Properties

Label 325.6.b.h.274.8
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 378 x^{16} + 59175 x^{14} + 4956036 x^{12} + 239061247 x^{10} + 6629044458 x^{8} + \cdots + 134659641600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.8
Root \(-0.838151i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.h.274.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.83815i q^{2} +11.9262i q^{3} +28.6212 q^{4} +21.9221 q^{6} -112.158i q^{7} -111.431i q^{8} +100.766 q^{9} +O(q^{10})\) \(q-1.83815i q^{2} +11.9262i q^{3} +28.6212 q^{4} +21.9221 q^{6} -112.158i q^{7} -111.431i q^{8} +100.766 q^{9} +162.916 q^{11} +341.342i q^{12} -169.000i q^{13} -206.164 q^{14} +711.052 q^{16} -379.413i q^{17} -185.224i q^{18} +284.116 q^{19} +1337.62 q^{21} -299.464i q^{22} -4188.02i q^{23} +1328.94 q^{24} -310.647 q^{26} +4099.82i q^{27} -3210.10i q^{28} -6279.50 q^{29} -7559.74 q^{31} -4872.81i q^{32} +1942.96i q^{33} -697.419 q^{34} +2884.05 q^{36} -7060.39i q^{37} -522.249i q^{38} +2015.52 q^{39} +4166.01 q^{41} -2458.75i q^{42} -21505.5i q^{43} +4662.85 q^{44} -7698.22 q^{46} +22686.6i q^{47} +8480.13i q^{48} +4227.52 q^{49} +4524.95 q^{51} -4836.98i q^{52} -4774.01i q^{53} +7536.08 q^{54} -12497.9 q^{56} +3388.42i q^{57} +11542.7i q^{58} +48311.4 q^{59} +3650.37 q^{61} +13895.9i q^{62} -11301.8i q^{63} +13796.7 q^{64} +3571.46 q^{66} -15803.8i q^{67} -10859.3i q^{68} +49947.1 q^{69} -37247.8 q^{71} -11228.5i q^{72} +29323.4i q^{73} -12978.1 q^{74} +8131.75 q^{76} -18272.4i q^{77} -3704.84i q^{78} +44954.4 q^{79} -24409.0 q^{81} -7657.75i q^{82} -23704.5i q^{83} +38284.3 q^{84} -39530.3 q^{86} -74890.4i q^{87} -18153.9i q^{88} -561.767 q^{89} -18954.7 q^{91} -119866. i q^{92} -90158.8i q^{93} +41701.3 q^{94} +58114.0 q^{96} -31260.4i q^{97} -7770.82i q^{98} +16416.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9} - 2844 q^{11} + 684 q^{14} - 2122 q^{16} + 816 q^{19} - 7824 q^{21} + 16938 q^{24} - 1690 q^{26} + 17474 q^{29} + 1496 q^{31} + 35578 q^{34} + 1024 q^{36} + 3718 q^{39} - 57352 q^{41} + 61198 q^{44} - 24112 q^{46} + 81814 q^{49} - 62012 q^{51} + 205522 q^{54} - 46004 q^{56} + 176284 q^{59} + 56330 q^{61} + 201690 q^{64} + 85154 q^{66} + 363494 q^{69} - 141124 q^{71} + 271352 q^{74} + 92746 q^{76} + 328146 q^{79} - 139870 q^{81} + 691312 q^{84} - 589840 q^{86} + 505396 q^{89} + 4056 q^{91} + 1003212 q^{94} - 638362 q^{96} + 1515552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.83815i − 0.324942i −0.986713 0.162471i \(-0.948054\pi\)
0.986713 0.162471i \(-0.0519464\pi\)
\(3\) 11.9262i 0.765065i 0.923942 + 0.382532i \(0.124948\pi\)
−0.923942 + 0.382532i \(0.875052\pi\)
\(4\) 28.6212 0.894413
\(5\) 0 0
\(6\) 21.9221 0.248602
\(7\) − 112.158i − 0.865140i −0.901600 0.432570i \(-0.857607\pi\)
0.901600 0.432570i \(-0.142393\pi\)
\(8\) − 111.431i − 0.615575i
\(9\) 100.766 0.414676
\(10\) 0 0
\(11\) 162.916 0.405958 0.202979 0.979183i \(-0.434938\pi\)
0.202979 + 0.979183i \(0.434938\pi\)
\(12\) 341.342i 0.684284i
\(13\) − 169.000i − 0.277350i
\(14\) −206.164 −0.281120
\(15\) 0 0
\(16\) 711.052 0.694386
\(17\) − 379.413i − 0.318413i −0.987245 0.159206i \(-0.949107\pi\)
0.987245 0.159206i \(-0.0508935\pi\)
\(18\) − 185.224i − 0.134746i
\(19\) 284.116 0.180556 0.0902781 0.995917i \(-0.471224\pi\)
0.0902781 + 0.995917i \(0.471224\pi\)
\(20\) 0 0
\(21\) 1337.62 0.661888
\(22\) − 299.464i − 0.131913i
\(23\) − 4188.02i − 1.65078i −0.564562 0.825391i \(-0.690955\pi\)
0.564562 0.825391i \(-0.309045\pi\)
\(24\) 1328.94 0.470954
\(25\) 0 0
\(26\) −310.647 −0.0901227
\(27\) 4099.82i 1.08232i
\(28\) − 3210.10i − 0.773792i
\(29\) −6279.50 −1.38653 −0.693266 0.720682i \(-0.743829\pi\)
−0.693266 + 0.720682i \(0.743829\pi\)
\(30\) 0 0
\(31\) −7559.74 −1.41287 −0.706436 0.707777i \(-0.749698\pi\)
−0.706436 + 0.707777i \(0.749698\pi\)
\(32\) − 4872.81i − 0.841210i
\(33\) 1942.96i 0.310584i
\(34\) −697.419 −0.103466
\(35\) 0 0
\(36\) 2884.05 0.370891
\(37\) − 7060.39i − 0.847860i −0.905695 0.423930i \(-0.860650\pi\)
0.905695 0.423930i \(-0.139350\pi\)
\(38\) − 522.249i − 0.0586703i
\(39\) 2015.52 0.212191
\(40\) 0 0
\(41\) 4166.01 0.387044 0.193522 0.981096i \(-0.438009\pi\)
0.193522 + 0.981096i \(0.438009\pi\)
\(42\) − 2458.75i − 0.215075i
\(43\) − 21505.5i − 1.77369i −0.462067 0.886845i \(-0.652892\pi\)
0.462067 0.886845i \(-0.347108\pi\)
\(44\) 4662.85 0.363094
\(45\) 0 0
\(46\) −7698.22 −0.536409
\(47\) 22686.6i 1.49804i 0.662546 + 0.749021i \(0.269476\pi\)
−0.662546 + 0.749021i \(0.730524\pi\)
\(48\) 8480.13i 0.531251i
\(49\) 4227.52 0.251533
\(50\) 0 0
\(51\) 4524.95 0.243606
\(52\) − 4836.98i − 0.248065i
\(53\) − 4774.01i − 0.233450i −0.993164 0.116725i \(-0.962760\pi\)
0.993164 0.116725i \(-0.0372396\pi\)
\(54\) 7536.08 0.351691
\(55\) 0 0
\(56\) −12497.9 −0.532558
\(57\) 3388.42i 0.138137i
\(58\) 11542.7i 0.450543i
\(59\) 48311.4 1.80684 0.903420 0.428756i \(-0.141048\pi\)
0.903420 + 0.428756i \(0.141048\pi\)
\(60\) 0 0
\(61\) 3650.37 0.125606 0.0628032 0.998026i \(-0.479996\pi\)
0.0628032 + 0.998026i \(0.479996\pi\)
\(62\) 13895.9i 0.459102i
\(63\) − 11301.8i − 0.358753i
