i
\(333\) 190130.i 0.0939594i
\(334\) 163986. 0.0804342
\(335\) 0 0
\(336\) −93344.3 −0.0451066
\(337\) − 795896.i − 0.381752i −0.981614 0.190876i \(-0.938867\pi\)
0.981614 0.190876i \(-0.0611329\pi\)
\(338\) 11327.5i 0.00539315i
\(339\) 922429. 0.435947
\(340\) 0 0
\(341\) 2.63984e6 1.22940
\(342\) 51809.0i 0.0239519i
\(343\) − 269969.i − 0.123902i
\(344\) 274025. 0.124852
\(345\) 0 0
\(346\) 272317. 0.122288
\(347\) − 869632.i − 0.387714i −0.981030 0.193857i \(-0.937900\pi\)
0.981030 0.193857i \(-0.0620998\pi\)
\(348\) − 2.45490e6i − 1.08664i
\(349\) 268145. 0.117844 0.0589219 0.998263i \(-0.481234\pi\)
0.0589219 + 0.998263i \(0.481234\pi\)
\(350\) 0 0
\(351\) −687473. −0.297843
\(352\) − 406578.i − 0.174899i
\(353\) − 2.22293e6i − 0.949485i −0.880125 0.474743i \(-0.842541\pi\)
0.880125 0.474743i \(-0.157459\pi\)
\(354\) 22602.7 0.00958634
\(355\) 0 0
\(356\) 2.14261e6 0.896020
\(357\) 3530.44i 0.00146608i
\(358\) 86227.4i 0.0355581i
\(359\) −356227. −0.145878 −0.0729391 0.997336i \(-0.523238\pi\)
−0.0729391 + 0.997336i \(0.523238\pi\)
\(360\) 0 0
\(361\) −1.08639e6 −0.438749
\(362\) 112017.i 0.0449276i
\(363\) 554409.i 0.220833i
\(364\) −43304.0 −0.0171307
\(365\) 0 0
\(366\) 199668. 0.0779122
\(367\) 1.68973e6i 0.654867i 0.944874 + 0.327433i \(0.106184\pi\)
−0.944874 + 0.327433i \(0.893816\pi\)
\(368\) 1.69433e6i 0.652198i
\(369\) −1.11663e6 −0.426917
\(370\) 0 0
\(371\) 21237.4 0.00801064
\(372\) − 2.87722e6i − 1.07799i
\(373\) − 2.01242e6i − 0.748938i −0.927239 0.374469i \(-0.877825\pi\)
0.927239 0.374469i \(-0.122175\pi\)
\(374\) −5083.63 −0.00187930
\(375\) 0 0
\(376\) −329146. −0.120066
\(377\) − 1.13322e6i − 0.410638i
\(378\) 12982.6i 0.00467339i
\(379\) 3.07308e6 1.09894 0.549472 0.835512i \(-0.314829\pi\)
0.549472 + 0.835512i \(0.314829\pi\)
\(380\) 0 0
\(381\) 1.05421e6 0.372063
\(382\) 56186.9i 0.0197005i
\(383\) − 5.65657e6i − 1.97041i −0.171387 0.985204i \(-0.554825\pi\)
0.171387 0.985204i \(-0.445175\pi\)
\(384\) −590358. −0.204309
\(385\) 0 0
\(386\) −324249. −0.110767
\(387\) 1.19922e6i 0.407026i
\(388\) − 5.58958e6i − 1.88495i
\(389\) 1.20141e6 0.402547 0.201274 0.979535i \(-0.435492\pi\)
0.201274 + 0.979535i \(0.435492\pi\)
\(390\) 0 0
\(391\) 64082.6 0.0211981
\(392\) − 423922.i − 0.139338i
\(393\) 1.73507e6i 0.566678i
\(394\) 224649. 0.0729060
\(395\) 0 0
\(396\) 1.18524e6 0.379810
\(397\) − 1.91438e6i − 0.609610i −0.952415 0.304805i \(-0.901409\pi\)
0.952415 0.304805i \(-0.0985912\pi\)
\(398\) 158953.i 0.0502992i
\(399\) 109067. 0.0342973
\(400\) 0 0
\(401\) −5.02610e6 −1.56088 −0.780441 0.625229i \(-0.785006\pi\)
−0.780441 + 0.625229i \(0.785006\pi\)
\(402\) − 41818.8i − 0.0129064i
\(403\) − 1.32816e6i − 0.407370i
\(404\) −654379. −0.199469
\(405\) 0 0
\(406\) −21400.2 −0.00644322
\(407\) 576345.i 0.172463i
\(408\) 11108.9i 0.00330385i
\(409\) 2.26919e6 0.670754 0.335377 0.942084i \(-0.391136\pi\)
0.335377 + 0.942084i \(0.391136\pi\)
\(410\) 0 0
\(411\) −235079. −0.0686450
\(412\) − 2.34558e6i − 0.680780i
\(413\) 39887.1i 0.0115069i
\(414\) 73804.5 0.0211632
\(415\) 0 0
\(416\) −204558. −0.0579540
\(417\) − 1.64275e6i − 0.462629i
\(418\) 157050.i 0.0439639i
\(419\) 3.92074e6 1.09102 0.545510 0.838104i \(-0.316336\pi\)
0.545510 + 0.838104i \(0.316336\pi\)
\(420\) 0 0
\(421\) 1.77811e6 0.488939 0.244469 0.969657i \(-0.421386\pi\)
0.244469 + 0.969657i \(0.421386\pi\)
\(422\) − 154455.i − 0.0422202i
\(423\) − 1.44045e6i − 0.391424i
\(424\) 66825.7 0.0180521
\(425\) 0 0
\(426\) 59418.3 0.0158634
\(427\) 352355.i 0.0935212i
\(428\) − 4.49234e6i − 1.18540i
\(429\) −652677. −0.171220
\(430\) 0 0
\(431\) −4.45663e6 −1.15561 −0.577807 0.816173i \(-0.696091\pi\)
−0.577807 + 0.816173i \(0.696091\pi\)
\(432\) − 4.10419e6i − 1.05808i
\(433\) 1.25271e6i 0.321093i 0.987028 + 0.160547i \(0.0513257\pi\)
−0.987028 + 0.160547i \(0.948674\pi\)
\(434\) −25081.7 −0.00639194
\(435\) 0 0
\(436\) 106030. 0.0267125
\(437\) − 1.97972e6i − 0.495906i
\(438\) 190272.i 0.0473902i
\(439\) −3.75453e6 −0.929810 −0.464905 0.885360i \(-0.653912\pi\)
−0.464905 + 0.885360i \(0.653912\pi\)
\(440\) 0 0
\(441\) 1.85522e6 0.454254
\(442\) 2557.69i 0 0.000622719i
\(443\) 2.31259e6i 0.559874i 0.960018 + 0.279937i \(0.0903135\pi\)
−0.960018 + 0.279937i \(0.909686\pi\)
\(444\) 628170. 0.151224
\(445\) 0 0
\(446\) −123985. −0.0295142
\(447\) − 2.01378e6i − 0.476698i
\(448\) − 255937.i − 0.0602474i
\(449\) 7.80175e6 1.82632 0.913159 0.407603i \(-0.133635\pi\)
0.913159 + 0.407603i \(0.133635\pi\)
\(450\) 0 0
\(451\) −3.38486e6 −0.783609
\(452\) 2.55473e6i 0.588164i
\(453\) 41261.3i 0.00944708i
\(454\) 342549. 0.0779980
\(455\) 0 0
\(456\) 343189. 0.0772896
\(457\) 4.88928e6i 1.09510i 0.836772 + 0.547551i \(0.184440\pi\)
−0.836772 + 0.547551i \(0.815560\pi\)
\(458\) − 101267.i − 0.0225582i
\(459\) −155228. −0.0343904
\(460\) 0 0
\(461\) −4.08764e6 −0.895818 −0.447909 0.894079i \(-0.647831\pi\)
−0.447909 + 0.894079i \(0.647831\pi\)
\(462\) 12325.5i 0.00268657i
\(463\) − 3.13129e6i − 0.678845i −0.940634 0.339423i \(-0.889768\pi\)
0.940634 0.339423i \(-0.110232\pi\)
\(464\) 6.76526e6 1.45878
\(465\) 0 0
\(466\) 224582. 0.0479083
\(467\) 5.78075e6i 1.22657i 0.789862 + 0.613284i \(0.210152\pi\)
−0.789862 + 0.613284i \(0.789848\pi\)
\(468\) − 596318.i − 0.125853i
\(469\) 73797.7 0.0154921
\(470\) 0 0
\(471\) −2.67201e6 −0.554991
\(472\) 125509.i 0.0259310i
\(473\) 3.63522e6i 0.747099i
\(474\) −227130. −0.0464331
\(475\) 0 0
\(476\) −9777.79 −0.00197799
\(477\) 292451.i 0.0588514i
\(478\) 675535.i 0.135231i
\(479\) 5.98034e6 1.19093 0.595467 0.803380i \(-0.296967\pi\)
0.595467 + 0.803380i \(0.296967\pi\)
\(480\) 0 0
\(481\) 289972. 0.0571469
\(482\) − 75045.9i − 0.0147133i
\(483\) − 155371.i − 0.0303041i
\(484\) −1.53547e6 −0.297940
\(485\) 0 0
\(486\) −301563. −0.0579144
\(487\) − 8.62843e6i − 1.64858i −0.566169 0.824289i \(-0.691575\pi\)
0.566169 0.824289i \(-0.308425\pi\)
\(488\) 1.10872e6i 0.210752i
\(489\) 1.66500e6 0.314878
\(490\) 0 0
\(491\) −4.67336e6 −0.874834 −0.437417 0.899259i \(-0.644107\pi\)
−0.437417 + 0.899259i \(0.644107\pi\)
\(492\) 3.68923e6i 0.687105i
\(493\) − 255873.i − 0.0474142i
\(494\) 79015.2 0.0145678
\(495\) 0 0
\(496\) 7.92909e6 1.44717
\(497\) 104856.i 0.0190415i
\(498\) 393053.i 0.0710195i
\(499\) −1.02014e7 −1.83404 −0.917018 0.398847i \(-0.869411\pi\)