\(64\) 13796.7 0.421042
\(65\) 0 0
\(66\) 3571.46 0.100922
\(67\) − 15803.8i − 0.430106i −0.976602 0.215053i \(-0.931008\pi\)
0.976602 0.215053i \(-0.0689924\pi\)
\(68\) − 10859.3i − 0.284792i
\(69\) 49947.1 1.26295
\(70\) 0 0
\(71\) −37247.8 −0.876909 −0.438455 0.898753i \(-0.644474\pi\)
−0.438455 + 0.898753i \(0.644474\pi\)
\(72\) − 11228.5i − 0.255264i
\(73\) 29323.4i 0.644033i 0.946734 + 0.322016i \(0.104361\pi\)
−0.946734 + 0.322016i \(0.895639\pi\)
\(74\) −12978.1 −0.275506
\(75\) 0 0
\(76\) 8131.75 0.161492
\(77\) − 18272.4i − 0.351211i
\(78\) − 3704.84i − 0.0689497i
\(79\) 44954.4 0.810409 0.405204 0.914226i \(-0.367200\pi\)
0.405204 + 0.914226i \(0.367200\pi\)
\(80\) 0 0
\(81\) −24409.0 −0.413368
\(82\) − 7657.75i − 0.125767i
\(83\) − 23704.5i − 0.377690i −0.982007 0.188845i \(-0.939526\pi\)
0.982007 0.188845i \(-0.0604743\pi\)
\(84\) 38284.3 0.592001
\(85\) 0 0
\(86\) −39530.3 −0.576347
\(87\) − 74890.4i − 1.06079i
\(88\) − 18153.9i − 0.249898i
\(89\) −561.767 −0.00751763 −0.00375882 0.999993i \(-0.501196\pi\)
−0.00375882 + 0.999993i \(0.501196\pi\)
\(90\) 0 0
\(91\) −18954.7 −0.239947
\(92\) − 119866.i − 1.47648i
\(93\) − 90158.8i − 1.08094i
\(94\) 41701.3 0.486777
\(95\) 0 0
\(96\) 58114.0 0.643580
\(97\) − 31260.4i − 0.337338i −0.985673 0.168669i \(-0.946053\pi\)
0.985673 0.168669i \(-0.0539470\pi\)
\(98\) − 7770.82i − 0.0817338i
\(99\) 16416.4 0.168341
\(100\) 0 0
\(101\) 104822. 1.02246 0.511231 0.859443i \(-0.329190\pi\)
0.511231 + 0.859443i \(0.329190\pi\)
\(102\) − 8317.54i − 0.0791579i
\(103\) − 17867.6i − 0.165948i −0.996552 0.0829742i \(-0.973558\pi\)
0.996552 0.0829742i \(-0.0264419\pi\)
\(104\) −18831.8 −0.170730
\(105\) 0 0
\(106\) −8775.35 −0.0758577
\(107\) − 13003.9i − 0.109803i −0.998492 0.0549015i \(-0.982516\pi\)
0.998492 0.0549015i \(-0.0174845\pi\)
\(108\) 117342.i 0.968039i
\(109\) 205680. 1.65816 0.829080 0.559130i \(-0.188865\pi\)
0.829080 + 0.559130i \(0.188865\pi\)
\(110\) 0 0
\(111\) 84203.5 0.648668
\(112\) − 79750.3i − 0.600741i
\(113\) − 119392.i − 0.879585i −0.898100 0.439792i \(-0.855052\pi\)
0.898100 0.439792i \(-0.144948\pi\)
\(114\) 6228.43 0.0448866
\(115\) 0 0
\(116\) −179727. −1.24013
\(117\) − 17029.5i − 0.115010i
\(118\) − 88803.7i − 0.587119i
\(119\) −42554.3 −0.275471
\(120\) 0 0
\(121\) −134509. −0.835198
\(122\) − 6709.92i − 0.0408148i
\(123\) 49684.5i 0.296114i
\(124\) −216369. −1.26369
\(125\) 0 0
\(126\) −20774.4 −0.116574
\(127\) − 213727.i − 1.17584i −0.808918 0.587922i \(-0.799946\pi\)
0.808918 0.587922i \(-0.200054\pi\)
\(128\) − 181290.i − 0.978024i
\(129\) 256478. 1.35699
\(130\) 0 0
\(131\) 176742. 0.899833 0.449916 0.893071i \(-0.351454\pi\)
0.449916 + 0.893071i \(0.351454\pi\)
\(132\) 55609.9i 0.277791i
\(133\) − 31866.0i − 0.156206i
\(134\) −29049.8 −0.139759
\(135\) 0 0
\(136\) −42278.4 −0.196007
\(137\) 133457.i 0.607493i 0.952753 + 0.303746i \(0.0982375\pi\)
−0.952753 + 0.303746i \(0.901762\pi\)
\(138\) − 91810.3i − 0.410387i
\(139\) 179302. 0.787132 0.393566 0.919296i \(-0.371241\pi\)
0.393566 + 0.919296i \(0.371241\pi\)
\(140\) 0 0
\(141\) −270564. −1.14610
\(142\) 68467.0i 0.284945i
\(143\) − 27532.8i − 0.112593i
\(144\) 71650.0 0.287945
\(145\) 0 0
\(146\) 53900.9 0.209273
\(147\) 50418.2i 0.192439i
\(148\) − 202077.i − 0.758337i
\(149\) −69993.7 −0.258281 −0.129141 0.991626i \(-0.541222\pi\)
−0.129141 + 0.991626i \(0.541222\pi\)
\(150\) 0 0
\(151\) −360861. −1.28795 −0.643973 0.765048i \(-0.722715\pi\)
−0.643973 + 0.765048i \(0.722715\pi\)
\(152\) − 31659.3i − 0.111146i
\(153\) − 38232.0i − 0.132038i
\(154\) −33587.3 −0.114123
\(155\) 0 0
\(156\) 57686.7 0.189786
\(157\) − 74024.2i − 0.239676i −0.992793 0.119838i \(-0.961762\pi\)
0.992793 0.119838i \(-0.0382375\pi\)
\(158\) − 82632.9i − 0.263336i
\(159\) 56935.7 0.178604
\(160\) 0 0
\(161\) −469722. −1.42816
\(162\) 44867.3i 0.134321i
\(163\) 395684.i 1.16649i 0.812298 + 0.583243i \(0.198217\pi\)
−0.812298 + 0.583243i \(0.801783\pi\)
\(164\) 119236. 0.346177
\(165\) 0 0
\(166\) −43572.4 −0.122727
\(167\) 243331.i 0.675160i 0.941297 + 0.337580i \(0.109608\pi\)
−0.941297 + 0.337580i \(0.890392\pi\)
\(168\) − 149052.i − 0.407441i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 28629.3 0.0748723
\(172\) − 615512.i − 1.58641i
\(173\) 12828.9i 0.0325892i 0.999867 + 0.0162946i \(0.00518697\pi\)
−0.999867 + 0.0162946i \(0.994813\pi\)
\(174\) −137660. −0.344694
\(175\) 0 0
\(176\) 115842. 0.281892
\(177\) 576171.i 1.38235i
\(178\) 1032.61i 0.00244280i
\(179\) −643719. −1.50163 −0.750817 0.660510i \(-0.770340\pi\)
−0.750817 + 0.660510i \(0.770340\pi\)
\(180\) 0 0
\(181\) 598308. 1.35746 0.678732 0.734386i \(-0.262530\pi\)
0.678732 + 0.734386i \(0.262530\pi\)
\(182\) 34841.7i 0.0779688i
\(183\) 43534.9i 0.0960970i
\(184\) −466675. −1.01618
\(185\) 0 0
\(186\) −165726. −0.351242
\(187\) − 61812.4i − 0.129262i
\(188\) 649317.i 1.33987i
\(189\) 459829. 0.936357
\(190\) 0 0
\(191\) 364186. 0.722337 0.361169 0.932501i \(-0.382378\pi\)
0.361169 + 0.932501i \(0.382378\pi\)
\(192\) 164542.i 0.322124i