−0.917018 + 0.398847i \(0.869411\pi\)
\(500\) 0 0
\(501\) 4.75383e6 0.846155
\(502\) − 320218.i − 0.0567136i
\(503\) − 1.14659e6i − 0.202064i −0.994883 0.101032i \(-0.967786\pi\)
0.994883 0.101032i \(-0.0322144\pi\)
\(504\) −22578.0 −0.00395921
\(505\) 0 0
\(506\) 223725. 0.0388453
\(507\) 328376.i 0.0567351i
\(508\) 2.91971e6i 0.501974i
\(509\) 2.19167e6 0.374957 0.187478 0.982269i \(-0.439969\pi\)
0.187478 + 0.982269i \(0.439969\pi\)
\(510\) 0 0
\(511\) −335773. −0.0568844
\(512\) − 2.03869e6i − 0.343698i
\(513\) 4.79548e6i 0.804523i
\(514\) 680509. 0.113613
\(515\) 0 0
\(516\) 3.96210e6 0.655091
\(517\) − 4.36646e6i − 0.718461i
\(518\) − 5475.97i 0 0.000896679i
\(519\) 7.89426e6 1.28645
\(520\) 0 0
\(521\) −6.90308e6 −1.11416 −0.557082 0.830458i \(-0.688079\pi\)
−0.557082 + 0.830458i \(0.688079\pi\)
\(522\) − 294692.i − 0.0473361i
\(523\) 1.59809e6i 0.255473i 0.991808 + 0.127737i \(0.0407713\pi\)
−0.991808 + 0.127737i \(0.959229\pi\)
\(524\) −4.80540e6 −0.764542
\(525\) 0 0
\(526\) 830609. 0.130898
\(527\) − 299892.i − 0.0470368i
\(528\) − 3.89646e6i − 0.608254i
\(529\) 3.61614e6 0.561831
\(530\) 0 0
\(531\) −549267. −0.0845371
\(532\) 302067.i 0.0462727i
\(533\) 1.70300e6i 0.259655i
\(534\) −306826. −0.0465628
\(535\) 0 0
\(536\) 232212. 0.0349118
\(537\) 2.49967e6i 0.374065i
\(538\) − 171148.i − 0.0254927i
\(539\) 5.62376e6 0.833787
\(540\) 0 0
\(541\) −279387. −0.0410405 −0.0205202 0.999789i \(-0.506532\pi\)
−0.0205202 + 0.999789i \(0.506532\pi\)
\(542\) 115041.i 0.0168211i
\(543\) 3.24730e6i 0.472631i
\(544\) −46188.1 −0.00669164
\(545\) 0 0
\(546\) 6201.22 0.000890216 0
\(547\) 606222.i 0.0866290i 0.999061 + 0.0433145i \(0.0137918\pi\)
−0.999061 + 0.0433145i \(0.986208\pi\)
\(548\) − 651067.i − 0.0926135i
\(549\) −4.85211e6 −0.687068
\(550\) 0 0
\(551\) −7.90475e6 −1.10920
\(552\) − 488890.i − 0.0682909i
\(553\) − 400816.i − 0.0557356i
\(554\) 751068. 0.103969
\(555\) 0 0
\(556\) 4.54972e6 0.624162
\(557\) − 3.37279e6i − 0.460629i −0.973116 0.230315i \(-0.926024\pi\)
0.973116 0.230315i \(-0.0739755\pi\)
\(558\) − 345388.i − 0.0469593i
\(559\) 1.82896e6 0.247557
\(560\) 0 0
\(561\) −147371. −0.0197699
\(562\) 259901.i 0.0347110i
\(563\) 3.75518e6i 0.499298i 0.968336 + 0.249649i \(0.0803153\pi\)
−0.968336 + 0.249649i \(0.919685\pi\)
\(564\) −4.75910e6 −0.629980
\(565\) 0 0
\(566\) −275888. −0.0361986
\(567\) 159676.i 0.0208584i
\(568\) 329939.i 0.0429104i
\(569\) −5.11904e6 −0.662839 −0.331420 0.943483i \(-0.607528\pi\)
−0.331420 + 0.943483i \(0.607528\pi\)
\(570\) 0 0
\(571\) 1.23612e7 1.58662 0.793308 0.608821i \(-0.208357\pi\)
0.793308 + 0.608821i \(0.208357\pi\)
\(572\) − 1.80763e6i − 0.231004i
\(573\) 1.62882e6i 0.207246i
\(574\) 32160.3 0.00407418
\(575\) 0 0
\(576\) 3.52439e6 0.442617
\(577\) 1.46773e6i 0.183530i 0.995781 + 0.0917651i \(0.0292509\pi\)
−0.995781 + 0.0917651i \(0.970749\pi\)
\(578\) − 562549.i − 0.0700391i
\(579\) −9.39974e6 −1.16525
\(580\) 0 0
\(581\) −693622. −0.0852476
\(582\) 800439.i 0.0979537i
\(583\) 886511.i 0.108022i
\(584\) −1.05654e6 −0.128190
\(585\) 0 0
\(586\) 970606. 0.116761
\(587\) 6.01770e6i 0.720834i 0.932791 + 0.360417i \(0.117366\pi\)
−0.932791 + 0.360417i \(0.882634\pi\)
\(588\) − 6.12945e6i − 0.731103i
\(589\) −9.26461e6 −1.10037
\(590\) 0 0
\(591\) 6.51240e6 0.766959
\(592\) 1.73112e6i 0.203013i
\(593\) 1.28954e7i 1.50590i 0.658076 + 0.752951i \(0.271371\pi\)
−0.658076 + 0.752951i \(0.728629\pi\)
\(594\) −541930. −0.0630199
\(595\) 0 0
\(596\) 5.57730e6 0.643144
\(597\) 4.60793e6i 0.529139i
\(598\) − 112561.i − 0.0128717i
\(599\) −1.07891e7 −1.22863 −0.614313 0.789062i \(-0.710567\pi\)
−0.614313 + 0.789062i \(0.710567\pi\)
\(600\) 0 0
\(601\) 3.51995e6 0.397512 0.198756 0.980049i \(-0.436310\pi\)
0.198756 + 0.980049i \(0.436310\pi\)
\(602\) − 34539.0i − 0.00388435i
\(603\) 1.01623e6i 0.113815i
\(604\) −114276. −0.0127457
\(605\) 0 0
\(606\) 93708.5 0.0103657
\(607\) − 1.43143e6i − 0.157688i −0.996887 0.0788439i \(-0.974877\pi\)
0.996887 0.0788439i \(-0.0251229\pi\)
\(608\) 1.42690e6i 0.156543i
\(609\) −620376. −0.0677816
\(610\) 0 0
\(611\) −2.19686e6 −0.238067
\(612\) − 134645.i − 0.0145316i
\(613\) − 1.06458e7i − 1.14426i −0.820162 0.572131i \(-0.806117\pi\)
0.820162 0.572131i \(-0.193883\pi\)
\(614\) 562387. 0.0602025
\(615\) 0 0
\(616\) −68441.1 −0.00726716
\(617\) 9.96269e6i 1.05357i 0.849998 + 0.526785i \(0.176603\pi\)
−0.849998 + 0.526785i \(0.823397\pi\)
\(618\) 335892.i 0.0353776i
\(619\) −1.14066e7 −1.19655 −0.598273 0.801292i \(-0.704146\pi\)
−0.598273 + 0.801292i \(0.704146\pi\)
\(620\) 0 0
\(621\) 6.83139e6 0.710854
\(622\) 58250.1i 0.00603699i
\(623\) − 541457.i − 0.0558912i
\(624\) −1.96039e6 −0.201550
\(625\) 0 0
\(626\) 1.03508e6 0.105569
\(627\) 4.55275e6i 0.462493i
\(628\) − 7.40031e6i − 0.748774i
\(629\) 65474.0 0.00659845
\(630\) 0 0
\(631\) −1.56307e7 −1.56280 −0.781402 0.624028i \(-0.785495\pi\)
−0.781402 + 0.624028i \(0.785495\pi\)
\(632\) − 1.26121e6i − 0.125601i
\(633\) − 4.47753e6i − 0.444150i
\(634\) 1.13231e6 0.111877
\(635\) 0 0
\(636\) 966227. 0.0947188
\(637\) − 2.82944e6i − 0.276282i
\(638\) − 893306.i − 0.0868857i
\(639\) −1.44392e6 −0.139891
\(640\) 0 0
\(641\) 4.75966e6 0.457542 0.228771 0.973480i \(-0.426529\pi\)
0.228771 + 0.973480i \(0.426529\pi\)
\(642\) 643313.i 0.0616006i
\(643\) 946165.i 0.0902484i 0.998981 + 0.0451242i \(0.0143684\pi\)
−0.998981 + 0.0451242i \(0.985632\pi\)
\(644\) 430310. 0.0408852
\(645\) 0 0
\(646\) 17841.2 0.00168206
\(647\) 870173.i 0.0817231i 0.999165 + 0.0408616i \(0.0130103\pi\)
−0.999165 + 0.0408616i \(0.986990\pi\)
\(648\) 502435.i 0.0470048i
\(649\) −1.66500e6 −0.155168
\(650\) 0 0
\(651\) −727100. −0.0672421
\(652\) 4.61133e6i 0.424822i
\(653\) − 2.57122e6i − 0.235970i −0.993015 0.117985i \(-0.962357\pi\)
0.993015 0.117985i \(-0.0376434\pi\)
\(654\) −15183.8 −0.00138815
\(655\) 0 0
\(656\) −1.01668e7 −0.922415
\(657\) − 4.62377e6i − 0.417910i
\(658\) 41486.7i 0.00373546i
\(659\) −1.09142e7 −0.978988 −0.489494 0.872007i \(-0.662818\pi\)
−0.489494 + 0.872007i \(0.662818\pi\)
\(660\) 0 0
\(661\) 4.31733e6 0.384337 0.192168 0.981362i \(-0.438448\pi\)
0.192168 + 0.981362i \(0.438448\pi\)
\(662\) 893712.i 0.0792597i
\(663\) 74145.5i 0.00655090i
\(664\) −2.18255e6 −0.192107
\(665\) 0 0