\(193\) 533579.i 1.03111i 0.856856 + 0.515555i \(0.172414\pi\)
−0.856856 + 0.515555i \(0.827586\pi\)
\(194\) −57461.4 −0.109615
\(195\) 0 0
\(196\) 120997. 0.224975
\(197\) 295693.i 0.542845i 0.962460 + 0.271422i \(0.0874940\pi\)
−0.962460 + 0.271422i \(0.912506\pi\)
\(198\) − 30175.8i − 0.0547012i
\(199\) 581653. 1.04119 0.520597 0.853803i \(-0.325710\pi\)
0.520597 + 0.853803i \(0.325710\pi\)
\(200\) 0 0
\(201\) 188479. 0.329059
\(202\) − 192678.i − 0.332241i
\(203\) 704297.i 1.19954i
\(204\) 129509. 0.217884
\(205\) 0 0
\(206\) −32843.3 −0.0539236
\(207\) − 422012.i − 0.684539i
\(208\) − 120168.i − 0.192588i
\(209\) 46287.1 0.0732983
\(210\) 0 0
\(211\) 452629. 0.699900 0.349950 0.936768i \(-0.386198\pi\)
0.349950 + 0.936768i \(0.386198\pi\)
\(212\) − 136638.i − 0.208801i
\(213\) − 444224.i − 0.670892i
\(214\) −23903.1 −0.0356796
\(215\) 0 0
\(216\) 456846. 0.666248
\(217\) 847888.i 1.22233i
\(218\) − 378071.i − 0.538806i
\(219\) −349717. −0.492727
\(220\) 0 0
\(221\) −64120.8 −0.0883117
\(222\) − 154779.i − 0.210780i
\(223\) − 430237.i − 0.579356i −0.957124 0.289678i \(-0.906452\pi\)
0.957124 0.289678i \(-0.0935482\pi\)
\(224\) −546526. −0.727764
\(225\) 0 0
\(226\) −219460. −0.285814
\(227\) 694207.i 0.894178i 0.894489 + 0.447089i \(0.147539\pi\)
−0.894489 + 0.447089i \(0.852461\pi\)
\(228\) 96980.7i 0.123552i
\(229\) −1.29181e6 −1.62784 −0.813920 0.580977i \(-0.802670\pi\)
−0.813920 + 0.580977i \(0.802670\pi\)
\(230\) 0 0
\(231\) 217919. 0.268699
\(232\) 699730.i 0.853514i
\(233\) 604845.i 0.729885i 0.931030 + 0.364942i \(0.118911\pi\)
−0.931030 + 0.364942i \(0.881089\pi\)
\(234\) −31302.8 −0.0373717
\(235\) 0 0
\(236\) 1.38273e6 1.61606
\(237\) 536134.i 0.620015i
\(238\) 78221.3i 0.0895122i
\(239\) 182757. 0.206957 0.103478 0.994632i \(-0.467003\pi\)
0.103478 + 0.994632i \(0.467003\pi\)
\(240\) 0 0
\(241\) 1.34821e6 1.49525 0.747627 0.664118i \(-0.231193\pi\)
0.747627 + 0.664118i \(0.231193\pi\)
\(242\) 247249.i 0.271391i
\(243\) 705150.i 0.766065i
\(244\) 104478. 0.112344
\(245\) 0 0
\(246\) 91327.6 0.0962198
\(247\) − 48015.7i − 0.0500773i
\(248\) 842389.i 0.869728i
\(249\) 282704. 0.288957
\(250\) 0 0
\(251\) −597169. −0.598291 −0.299146 0.954207i \(-0.596702\pi\)
−0.299146 + 0.954207i \(0.596702\pi\)
\(252\) − 323470.i − 0.320873i
\(253\) − 682295.i − 0.670149i
\(254\) −392862. −0.382081
\(255\) 0 0
\(256\) 108255. 0.103240
\(257\) − 230980.i − 0.218144i −0.994034 0.109072i \(-0.965212\pi\)
0.994034 0.109072i \(-0.0347878\pi\)
\(258\) − 471445.i − 0.440943i
\(259\) −791881. −0.733518
\(260\) 0 0
\(261\) −632761. −0.574961
\(262\) − 324879.i − 0.292394i
\(263\) 1.89928e6i 1.69317i 0.532254 + 0.846585i \(0.321345\pi\)
−0.532254 + 0.846585i \(0.678655\pi\)
\(264\) 216506. 0.191188
\(265\) 0 0
\(266\) −58574.5 −0.0507580
\(267\) − 6699.73i − 0.00575148i
\(268\) − 452324.i − 0.384692i
\(269\) −2.30772e6 −1.94448 −0.972239 0.233991i \(-0.924821\pi\)
−0.972239 + 0.233991i \(0.924821\pi\)
\(270\) 0 0
\(271\) −2.18852e6 −1.81020 −0.905101 0.425197i \(-0.860205\pi\)
−0.905101 + 0.425197i \(0.860205\pi\)
\(272\) − 269782.i − 0.221101i
\(273\) − 226058.i − 0.183575i
\(274\) 245315. 0.197400
\(275\) 0 0
\(276\) 1.42955e6 1.12960
\(277\) − 24533.4i − 0.0192114i −0.999954 0.00960569i \(-0.996942\pi\)
0.999954 0.00960569i \(-0.00305763\pi\)
\(278\) − 329583.i − 0.255772i
\(279\) −761767. −0.585884
\(280\) 0 0
\(281\) −237327. −0.179300 −0.0896501 0.995973i \(-0.528575\pi\)
−0.0896501 + 0.995973i \(0.528575\pi\)
\(282\) 497338.i 0.372416i
\(283\) − 1.21567e6i − 0.902297i −0.892449 0.451148i \(-0.851015\pi\)
0.892449 0.451148i \(-0.148985\pi\)
\(284\) −1.06608e6 −0.784318
\(285\) 0 0
\(286\) −50609.4 −0.0365861
\(287\) − 467252.i − 0.334847i
\(288\) − 491015.i − 0.348830i
\(289\) 1.27590e6 0.898613
\(290\) 0 0
\(291\) 372818. 0.258086
\(292\) 839272.i 0.576031i
\(293\) 2.18776e6i 1.48878i 0.667744 + 0.744391i \(0.267260\pi\)
−0.667744 + 0.744391i \(0.732740\pi\)
\(294\) 92676.2 0.0625316
\(295\) 0 0
\(296\) −786746. −0.521921
\(297\) 667925.i 0.439376i
\(298\) 128659.i 0.0839265i
\(299\) −707776. −0.457844
\(300\) 0 0
\(301\) −2.41202e6 −1.53449
\(302\) 663317.i 0.418508i
\(303\) 1.25012e6i 0.782249i
\(304\) 202021. 0.125376
\(305\) 0 0
\(306\) −70276.3 −0.0429047
\(307\) − 460260.i − 0.278713i −0.990242 0.139357i \(-0.955497\pi\)
0.990242 0.139357i \(-0.0445034\pi\)
\(308\) − 522977.i − 0.314127i
\(309\) 213092. 0.126961
\(310\) 0 0
\(311\) −1.54256e6 −0.904362 −0.452181 0.891926i \(-0.649354\pi\)
−0.452181 + 0.891926i \(0.649354\pi\)
\(312\) − 224592.i − 0.130619i
\(313\) 1.20176e6i 0.693357i 0.937984 + 0.346679i \(0.112691\pi\)
−0.937984 + 0.346679i \(0.887309\pi\)
\(314\) −136068. −0.0778808
\(315\) 0 0
\(316\) 1.28665e6 0.724840
\(317\) − 512204.i − 0.286282i −0.989702 0.143141i \(-0.954280\pi\)
0.989702 0.143141i \(-0.0457203\pi\)
\(318\) − 104656.i − 0.0580361i
\(319\) −1.02303e6 −0.562874
\(320\) 0 0
\(321\) 155087. 0.0840064
\(322\) 863419.i 0.464068i
\(323\) − 107797.i − 0.0574913i
\(324\) −698614. −0.369721
\(325\) 0 0
\(326\) 727327. 0.379041
\(327\) 2.45298e6i 1.26860i
\(328\) − 464222.i − 0.238254i
\(329\) 2.54449e6 1.29602
\(330\) 0 0
\(331\) −135150. −0.0678026 −0.0339013 0.999425i \(-0.510793\pi\)
−0.0339013 + 0.999425i \(0.510793\pi\)
\(332\) − 678451.i − 0.337811i
\(333\) − 711449.i − 0.351587i
\(334\) 447279. 0.219388
\(335\) 0 0
\(336\) 951117. 0.459606
\(337\) 1.40146e6i 0.672214i 0.941824 + 0.336107i \(0.109110\pi\)
−0.941824 + 0.336107i \(0.890890\pi\)
\(338\) 52499.4i 0.0249956i
\(339\) 1.42389e6 0.672939
\(340\) 0 0
\(341\) −1.23160e6 −0.573567
\(342\) − 52625.0i − 0.0243292i
\(343\) − 2.35920e6i − 1.08275i
\(344\) −2.39637e6 −1.09184
\(345\) 0 0
\(346\) 23581.4 0.0105896
\(347\) 59106.2i 0.0263517i 0.999913 + 0.0131759i \(0.00419413\pi\)
−0.999913 + 0.0131759i \(0.995806\pi\)
\(348\) − 2.14345e6i − 0.948781i
\(349\) −2.58914e6 −1.13787 −0.568934 0.822383i \(-0.692644\pi\)
−0.568934 + 0.822383i \(0.692644\pi\)
\(350\) 0 0
\(351\) 692869. 0.300181
\(352\) − 793858.i − 0.341496i
\(353\) 1.08860e6i 0.464978i 0.972599 + 0.232489i \(0.0746870\pi\)
−0.972599 + 0.232489i \(0.925313\pi\)
\(354\) 1.05909e6 0.449184
\(355\) 0 0
\(356\) −16078.4 −0.00672387
\(357\) − 507511.i − 0.210753i
\(358\) 1.18325e6i 0.487944i
\(359\) 3.81776e6 1.56341 0.781705 0.623648i \(-0.214350\pi\)
0.781705 + 0.623648i \(0.214350\pi\)
\(360\) 0 0
\(361\) −2.39538e6 −0.967399
\(362\) − 1.09978e6i − 0.441097i
\(363\) − 1.60418e6i − 0.638980i
\(364\) −542508. −0.214611
\(365\) 0 0
\(366\) 80023.7 0.0312260
\(367\) − 4.74165e6i − 1.83766i −0.394658 0.918828i \(-0.629137\pi\)
0.394658 0.918828i \(-0.370863\pi\)
\(368\) − 2.97790e6i − 1.14628i
\(369\) 419793. 0.160498
\(370\) 0 0
\(371\) −535445. −0.201967
\(372\) − 2.58045e6i − 0.966805i
\(373\) 705178.i 0.262438i 0.991353 + 0.131219i \(0.0418891\pi\)
−0.991353 + 0.131219i \(0.958111\pi\)
\(374\) −113621. −0.0420028
\(375\) 0 0
\(376\) 2.52798e6 0.922157
\(377\) 1.06123e6i 0.384555i
\(378\) − 845234.i − 0.304262i
\(379\) −615406. −0.220071 −0.110036 0.993928i \(-0.535097\pi\)
−0.110036 + 0.993928i \(0.535097\pi\)
\(380\) 0 0
\(381\) 2.54894e6 0.899597
\(382\) − 669429.i − 0.234718i
\(383\) 3.77847e6i 1.31619i 0.752934 + 0.658096i \(0.228638\pi\)
−0.752934 + 0.658096i \(0.771362\pi\)
\(384\) 2.16210e6 0.748252
\(385\) 0 0
\(386\) 980798. 0.335051
\(387\) − 2.16703e6i − 0.735507i
\(388\) − 894712.i − 0.301720i
\(389\) 1.92639e6 0.645461 0.322730 0.946491i \(-0.395399\pi\)
0.322730 + 0.946491i \(0.395399\pi\)
\(390\) 0 0
\(391\) −1.58899e6 −0.525630
\(392\) − 471076.i − 0.154838i
\(393\) 2.10786e6i 0.688430i
\(394\) 543528. 0.176393
\(395\) 0 0
\(396\) 469858. 0.150566
\(397\) − 3.30989e6i − 1.05399i −0.849868 0.526996i \(-0.823318\pi\)
0.849868 0.526996i \(-0.176682\pi\)
\(398\) − 1.06917e6i − 0.338328i
\(399\) 380040. 0.119508
\(400\) 0 0
\(401\) 2.63190e6 0.817350 0.408675 0.912680i \(-0.365991\pi\)
0.408675 + 0.912680i \(0.365991\pi\)
\(402\) − 346453.i − 0.106925i
\(403\) 1.27760e6i 0.391860i
\(404\) 3.00012e6 0.914502
\(405\) 0 0
\(406\) 1.29460e6 0.389782
\(407\) − 1.15025e6i − 0.344196i
\(408\) − 504219.i − 0.149958i
\(409\) −575874. −0.170223 −0.0851116 0.996371i \(-0.527125\pi\)
−0.0851116 + 0.996371i \(0.527125\pi\)
\(410\) 0 0
\(411\) −1.59164e6 −0.464771
\(412\) − 511392.i − 0.148426i
\(413\) − 5.41853e6i − 1.56317i
\(414\) −775721. −0.222436
\(415\) 0 0
\(416\) −823505. −0.233310
\(417\) 2.13838e6i 0.602207i
\(418\) − 85082.6i − 0.0238177i
\(419\) 5.72386e6 1.59277 0.796386 0.604788i \(-0.206742\pi\)
0.796386 + 0.604788i \(0.206742\pi\)
\(420\) 0 0
\(421\) −6.93158e6 −1.90602 −0.953009 0.302942i \(-0.902031\pi\)
−0.953009 + 0.302942i \(0.902031\pi\)
\(422\) − 832000.i − 0.227427i
\(423\) 2.28604e6i 0.621202i
\(424\) −531972. −0.143706
\(425\) 0 0
\(426\) −816550. −0.218001
\(427\) − 409419.i − 0.108667i
\(428\) − 372187.i − 0.0982092i
\(429\) 328361. 0.0861406
\(430\) 0 0
\(431\) −215036. −0.0557594 −0.0278797 0.999611i \(-0.508876\pi\)
−0.0278797 + 0.999611i \(0.508876\pi\)
\(432\) 2.91518e6i 0.751547i
\(433\) − 5.17858e6i − 1.32737i −0.748013 0.663684i \(-0.768992\pi\)
0.748013 0.663684i \(-0.231008\pi\)
\(434\) 1.55855e6 0.397187
\(435\) 0 0
\(436\) 5.88682e6 1.48308
\(437\) − 1.18989e6i − 0.298059i
\(438\) 642832.i 0.160108i
\(439\) 7.60133e6 1.88247 0.941235 0.337753i \(-0.109667\pi\)
0.941235 + 0.337753i \(0.109667\pi\)
\(440\) 0 0
\(441\) 425991. 0.104305
\(442\) 117864.i 0.0286962i
\(443\) 7.13928e6i 1.72840i 0.503146 + 0.864201i \(0.332176\pi\)
−0.503146 + 0.864201i \(0.667824\pi\)
\(444\) 2.41000e6 0.580177
\(445\) 0 0
\(446\) −790840. −0.188257
\(447\) − 834757.i − 0.197602i
\(448\) − 1.54741e6i − 0.364260i
\(449\) 848355. 0.198592 0.0992960 0.995058i \(-0.468341\pi\)
0.0992960 + 0.995058i \(0.468341\pi\)
\(450\) 0 0
\(451\) 678708. 0.157124
\(452\) − 3.41713e6i − 0.786712i
\(453\) − 4.30369e6i − 0.985362i
\(454\) 1.27606e6 0.290556
\(455\) 0 0
\(456\) 377575. 0.0850337
\(457\) 3.35404e6i 0.751238i 0.926774 + 0.375619i \(0.122570\pi\)
−0.926774 + 0.375619i \(0.877430\pi\)
\(458\) 2.37455e6i 0.528954i
\(459\) 1.55552e6 0.344624
\(460\) 0 0
\(461\) −3.57354e6 −0.783152 −0.391576 0.920146i \(-0.628070\pi\)