\(666\) 75407.0 0.00658758
\(667\) 1.12607e7i 0.980057i
\(668\) 1.31661e7i 1.14160i
\(669\) −3.59422e6 −0.310484
\(670\) 0 0
\(671\) −1.47083e7 −1.26112
\(672\) 111985.i 0.00956613i
\(673\) 2.02793e7i 1.72590i 0.505292 + 0.862949i \(0.331385\pi\)
−0.505292 + 0.862949i \(0.668615\pi\)
\(674\) −315658. −0.0267650
\(675\) 0 0
\(676\) −909459. −0.0765450
\(677\) − 1.37469e7i − 1.15275i −0.817186 0.576373i \(-0.804467\pi\)
0.817186 0.576373i \(-0.195533\pi\)
\(678\) − 365842.i − 0.0305647i
\(679\) −1.41254e6 −0.117578
\(680\) 0 0
\(681\) 9.93025e6 0.820526
\(682\) − 1.04698e6i − 0.0861942i
\(683\) − 1.37681e7i − 1.12933i −0.825320 0.564665i \(-0.809005\pi\)
0.825320 0.564665i \(-0.190995\pi\)
\(684\) −4.15963e6 −0.339949
\(685\) 0 0
\(686\) −107072. −0.00868690
\(687\) − 2.93565e6i − 0.237308i
\(688\) 1.09188e7i 0.879438i
\(689\) 446023. 0.0357939
\(690\) 0 0
\(691\) 6.60598e6 0.526310 0.263155 0.964754i \(-0.415237\pi\)
0.263155 + 0.964754i \(0.415237\pi\)
\(692\) 2.18637e7i 1.73563i
\(693\) − 299520.i − 0.0236915i
\(694\) −344903. −0.0271830
\(695\) 0 0
\(696\) −1.95207e6 −0.152747
\(697\) 384527.i 0.0299809i
\(698\) − 106348.i − 0.00826214i
\(699\) 6.51047e6 0.503987
\(700\) 0 0
\(701\) −1.37908e7 −1.05997 −0.529985 0.848007i \(-0.677803\pi\)
−0.529985 + 0.848007i \(0.677803\pi\)
\(702\) 272657.i 0.0208821i
\(703\) − 2.02270e6i − 0.154363i
\(704\) 1.06836e7 0.812426
\(705\) 0 0
\(706\) −881630. −0.0665694
\(707\) 165368.i 0.0124423i
\(708\) 1.81472e6i 0.136059i
\(709\) −1.96433e7 −1.46757 −0.733785 0.679382i \(-0.762248\pi\)
−0.733785 + 0.679382i \(0.762248\pi\)
\(710\) 0 0
\(711\) 5.51945e6 0.409470
\(712\) − 1.70375e6i − 0.125952i
\(713\) 1.31979e7i 0.972257i
\(714\) 1400.20 0.000102788 0
\(715\) 0 0
\(716\) −6.92300e6 −0.504675
\(717\) 1.95832e7i 1.42261i
\(718\) 141282.i 0.0102277i
\(719\) 2.26567e7 1.63446 0.817229 0.576312i \(-0.195509\pi\)
0.817229 + 0.576312i \(0.195509\pi\)
\(720\) 0 0
\(721\) −592749. −0.0424652
\(722\) 430869.i 0.0307611i
\(723\) − 2.17553e6i − 0.154781i
\(724\) −8.99361e6 −0.637657
\(725\) 0 0
\(726\) 219883. 0.0154828
\(727\) 1.36449e7i 0.957491i 0.877954 + 0.478746i \(0.158908\pi\)
−0.877954 + 0.478746i \(0.841092\pi\)
\(728\) 34434.2i 0.00240803i
\(729\) −1.35639e7 −0.945293
\(730\) 0 0
\(731\) 412969. 0.0285841
\(732\) 1.60309e7i 1.10581i
\(733\) 1.07727e7i 0.740569i 0.928918 + 0.370284i \(0.120740\pi\)
−0.928918 + 0.370284i \(0.879260\pi\)
\(734\) 670161. 0.0459134
\(735\) 0 0
\(736\) 2.03269e6 0.138317
\(737\) 3.08053e6i 0.208909i
\(738\) 442864.i 0.0299316i
\(739\) −8.30186e6 −0.559196 −0.279598 0.960117i \(-0.590201\pi\)
−0.279598 + 0.960117i \(0.590201\pi\)
\(740\) 0 0
\(741\) 2.29059e6 0.153251
\(742\) − 8422.93i 0 0.000561634i
\(743\) 2.21659e7i 1.47304i 0.676417 + 0.736519i \(0.263532\pi\)
−0.676417 + 0.736519i \(0.736468\pi\)
\(744\) −2.28789e6 −0.151531
\(745\) 0 0
\(746\) −798140. −0.0525088
\(747\) − 9.55153e6i − 0.626284i
\(748\) − 408153.i − 0.0266728i
\(749\) −1.13526e6 −0.0739417
\(750\) 0 0
\(751\) 2.47886e7 1.60380 0.801902 0.597455i \(-0.203821\pi\)
0.801902 + 0.597455i \(0.203821\pi\)
\(752\) − 1.31152e7i − 0.845727i