−0.391576 + 0.920146i \(0.628070\pi\)
\(462\) − 400569.i − 0.0873116i
\(463\) 1.44187e6i 0.312590i 0.987710 + 0.156295i \(0.0499550\pi\)
−0.987710 + 0.156295i \(0.950045\pi\)
\(464\) −4.46505e6 −0.962789
\(465\) 0 0
\(466\) 1.11180e6 0.237170
\(467\) 7.03571e6i 1.49285i 0.665471 + 0.746424i \(0.268231\pi\)
−0.665471 + 0.746424i \(0.731769\pi\)
\(468\) − 487405.i − 0.102867i
\(469\) −1.77253e6 −0.372101
\(470\) 0 0
\(471\) 882825. 0.183368
\(472\) − 5.38339e6i − 1.11225i
\(473\) − 3.50358e6i − 0.720044i
\(474\) 985494. 0.201469
\(475\) 0 0
\(476\) −1.21796e6 −0.246385
\(477\) − 481059.i − 0.0968061i
\(478\) − 335935.i − 0.0672489i
\(479\) 1.40107e6 0.279010 0.139505 0.990221i \(-0.455449\pi\)
0.139505 + 0.990221i \(0.455449\pi\)
\(480\) 0 0
\(481\) −1.19321e6 −0.235154
\(482\) − 2.47821e6i − 0.485871i
\(483\) − 5.60198e6i − 1.09263i
\(484\) −3.84982e6 −0.747011
\(485\) 0 0
\(486\) 1.29617e6 0.248927
\(487\) 8.45449e6i 1.61534i 0.589632 + 0.807672i \(0.299273\pi\)
−0.589632 + 0.807672i \(0.700727\pi\)
\(488\) − 406764.i − 0.0773201i
\(489\) −4.71900e6 −0.892438
\(490\) 0 0
\(491\) −7.81764e6 −1.46343 −0.731715 0.681611i \(-0.761280\pi\)
−0.731715 + 0.681611i \(0.761280\pi\)
\(492\) 1.42203e6i 0.264848i
\(493\) 2.38252e6i 0.441489i
\(494\) −88260.0 −0.0162722
\(495\) 0 0
\(496\) −5.37537e6 −0.981079
\(497\) 4.17765e6i 0.758649i
\(498\) − 519652.i − 0.0938944i
\(499\) 6.37828e6 1.14671 0.573353 0.819308i \(-0.305642\pi\)
0.573353 + 0.819308i \(0.305642\pi\)
\(500\) 0 0
\(501\) −2.90201e6 −0.516541
\(502\) 1.09769e6i 0.194410i
\(503\) − 2.99032e6i − 0.526985i −0.964661 0.263492i \(-0.915126\pi\)
0.964661 0.263492i \(-0.0848744\pi\)
\(504\) −1.25937e6 −0.220839
\(505\) 0 0
\(506\) −1.25416e6 −0.217760
\(507\) − 340624.i − 0.0588511i
\(508\) − 6.11712e6i − 1.05169i
\(509\) 5.75011e6 0.983743 0.491871 0.870668i \(-0.336313\pi\)
0.491871 + 0.870668i \(0.336313\pi\)
\(510\) 0 0
\(511\) 3.28887e6 0.557178
\(512\) − 6.00028e6i − 1.01157i
\(513\) 1.16483e6i 0.195419i
\(514\) −424577. −0.0708840
\(515\) 0 0
\(516\) 7.34071e6 1.21371
\(517\) 3.69600e6i 0.608143i
\(518\) 1.45560e6i 0.238351i
\(519\) −153000. −0.0249329
\(520\) 0 0
\(521\) −1.06342e7 −1.71638 −0.858188 0.513336i \(-0.828409\pi\)
−0.858188 + 0.513336i \(0.828409\pi\)
\(522\) 1.16311e6i 0.186829i
\(523\) − 5.82469e6i − 0.931148i −0.885009 0.465574i \(-0.845848\pi\)
0.885009 0.465574i \(-0.154152\pi\)
\(524\) 5.05857e6 0.804822
\(525\) 0 0
\(526\) 3.49117e6 0.550182
\(527\) 2.86827e6i 0.449876i
\(528\) 1.38155e6i 0.215666i
\(529\) −1.11032e7 −1.72508
\(530\) 0 0
\(531\) 4.86816e6 0.749253
\(532\) − 912043.i − 0.139713i
\(533\) − 704055.i − 0.107347i
\(534\) −12315.1 −0.00186890
\(535\) 0 0
\(536\) −1.76103e6 −0.264762
\(537\) − 7.67711e6i − 1.14885i
\(538\) 4.24194e6i 0.631843i
\(539\) 688730. 0.102112
\(540\) 0 0
\(541\) 249946. 0.0367158 0.0183579 0.999831i \(-0.494156\pi\)
0.0183579 + 0.999831i \(0.494156\pi\)
\(542\) 4.02283e6i 0.588211i
\(543\) 7.13552e6i 1.03855i
\(544\) −1.84881e6 −0.267852
\(545\) 0 0
\(546\) −415528. −0.0596512
\(547\) − 9.11755e6i − 1.30290i −0.758693 0.651448i \(-0.774162\pi\)
0.758693 0.651448i \(-0.225838\pi\)
\(548\) 3.81971e6i 0.543349i
\(549\) 367834. 0.0520860
\(550\) 0 0
\(551\) −1.78411e6 −0.250347
\(552\) − 5.56565e6i − 0.777443i
\(553\) − 5.04200e6i − 0.701117i
\(554\) −45096.1 −0.00624259
\(555\) 0 0
\(556\) 5.13183e6 0.704020
\(557\) 6.02542e6i 0.822905i 0.911431 + 0.411452i \(0.134978\pi\)
−0.911431 + 0.411452i \(0.865022\pi\)
\(558\) 1.40024e6i 0.190378i
\(559\) −3.63442e6 −0.491933
\(560\) 0 0
\(561\) 737186. 0.0988940
\(562\) 436242.i 0.0582622i
\(563\) − 1.08154e6i − 0.143804i −0.997412 0.0719021i \(-0.977093\pi\)
0.997412 0.0719021i \(-0.0229069\pi\)
\(564\) −7.74387e6 −1.02509
\(565\) 0 0
\(566\) −2.23458e6 −0.293194
\(567\) 2.73767e6i 0.357621i
\(568\) 4.15055e6i 0.539803i
\(569\) −745292. −0.0965041 −0.0482520 0.998835i \(-0.515365\pi\)
−0.0482520 + 0.998835i \(0.515365\pi\)
\(570\) 0 0
\(571\) 4.58349e6 0.588309 0.294155 0.955758i \(-0.404962\pi\)
0.294155 + 0.955758i \(0.404962\pi\)
\(572\) − 788021.i − 0.100704i
\(573\) 4.34335e6i 0.552635i
\(574\) −858880. −0.108806
\(575\) 0 0
\(576\) 1.39024e6 0.174596
\(577\) − 1.17307e7i − 1.46685i −0.679772 0.733424i \(-0.737921\pi\)
0.679772 0.733424i \(-0.262079\pi\)
\(578\) − 2.34530e6i − 0.291997i
\(579\) −6.36355e6 −0.788866
\(580\) 0 0
\(581\) −2.65865e6 −0.326754
\(582\) − 685295.i − 0.0838629i
\(583\) − 777762.i − 0.0947710i
\(584\) 3.26754e6 0.396450
\(585\) 0 0
\(586\) 4.02144e6 0.483768
\(587\) 8.72678e6i 1.04534i 0.852534 + 0.522672i \(0.175065\pi\)
−0.852534 + 0.522672i \(0.824935\pi\)
\(588\) 1.44303e6i 0.172120i
\(589\) −2.14785e6 −0.255103
\(590\) 0 0
\(591\) −3.52649e6 −0.415311
\(592\) − 5.02030e6i − 0.588743i
\(593\) 500982.i 0.0585040i 0.999572 + 0.0292520i \(0.00931252\pi\)
−0.999572 + 0.0292520i \(0.990687\pi\)
\(594\) 1.22775e6 0.142772
\(595\) 0 0
\(596\) −2.00330e6 −0.231010
\(597\) 6.93690e6i 0.796580i
\(598\) 1.30100e6i 0.148773i
\(599\) 1.04449e6 0.118943 0.0594714 0.998230i \(-0.481058\pi\)
0.0594714 + 0.998230i \(0.481058\pi\)
\(600\) 0 0
\(601\) 3.03678e6 0.342948 0.171474 0.985189i \(-0.445147\pi\)
0.171474 + 0.985189i \(0.445147\pi\)
\(602\) 4.43365e6i 0.498620i
\(603\) − 1.59249e6i − 0.178354i
\(604\) −1.03283e7 −1.15195
\(605\) 0 0
\(606\) 2.29791e6 0.254186
\(607\) − 809264.i − 0.0891494i −0.999006 0.0445747i \(-0.985807\pi\)
0.999006 0.0445747i \(-0.0141933\pi\)
\(608\) − 1.38444e6i − 0.151886i
\(609\) −8.39958e6 −0.917728
\(610\) 0 0
\(611\) 3.83403e6 0.415482
\(612\) − 1.09425e6i − 0.118096i
\(613\) 1.04363e7i 1.12175i 0.827900 + 0.560875i \(0.189535\pi\)
−0.827900 + 0.560875i \(0.810465\pi\)
\(614\) −846028. −0.0905657
\(615\) 0 0
\(616\) −2.03611e6 −0.216196
\(617\) 2.56343e6i 0.271086i 0.990771 + 0.135543i \(0.0432780\pi\)
−0.990771 + 0.135543i \(0.956722\pi\)
\(618\) − 391695.i − 0.0412551i
\(619\) −6.77494e6 −0.710687 −0.355344 0.934736i \(-0.615636\pi\)
−0.355344 + 0.934736i \(0.615636\pi\)
\(620\) 0 0
\(621\) 1.71701e7 1.78667
\(622\) 2.83547e6i 0.293865i
\(623\) 63006.8i 0.00650380i
\(624\) 1.43314e6 0.147342
\(625\) 0 0
\(626\) 2.20902e6 0.225301
\(627\) 552028.i 0.0560779i
\(628\) − 2.11866e6i − 0.214369i
\(629\) −2.67881e6 −0.269969
\(630\) 0 0
\(631\) 1.07855e7 1.07837 0.539185 0.842187i \(-0.318732\pi\)
0.539185 + 0.842187i \(0.318732\pi\)
\(632\) − 5.00930e6i − 0.498867i
\(633\) 5.39814e6i 0.535469i
\(634\) −941508. −0.0930252
\(635\) 0 0
\(636\) 1.62957e6 0.159746
\(637\) − 714451.i − 0.0697628i
\(638\) 1.88048e6i 0.182902i
\(639\) −3.75332e6 −0.363633
\(640\) 0 0
\(641\) 329201. 0.0316458 0.0158229 0.999875i \(-0.494963\pi\)
0.0158229 + 0.999875i \(0.494963\pi\)
\(642\) − 285073.i − 0.0272972i
\(643\) 1.85214e7i 1.76663i 0.468777 + 0.883317i \(0.344695\pi\)
−0.468777 + 0.883317i \(0.655305\pi\)
\(644\) −1.34440e7 −1.27736
\(645\) 0 0
\(646\) −198148. −0.0186814
\(647\) − 4.85885e6i − 0.456324i −0.973623 0.228162i \(-0.926728\pi\)
0.973623 0.228162i \(-0.0732715\pi\)
\(648\) 2.71991e6i 0.254459i
\(649\) 7.87069e6 0.733502
\(650\) 0 0
\(651\) −1.01121e7 −0.935163
\(652\) 1.13250e7i 1.04332i
\(653\) − 4.56792e6i − 0.419214i −0.977786 0.209607i \(-0.932782\pi\)
0.977786 0.209607i \(-0.0672184\pi\)
\(654\) 4.50895e6 0.412222
\(655\) 0 0
\(656\) 2.96225e6 0.268758
\(657\) 2.95481e6i 0.267065i
\(658\) − 4.67715e6i − 0.421130i
\(659\) 9.51262e6 0.853270 0.426635 0.904424i \(-0.359699\pi\)
0.426635 + 0.904424i \(0.359699\pi\)
\(660\) 0 0
\(661\) −1.91227e6 −0.170233 −0.0851167 0.996371i \(-0.527126\pi\)
−0.0851167 + 0.996371i \(0.527126\pi\)
\(662\) 248426.i 0.0220319i
\(663\) − 764716.i − 0.0675642i
\(664\) −2.64141e6 −0.232496
\(665\) 0 0
\(666\) −1.30775e6 −0.114246
\(667\) 2.62987e7i 2.28886i
\(668\) 6.96443e6i 0.603872i
\(669\) 5.13108e6 0.443245
\(670\) 0 0
\(671\) 594702. 0.0509910
\(672\) − 6.51797e6i − 0.556787i
\(673\) 5.38551e6i 0.458341i 0.973386 + 0.229171i \(0.0736014\pi\)
−0.973386 + 0.229171i \(0.926399\pi\)
\(674\) 2.57610e6 0.218431
\(675\) 0 0
\(676\) −817450. −0.0688010
\(677\) 1.65232e7i 1.38555i 0.721154 + 0.692775i \(0.243612\pi\)
−0.721154 + 0.692775i \(0.756388\pi\)
\(678\) − 2.61732e6i − 0.218666i
\(679\) −3.50612e6 −0.291845
\(680\) 0 0
\(681\) −8.27923e6 −0.684104
\(682\) 2.26387e6i 0.186376i
\(683\) 8.83329e6i 0.724554i 0.932070 + 0.362277i \(0.118001\pi\)
−0.932070 + 0.362277i \(0.881999\pi\)
\(684\) 819406. 0.0669667
\(685\) 0 0
\(686\) −4.33656e6 −0.351832
\(687\) − 1.54064e7i − 1.24540i
\(688\) − 1.52915e7i − 1.23163i
\(689\) −806808. −0.0647474
\(690\) 0 0
\(691\) 1.77549e7 1.41457 0.707284 0.706929i \(-0.249920\pi\)
0.707284 + 0.706929i \(0.249920\pi\)
\(692\) 367179.i 0.0291482i
\(693\) − 1.84124e6i − 0.145639i
\(694\) 108646. 0.00856279
\(695\) 0 0
\(696\) −8.34510e6 −0.652993
\(697\) − 1.58064e6i − 0.123240i
\(698\) 4.75923e6i 0.369741i
\(699\) −7.21349e6 −0.558409
\(700\) 0 0
\(701\) 1.32222e7 1.01627 0.508133 0.861279i \(-0.330336\pi\)
0.508133 + 0.861279i \(0.330336\pi\)
\(702\) − 1.27360e6i − 0.0975415i
\(703\) − 2.00597e6i − 0.153086i
\(704\) 2.24770e6 0.170925
\(705\) 0 0
\(706\) 2.00101e6 0.151091
\(707\) − 1.17566e7i − 0.884572i
\(708\) 1.64907e7i 1.23639i
\(709\) −2.51312e7 −1.87758 −0.938790 0.344490i \(-0.888052\pi\)
−0.938790 + 0.344490i \(0.888052\pi\)
\(710\) 0 0
\(711\) 4.52988e6 0.336057
\(712\) 62598.2i 0.00462766i
\(713\) 3.16604e7i 2.33234i
\(714\) −932881. −0.0684827
\(715\) 0 0
\(716\) −1.84240e7 −1.34308
\(717\) 2.17959e6i 0.158335i
\(718\) − 7.01763e6i − 0.508018i
\(719\) −2.01931e6 −0.145674 −0.0728369 0.997344i \(-0.523205\pi\)
−0.0728369 + 0.997344i \(0.523205\pi\)
\(720\) 0 0
\(721\) −2.00400e6 −0.143568
\(722\) 4.40306e6i 0.314349i
\(723\) 1.60790e7i 1.14397i
\(724\) 1.71243e7 1.21413
\(725\) 0 0
\(726\) −2.94873e6 −0.207632
\(727\) 2.25046e6i 0.157919i 0.996878 + 0.0789597i \(0.0251598\pi\)
−0.996878 + 0.0789597i \(0.974840\pi\)
\(728\) 2.11214e6i 0.147705i
\(729\) −1.43411e7 −0.999458
\(730\) 0 0
\(731\) −8.15946e6 −0.564765
\(732\) 1.24602e6i 0.0859504i
\(733\) − 5.24333e6i − 0.360452i −0.983625 0.180226i \(-0.942317\pi\)