\(753\) − 9.28290e6i − 0.596618i
\(754\) −449442. −0.0287902
\(755\) 0 0
\(756\) −1.04234e6 −0.0663293
\(757\) − 1.63378e6i − 0.103623i −0.998657 0.0518113i \(-0.983501\pi\)
0.998657 0.0518113i \(-0.0164994\pi\)
\(758\) − 1.21881e6i − 0.0770481i
\(759\) 6.48562e6 0.408646
\(760\) 0 0
\(761\) −1.29552e7 −0.810931 −0.405465 0.914110i \(-0.632891\pi\)
−0.405465 + 0.914110i \(0.632891\pi\)
\(762\) − 418109.i − 0.0260857i
\(763\) − 26794.9i − 0.00166625i
\(764\) −4.51111e6 −0.279608
\(765\) 0 0
\(766\) −2.24344e6 −0.138147
\(767\) 837700.i 0.0514162i
\(768\) − 1.14676e7i − 0.701568i
\(769\) 1.14055e7 0.695502 0.347751 0.937587i \(-0.386945\pi\)
0.347751 + 0.937587i \(0.386945\pi\)
\(770\) 0 0
\(771\) 1.97275e7 1.19519
\(772\) − 2.60332e7i − 1.57212i
\(773\) 6.83570e6i 0.411467i 0.978608 + 0.205733i \(0.0659579\pi\)
−0.978608 + 0.205733i \(0.934042\pi\)
\(774\) 475620. 0.0285370
\(775\) 0 0
\(776\) −4.44469e6 −0.264964
\(777\) − 158744.i − 0.00943291i
\(778\) − 476488.i − 0.0282230i
\(779\) 1.18793e7 0.701369
\(780\) 0 0
\(781\) −4.37698e6 −0.256772
\(782\) − 25415.6i − 0.00148622i
\(783\) − 2.72769e7i − 1.58998i
\(784\) 1.68917e7 0.981481
\(785\) 0 0
\(786\) 688144. 0.0397304
\(787\) − 2.71866e7i − 1.56465i −0.622868 0.782327i \(-0.714033\pi\)
0.622868 0.782327i \(-0.285967\pi\)
\(788\) 1.80365e7i 1.03475i
\(789\) 2.40787e7 1.37702
\(790\) 0 0
\(791\) 645603. 0.0366880
\(792\) − 942469.i − 0.0533893i
\(793\) 7.40006e6i 0.417881i
\(794\) −759258. −0.0427403
\(795\) 0 0
\(796\) −1.27620e7 −0.713896
\(797\) 1.81329e7i 1.01117i 0.862778 + 0.505583i \(0.168722\pi\)
−0.862778 + 0.505583i \(0.831278\pi\)
\(798\) − 43256.7i − 0.00240462i
\(799\) −496039. −0.0274884
\(800\) 0 0
\(801\) 7.45614e6 0.410613
\(802\) 1.99339e6i 0.109435i
\(803\) − 1.40161e7i − 0.767077i
\(804\) 3.35753e6 0.183181
\(805\) 0 0
\(806\) −526760. −0.0285611
\(807\) − 4.96146e6i − 0.268179i
\(808\) 520346.i 0.0280391i
\(809\) −3.89183e6 −0.209065 −0.104533 0.994521i \(-0.533335\pi\)
−0.104533 + 0.994521i \(0.533335\pi\)
\(810\) 0 0
\(811\) −1.40881e7 −0.752142 −0.376071 0.926591i \(-0.622725\pi\)
−0.376071 + 0.926591i \(0.622725\pi\)
\(812\) − 1.71817e6i − 0.0914485i
\(813\) 3.33496e6i 0.176955i
\(814\) 228583. 0.0120916
\(815\) 0 0
\(816\) −442646. −0.0232719
\(817\) − 1.27579e7i − 0.668691i
\(818\) − 899980.i − 0.0470272i
\(819\) −150695. −0.00785036
\(820\) 0 0
\(821\) 3.32912e7 1.72374 0.861871 0.507128i \(-0.169293\pi\)
0.861871 + 0.507128i \(0.169293\pi\)
\(822\) 93234.1i 0.00481277i
\(823\) − 3.41282e7i − 1.75636i −0.478330 0.878180i \(-0.658758\pi\)
0.478330 0.878180i \(-0.341242\pi\)
\(824\) −1.86514e6 −0.0956961
\(825\) 0 0
\(826\) 15819.5 0.000806759 0
\(827\) − 1.68225e7i − 0.855317i −0.903940 0.427658i \(-0.859339\pi\)
0.903940 0.427658i \(-0.140661\pi\)
\(828\) 5.92559e6i 0.300370i
\(829\) 2.49836e7 1.26261 0.631305 0.775534i \(-0.282520\pi\)
0.631305 + 0.775534i \(0.282520\pi\)
\(830\) 0 0
\(831\) 2.17729e7 1.09374
\(832\) − 5.37513e6i − 0.269204i
\(833\) − 638871.i − 0.0319007i
\(834\) −651529. −0.0324354
\(835\) 0 0
\(836\) −1.26092e7 −0.623979
\(837\) − 3.19693e7i − 1.57732i
\(838\) − 1.55500e6i − 0.0764925i
\(839\) −3.58243e7 −1.75700 −0.878501 0.477740i \(-0.841456\pi\)
−0.878501 + 0.477740i \(0.841456\pi\)
\(840\) 0 0
\(841\) 2.44514e7 1.19211
\(842\) − 705214.i − 0.0342800i
\(843\) 7.53433e6i 0.365153i
\(844\) 1.24008e7 0.599231
\(845\) 0 0
\(846\) −571293. −0.0274431
\(847\) 388028.i 0.0185846i
\(848\) 2.66274e6i 0.127157i
\(849\) −7.99778e6 −0.380803
\(850\) 0 0
\(851\) −2.88144e6 −0.136391
\(852\) 4.77056e6i 0.225149i
\(853\) − 1.13433e7i − 0.533786i −0.963726 0.266893i \(-0.914003\pi\)
0.963726 0.266893i \(-0.0859970\pi\)
\(854\) 139747. 0.00655687
\(855\) 0 0
\(856\) −3.57220e6 −0.166629
\(857\) 2.46384e7i 1.14594i 0.819578 + 0.572968i \(0.194208\pi\)
−0.819578 + 0.572968i \(0.805792\pi\)
\(858\) 258857.i 0.0120044i
\(859\) −1.82989e6 −0.0846140 −0.0423070 0.999105i \(-0.513471\pi\)
−0.0423070 + 0.999105i \(0.513471\pi\)
\(860\) 0 0
\(861\) 932302. 0.0428597
\(862\) 1.76753e6i 0.0810213i
\(863\) − 2.26407e6i − 0.103482i −0.998661 0.0517408i \(-0.983523\pi\)
0.998661 0.0517408i \(-0.0164770\pi\)
\(864\) −4.92379e6 −0.224396
\(865\) 0 0
\(866\) 496835. 0.0225122
\(867\) − 1.63079e7i − 0.736800i
\(868\) − 2.01375e6i − 0.0907207i
\(869\) 1.67312e7 0.751585
\(870\) 0 0
\(871\) 1.54988e6 0.0692234
\(872\) − 84312.7i − 0.00375493i
\(873\) − 1.94514e7i − 0.863803i
\(874\) −785171. −0.0347685
\(875\) 0 0
\(876\) −1.52765e7 −0.672609
\(877\) 1.77367e7i 0.778708i 0.921088 + 0.389354i \(0.127302\pi\)
−0.921088 + 0.389354i \(0.872698\pi\)
\(878\) 1.48908e6i 0.0651899i
\(879\) 2.81371e7 1.22831
\(880\) 0 0
\(881\) −3.79053e7 −1.64536 −0.822679 0.568506i \(-0.807522\pi\)
−0.822679 + 0.568506i \(0.807522\pi\)
\(882\) − 735794.i − 0.0318482i
\(883\) − 3.29131e7i − 1.42058i −0.703908 0.710291i \(-0.748563\pi\)
0.703908 0.710291i \(-0.251437\pi\)
\(884\) −205351. −0.00883824
\(885\) 0 0
\(886\) 917192. 0.0392533
\(887\) 9.54706e6i 0.407437i 0.979029 + 0.203719i \(0.0653027\pi\)
−0.979029 + 0.203719i \(0.934697\pi\)
\(888\) − 499505.i − 0.0212573i
\(889\) 737838. 0.0313117
\(890\) 0 0
\(891\) −6.66531e6 −0.281272
\(892\) − 9.95444e6i − 0.418894i
\(893\) 1.53242e7i 0.643058i
\(894\) −798681. −0.0334218
\(895\) 0 0
\(896\) −413188. −0.0171940
\(897\) − 3.26306e6i − 0.135408i
\(898\) − 3.09424e6i − 0.128045i
\(899\) 5.26975e7 2.17466
\(900\) 0 0
\(901\) 100710. 0.00413293
\(902\) 1.34246e6i 0.0549396i
\(903\) − 1.00126e6i − 0.0408627i
\(904\) 2.03145e6 0.0826773
\(905\) 0 0
\(906\) 16364.6 0.000662344 0
\(907\) − 2.11768e7i − 0.854758i −0.904073 0.427379i \(-0.859437\pi\)
0.904073 0.427379i \(-0.140563\pi\)
\(908\) 2.75025e7i 1.10702i
\(909\) −2.27720e6 −0.0914095
\(910\) 0 0
\(911\) −4.30962e7 −1.72045 −0.860227 0.509912i \(-0.829678\pi\)
−0.860227 + 0.509912i \(0.829678\pi\)
\(912\) 1.36748e7i 0.544418i
\(913\) − 2.89537e7i − 1.14955i
\(914\) 1.93913e6 0.0767787
\(915\) 0 0
\(916\) 8.13048e6 0.320168
\(917\) 1.21437e6i 0.0476900i
\(918\) 61564.4i 0.00241114i
\(919\) −1.40263e6 −0.0547841 −0.0273920 0.999625i \(-0.508720\pi\)
−0.0273920 + 0.999625i \(0.508720\pi\)
\(920\) 0 0
\(921\) 1.63032e7 0.633320
\(922\) 1.62119e6i 0.0628067i
\(923\) 2.20216e6i 0.0850832i