0.983625 0.180226i \(-0.0576829\pi\)
\(734\) −8.71586e6 −0.597132
\(735\) 0 0
\(736\) −2.04074e7 −1.38865
\(737\) − 2.57469e6i − 0.174605i
\(738\) − 771642.i − 0.0521525i
\(739\) 1.56695e7 1.05547 0.527733 0.849411i \(-0.323042\pi\)
0.527733 + 0.849411i \(0.323042\pi\)
\(740\) 0 0
\(741\) 572643. 0.0383123
\(742\) 984228.i 0.0656275i
\(743\) − 6.91028e6i − 0.459223i −0.973282 0.229611i \(-0.926254\pi\)
0.973282 0.229611i \(-0.0737456\pi\)
\(744\) −1.00465e7 −0.665398
\(745\) 0 0
\(746\) 1.29622e6 0.0852772
\(747\) − 2.38861e6i − 0.156619i
\(748\) − 1.76915e6i − 0.115614i
\(749\) −1.45850e6 −0.0949949
\(750\) 0 0
\(751\) 9.35145e6 0.605033 0.302517 0.953144i \(-0.402173\pi\)
0.302517 + 0.953144i \(0.402173\pi\)
\(752\) 1.61313e7i 1.04022i
\(753\) − 7.12194e6i − 0.457731i
\(754\) 1.95071e6 0.124958
\(755\) 0 0
\(756\) 1.31608e7 0.837489
\(757\) 1.84763e7i 1.17186i 0.810362 + 0.585929i \(0.199270\pi\)
−0.810362 + 0.585929i \(0.800730\pi\)
\(758\) 1.13121e6i 0.0715105i
\(759\) 8.13718e6 0.512707
\(760\) 0 0
\(761\) −1.84001e7 −1.15175 −0.575876 0.817537i \(-0.695339\pi\)
−0.575876 + 0.817537i \(0.695339\pi\)
\(762\) − 4.68534e6i − 0.292317i
\(763\) − 2.30688e7i − 1.43454i
\(764\) 1.04234e7 0.646067
\(765\) 0 0
\(766\) 6.94540e6 0.427686
\(767\) − 8.16463e6i − 0.501127i
\(768\) 1.29107e6i 0.0789856i
\(769\) 1.14513e7 0.698295 0.349148 0.937068i \(-0.386471\pi\)
0.349148 + 0.937068i \(0.386471\pi\)
\(770\) 0 0
\(771\) 2.75471e6 0.166894
\(772\) 1.52717e7i 0.922238i
\(773\) − 1.86929e7i − 1.12519i −0.826731 0.562597i \(-0.809802\pi\)
0.826731 0.562597i \(-0.190198\pi\)
\(774\) −3.98332e6 −0.238997
\(775\) 0 0
\(776\) −3.48338e6 −0.207657
\(777\) − 9.44412e6i − 0.561189i
\(778\) − 3.54099e6i − 0.209737i
\(779\) 1.18363e6 0.0698831
\(780\) 0 0
\(781\) −6.06825e6 −0.355989
\(782\) 2.92081e6i 0.170799i
\(783\) − 2.57448e7i − 1.50067i
\(784\) 3.00599e6 0.174661
\(785\) 0 0
\(786\) 3.87456e6 0.223700
\(787\) − 2.53432e7i − 1.45856i −0.684214 0.729281i \(-0.739855\pi\)
0.684214 0.729281i \(-0.260145\pi\)
\(788\) 8.46309e6i 0.485527i
\(789\) −2.26512e7 −1.29538
\(790\) 0 0
\(791\) −1.33908e7 −0.760964
\(792\) − 1.82930e6i − 0.103627i
\(793\) − 616912.i − 0.0348370i
\(794\) −6.08408e6 −0.342487
\(795\) 0 0
\(796\) 1.66476e7 0.931256
\(797\) 2.38962e7i 1.33255i 0.745706 + 0.666276i \(0.232113\pi\)
−0.745706 + 0.666276i \(0.767887\pi\)
\(798\) − 698570.i − 0.0388332i
\(799\) 8.60758e6 0.476995
\(800\) 0 0
\(801\) −56607.1 −0.00311738
\(802\) − 4.83783e6i − 0.265592i
\(803\) 4.77725e6i 0.261450i
\(804\) 5.39450e6 0.294314
\(805\) 0 0
\(806\) 2.34841e6 0.127332
\(807\) − 2.75223e7i − 1.48765i
\(808\) − 1.16804e7i − 0.629401i
\(809\) 1.73141e7 0.930096 0.465048 0.885285i \(-0.346037\pi\)
0.465048 + 0.885285i \(0.346037\pi\)
\(810\) 0 0
\(811\) 2.18577e7 1.16695 0.583474 0.812131i \(-0.301693\pi\)
0.583474 + 0.812131i \(0.301693\pi\)
\(812\) 2.01578e7i 1.07289i
\(813\) − 2.61007e7i − 1.38492i
\(814\) −2.11433e6 −0.111844
\(815\) 0 0
\(816\) 3.21747e6 0.169157
\(817\) − 6.11006e6i − 0.320251i
\(818\) 1.05854e6i 0.0553127i
\(819\) −1.91000e6 −0.0995001
\(820\) 0 0
\(821\) 7.12188e6 0.368754 0.184377 0.982856i \(-0.440973\pi\)
0.184377 + 0.982856i \(0.440973\pi\)
\(822\) 2.92567e6i 0.151024i
\(823\) − 2.08032e7i − 1.07061i −0.844660 0.535303i \(-0.820197\pi\)
0.844660 0.535303i \(-0.179803\pi\)
\(824\) −1.99100e6 −0.102154
\(825\) 0 0
\(826\) −9.96007e6 −0.507940
\(827\) 1.96032e6i 0.0996698i 0.998757 + 0.0498349i \(0.0158695\pi\)
−0.998757 + 0.0498349i \(0.984130\pi\)
\(828\) − 1.20785e7i − 0.612261i
\(829\) −1.66913e7 −0.843535 −0.421768 0.906704i \(-0.638590\pi\)
−0.421768 + 0.906704i \(0.638590\pi\)
\(830\) 0 0
\(831\) 292590. 0.0146979
\(832\) − 2.33164e6i − 0.116776i
\(833\) − 1.60398e6i − 0.0800914i
\(834\) 3.93067e6 0.195682
\(835\) 0 0
\(836\) 1.32479e6 0.0655589
\(837\) − 3.09936e7i − 1.52918i
\(838\) − 1.05213e7i − 0.517559i
\(839\) 2.47847e7 1.21557 0.607783 0.794103i \(-0.292059\pi\)
0.607783 + 0.794103i \(0.292059\pi\)
\(840\) 0 0
\(841\) 1.89209e7 0.922470
\(842\) 1.27413e7i 0.619346i
\(843\) − 2.83040e6i − 0.137176i
\(844\) 1.29548e7 0.626000
\(845\) 0 0
\(846\) 4.20209e6 0.201855
\(847\) 1.50863e7i 0.722563i
\(848\) − 3.39457e6i − 0.162104i
\(849\) 1.44983e7 0.690315
\(850\) 0 0
\(851\) −2.95691e7 −1.39963
\(852\) − 1.27142e7i − 0.600054i
\(853\) 1.16070e7i 0.546193i 0.961987 + 0.273096i \(0.0880478\pi\)
−0.961987 + 0.273096i \(0.911952\pi\)
\(854\) −752573. −0.0353105
\(855\) 0 0
\(856\) −1.44904e6 −0.0675919
\(857\) 2.85621e7i 1.32843i 0.747543 + 0.664214i \(0.231233\pi\)
−0.747543 + 0.664214i \(0.768767\pi\)
\(858\) − 603577.i − 0.0279907i
\(859\) 2.72393e6 0.125955 0.0629773 0.998015i \(-0.479940\pi\)
0.0629773 + 0.998015i \(0.479940\pi\)
\(860\) 0 0
\(861\) 5.57253e6 0.256180
\(862\) 395269.i 0.0181186i
\(863\) 4.18556e7i 1.91305i 0.291651 + 0.956525i \(0.405795\pi\)
−0.291651 + 0.956525i \(0.594205\pi\)
\(864\) 1.99776e7 0.910457
\(865\) 0 0
\(866\) −9.51902e6 −0.431318
\(867\) 1.52166e7i 0.687497i
\(868\) 2.42676e7i 1.09327i
\(869\) 7.32378e6 0.328992
\(870\) 0 0
\(871\) −2.67085e6 −0.119290
\(872\) − 2.29191e7i − 1.02072i
\(873\) − 3.15000e6i − 0.139886i
\(874\) −2.18719e6 −0.0968519
\(875\) 0 0
\(876\) −1.00093e7 −0.440701
\(877\) − 3.60953e7i − 1.58472i −0.610055 0.792359i \(-0.708853\pi\)
0.610055 0.792359i \(-0.291147\pi\)
\(878\) − 1.39724e7i − 0.611694i
\(879\) −2.60917e7 −1.13901
\(880\) 0 0
\(881\) 3.31393e7 1.43848 0.719240 0.694761i \(-0.244490\pi\)
0.719240 + 0.694761i \(0.244490\pi\)
\(882\) − 783036.i − 0.0338930i
\(883\) − 9.64225e6i − 0.416176i −0.978110 0.208088i \(-0.933276\pi\)
0.978110 0.208088i \(-0.0667240\pi\)
\(884\) −1.83522e6 −0.0789871
\(885\) 0 0
\(886\) 1.31231e7 0.561631
\(887\) − 3.59387e6i − 0.153375i −0.997055 0.0766873i \(-0.975566\pi\)
0.997055 0.0766873i \(-0.0244343\pi\)
\(888\) − 9.38287e6i − 0.399304i
\(889\) −2.39712e7 −1.01727
\(890\) 0 0
\(891\) −3.97661e6 −0.167810
\(892\) − 1.23139e7i − 0.518183i
\(893\) 6.44563e6i 0.270481i
\(894\) −1.53441e6 −0.0642092
\(895\) 0 0
\(896\) −2.03332e7 −0.846128
\(897\) − 8.44106e6i − 0.350281i
\(898\) − 1.55940e6i − 0.0645309i
\(899\) 4.74714e7 1.95899
\(900\) 0 0
\(901\) −1.81132e6 −0.0743334
\(902\) − 1.24757e6i − 0.0510561i
\(903\) − 2.87661e7i − 1.17398i
\(904\) −1.33039e7 −0.541450
\(905\) 0 0
\(906\) −7.91083e6 −0.320186
\(907\) − 4.23884e7i − 1.71092i −0.517872 0.855458i \(-0.673276\pi\)
0.517872 0.855458i \(-0.326724\pi\)
\(908\) 1.98690e7i 0.799764i
\(909\) 1.05625e7 0.423990
\(910\) 0 0
\(911\) −2.39933e7 −0.957841 −0.478921 0.877858i \(-0.658972\pi\)
−0.478921 + 0.877858i \(0.658972\pi\)
\(912\) 2.40934e6i 0.0959205i
\(913\) − 3.86184e6i − 0.153326i
\(914\) 6.16522e6 0.244109
\(915\) 0 0
\(916\) −3.69733e7 −1.45596
\(917\) − 1.98231e7i − 0.778481i
\(918\) − 2.85929e6i − 0.111983i
\(919\) 2.53438e7 0.989883 0.494941 0.868926i \(-0.335190\pi\)
0.494941 + 0.868926i \(0.335190\pi\)
\(920\) 0 0
\(921\) 5.48915e6 0.213234
\(922\) 6.56870e6i 0.254479i
\(923\) 6.29488e6i 0.243211i
\(924\) 6.23712e6 0.240328
\(925\) 0 0
\(926\) 2.65038e6 0.101574
\(927\) − 1.80045e6i − 0.0688148i
\(928\) 3.05988e7i 1.16636i
\(929\) 2.04548e7 0.777601 0.388800 0.921322i \(-0.372890\pi\)
0.388800 + 0.921322i \(0.372890\pi\)
\(930\) 0 0
\(931\) 1.20111e6 0.0454159
\(932\) 1.73114e7i 0.652818i
\(933\) − 1.83969e7i − 0.691896i
\(934\) 1.29327e7 0.485089
\(935\) 0 0
\(936\) −1.89761e6 −0.0707975
\(937\) − 1.98261e7i − 0.737716i −0.929486 0.368858i \(-0.879749\pi\)
0.929486 0.368858i \(-0.120251\pi\)
\(938\) 3.25818e6i 0.120911i
\(939\) −1.43324e7 −0.530463
\(940\) 0 0
\(941\) −3.32679e7 −1.22476 −0.612380 0.790564i \(-0.709788\pi\)
−0.612380 + 0.790564i \(0.709788\pi\)
\(942\) − 1.62277e6i − 0.0595839i
\(943\) − 1.74473e7i − 0.638925i
\(944\) 3.43519e7 1.25465
\(945\) 0 0
\(946\) −6.44011e6 −0.233973
\(947\) − 4.75820e7i − 1.72412i −0.506806 0.862060i \(-0.669174\pi\)
0.506806 0.862060i \(-0.330826\pi\)
\(948\) 1.53448e7i 0.554549i
\(949\) 4.95566e6 0.178623
\(950\) 0 0
\(951\) 6.10863e6 0.219025
\(952\) 4.74187e6i 0.169573i
\(953\) 4.16316e7i 1.48488i 0.669913 + 0.742440i \(0.266331\pi\)
−0.669913 + 0.742440i \(0.733669\pi\)
\(954\) −884259. −0.0314564
\(955\) 0 0
\(956\) 5.23073e6 0.185105
\(957\) − 1.22008e7i − 0.430635i
\(958\) − 2.57537e6i − 0.0906623i
\(959\) 1.49683e7 0.525566
\(960\) 0 0
\(961\) 2.85206e7 0.996207
\(962\) 2.19329e6i 0.0764115i
\(963\) − 1.31035e6i − 0.0455327i
\(964\) 3.85874e7 1.33737
\(965\) 0 0
\(966\) −1.02973e7 −0.355042
\(967\) − 3.70062e7i − 1.27265i −0.771422 0.636324i \(-0.780454\pi\)
0.771422 0.636324i \(-0.219546\pi\)
\(968\) 1.49885e7i 0.514127i
\(969\) 1.28561e6 0.0439846
\(970\) 0 0
\(971\) 846545. 0.0288139 0.0144070 0.999896i \(-0.495414\pi\)
0.0144070 + 0.999896i \(0.495414\pi\)
\(972\) 2.01822e7i 0.685179i
\(973\) − 2.01102e7i − 0.680979i
\(974\) 1.55406e7 0.524894
\(975\) 0 0
\(976\) 2.59560e6 0.0872194
\(977\) 5.86464e7i 1.96564i 0.184554 + 0.982822i \(0.440916\pi\)
−0.184554 + 0.982822i \(0.559084\pi\)
\(978\) 8.67423e6i 0.289991i
\(979\) −91520.7 −0.00305185
\(980\) 0 0
\(981\) 2.07256e7 0.687599
\(982\) 1.43700e7i 0.475530i
\(983\) 1.17394e7i 0.387492i 0.981052 + 0.193746i \(0.0620637\pi\)
−0.981052 + 0.193746i \(0.937936\pi\)
\(984\) 5.53639e6 0.182280
\(985\) 0 0
\(986\) 4.37944e6 0.143458
\(987\) 3.03460e7i 0.991536i
\(988\) − 1.37427e6i − 0.0447897i
\(989\) −9.00654e7 −2.92798
\(990\) 0 0
\(991\) −2.34339e7 −0.757984 −0.378992 0.925400i \(-0.623729\pi\)
−0.378992 + 0.925400i \(0.623729\pi\)
\(992\) 3.68372e7i 1.18852i
\(993\) − 1.61182e6i − 0.0518734i
\(994\) 7.67914e6 0.246517
\(995\) 0 0
\(996\) 8.09133e6 0.258447
\(997\) − 3.77262e7i − 1.20200i −0.799248 0.601001i \(-0.794769\pi\)
0.799248 0.601001i \(-0.205231\pi\)
\(998\) − 1.17242e7i − 0.372613i
\(999\) 2.89463e7 0.917655
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.h.274.8 18
5.2 odd 4 325.6.a.i.1.6 yes 9
5.3 odd 4 325.6.a.h.1.4 9
5.4 even 2 inner 325.6.b.h.274.11 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.4 9 5.3 odd 4
325.6.a.i.1.6 yes 9 5.2 odd 4
325.6.b.h.274.8 18 1.1 even 1 trivial
325.6.b.h.274.11 18 5.4 even 2 inner