\(924\) −989583. −0.0381305
\(925\) 0 0
\(926\) −1.24189e6 −0.0475945
\(927\) − 8.16247e6i − 0.311977i
\(928\) − 8.11626e6i − 0.309375i
\(929\) −1.27299e7 −0.483934 −0.241967 0.970285i \(-0.577793\pi\)
−0.241967 + 0.970285i \(0.577793\pi\)
\(930\) 0 0
\(931\) −1.97368e7 −0.746281
\(932\) 1.80312e7i 0.679962i
\(933\) 1.68863e6i 0.0635081i
\(934\) 2.29269e6 0.0859960
\(935\) 0 0
\(936\) −474177. −0.0176909
\(937\) − 4.02938e7i − 1.49930i −0.661833 0.749651i \(-0.730221\pi\)
0.661833 0.749651i \(-0.269779\pi\)
\(938\) − 29268.7i − 0.00108617i
\(939\) 3.00062e7 1.11057
\(940\) 0 0
\(941\) −2.47470e7 −0.911064 −0.455532 0.890219i \(-0.650551\pi\)
−0.455532 + 0.890219i \(0.650551\pi\)
\(942\) 1.05974e6i 0.0389110i
\(943\) − 1.69226e7i − 0.619710i
\(944\) −5.00104e6 −0.182655
\(945\) 0 0
\(946\) 1.44176e6 0.0523798
\(947\) 3.28379e7i 1.18987i 0.803772 + 0.594937i \(0.202823\pi\)
−0.803772 + 0.594937i \(0.797177\pi\)
\(948\) − 1.82357e7i − 0.659025i
\(949\) −7.05182e6 −0.254177
\(950\) 0 0
\(951\) 3.28248e7 1.17693
\(952\) 7775.05i 0 0.000278042i
\(953\) − 2.12237e7i − 0.756989i −0.925604 0.378494i \(-0.876442\pi\)
0.925604 0.378494i \(-0.123558\pi\)
\(954\) 115988. 0.00412613
\(955\) 0 0
\(956\) −5.42371e7 −1.91934
\(957\) − 2.58963e7i − 0.914023i
\(958\) − 2.37185e6i − 0.0834975i
\(959\) −164531. −0.00577697
\(960\) 0 0
\(961\) 3.31340e7 1.15735
\(962\) − 115005.i − 0.00400663i
\(963\) − 1.56331e7i − 0.543224i
\(964\) 6.02526e6 0.208825
\(965\) 0 0
\(966\) −61621.3 −0.00212465
\(967\) − 5.66776e7i − 1.94915i −0.224060 0.974575i \(-0.571931\pi\)
0.224060 0.974575i \(-0.428069\pi\)
\(968\) 1.22097e6i 0.0418809i
\(969\) 517202. 0.0176950
\(970\) 0 0
\(971\) −3.20888e7 −1.09221 −0.546104 0.837718i \(-0.683889\pi\)
−0.546104 + 0.837718i \(0.683889\pi\)
\(972\) − 2.42118e7i − 0.821979i
\(973\) − 1.14976e6i − 0.0389335i
\(974\) −3.42210e6 −0.115583
\(975\) 0 0
\(976\) −4.41781e7 −1.48451
\(977\) 5.01796e7i 1.68186i 0.541142 + 0.840931i \(0.317992\pi\)
−0.541142 + 0.840931i \(0.682008\pi\)
\(978\) − 660352.i − 0.0220764i
\(979\) 2.26020e7 0.753684
\(980\) 0 0
\(981\) 368979. 0.0122414
\(982\) 1.85349e6i 0.0613355i
\(983\) 1.44682e7i 0.477563i 0.971073 + 0.238781i \(0.0767479\pi\)
−0.971073 + 0.238781i \(0.923252\pi\)
\(984\) 2.93358e6 0.0965852
\(985\) 0 0
\(986\) −101481. −0.00332425
\(987\) 1.20267e6i 0.0392964i
\(988\) 6.34394e6i 0.206760i
\(989\) −1.81743e7 −0.590836
\(990\) 0 0
\(991\) 2.92271e7 0.945369 0.472685 0.881232i \(-0.343285\pi\)
0.472685 + 0.881232i \(0.343285\pi\)
\(992\) − 9.51250e6i − 0.306913i
\(993\) 2.59080e7i 0.833799i
\(994\) 41586.6 0.00133502
\(995\) 0 0
\(996\) −3.15573e7 −1.00798
\(997\) 3.35666e7i 1.06947i 0.845019 + 0.534736i \(0.179589\pi\)
−0.845019 + 0.534736i \(0.820411\pi\)
\(998\) 4.04595e6i 0.128586i
\(999\) 6.97972e6 0.221271
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.h.274.9 18
5.2 odd 4 325.6.a.i.1.5 yes 9
5.3 odd 4 325.6.a.h.1.5 9
5.4 even 2 inner 325.6.b.h.274.10 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.5 9 5.3 odd 4
325.6.a.i.1.5 yes 9 5.2 odd 4
325.6.b.h.274.9 18 1.1 even 1 trivial
325.6.b.h.274.10 18 5.4 even 2 inner