Properties

Label 325.6.b.h.274.5
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 378 x^{16} + 59175 x^{14} + 4956036 x^{12} + 239061247 x^{10} + 6629044458 x^{8} + \cdots + 134659641600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.5
Root \(-8.28147i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.h.274.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.28147i q^{2} -14.9935i q^{3} -21.0198 q^{4} -109.175 q^{6} -135.391i q^{7} -79.9521i q^{8} +18.1955 q^{9} +O(q^{10})\) \(q-7.28147i q^{2} -14.9935i q^{3} -21.0198 q^{4} -109.175 q^{6} -135.391i q^{7} -79.9521i q^{8} +18.1955 q^{9} +191.317 q^{11} +315.160i q^{12} +169.000i q^{13} -985.848 q^{14} -1254.80 q^{16} +874.338i q^{17} -132.490i q^{18} -1992.26 q^{19} -2029.99 q^{21} -1393.07i q^{22} -2091.74i q^{23} -1198.76 q^{24} +1230.57 q^{26} -3916.23i q^{27} +2845.90i q^{28} +46.3621 q^{29} -9450.42 q^{31} +6578.33i q^{32} -2868.52i q^{33} +6366.46 q^{34} -382.466 q^{36} +3374.82i q^{37} +14506.6i q^{38} +2533.90 q^{39} -10511.6 q^{41} +14781.3i q^{42} +4056.27i q^{43} -4021.45 q^{44} -15230.9 q^{46} +17035.2i q^{47} +18813.8i q^{48} -1523.82 q^{49} +13109.4 q^{51} -3552.34i q^{52} -23984.5i q^{53} -28515.9 q^{54} -10824.8 q^{56} +29870.9i q^{57} -337.584i q^{58} +10197.8 q^{59} -27440.0 q^{61} +68812.9i q^{62} -2463.52i q^{63} +7746.27 q^{64} -20887.0 q^{66} +317.851i q^{67} -18378.4i q^{68} -31362.5 q^{69} +39664.7 q^{71} -1454.77i q^{72} +4764.06i q^{73} +24573.7 q^{74} +41876.9 q^{76} -25902.7i q^{77} -18450.5i q^{78} +74545.9 q^{79} -54296.4 q^{81} +76539.5i q^{82} -14234.5i q^{83} +42669.9 q^{84} +29535.6 q^{86} -695.130i q^{87} -15296.2i q^{88} +132052. q^{89} +22881.1 q^{91} +43967.9i q^{92} +141695. i q^{93} +124041. q^{94} +98632.1 q^{96} -19366.7i q^{97} +11095.6i q^{98} +3481.12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9} - 2844 q^{11} + 684 q^{14} - 2122 q^{16} + 816 q^{19} - 7824 q^{21} + 16938 q^{24} - 1690 q^{26} + 17474 q^{29} + 1496 q^{31} + 35578 q^{34} + 1024 q^{36} + 3718 q^{39} - 57352 q^{41} + 61198 q^{44} - 24112 q^{46} + 81814 q^{49} - 62012 q^{51} + 205522 q^{54} - 46004 q^{56} + 176284 q^{59} + 56330 q^{61} + 201690 q^{64} + 85154 q^{66} + 363494 q^{69} - 141124 q^{71} + 271352 q^{74} + 92746 q^{76} + 328146 q^{79} - 139870 q^{81} + 691312 q^{84} - 589840 q^{86} + 505396 q^{89} + 4056 q^{91} + 1003212 q^{94} - 638362 q^{96} + 1515552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 7.28147i − 1.28719i −0.765365 0.643597i \(-0.777441\pi\)
0.765365 0.643597i \(-0.222559\pi\)
\(3\) − 14.9935i − 0.961832i −0.876767 0.480916i \(-0.840304\pi\)
0.876767 0.480916i \(-0.159696\pi\)
\(4\) −21.0198 −0.656868
\(5\) 0 0
\(6\) −109.175 −1.23806
\(7\) − 135.391i − 1.04435i −0.852839 0.522175i \(-0.825121\pi\)
0.852839 0.522175i \(-0.174879\pi\)
\(8\) − 79.9521i − 0.441677i
\(9\) 18.1955 0.0748787
\(10\) 0 0
\(11\) 191.317 0.476731 0.238365 0.971176i \(-0.423388\pi\)
0.238365 + 0.971176i \(0.423388\pi\)
\(12\) 315.160i 0.631797i
\(13\) 169.000i 0.277350i
\(14\) −985.848 −1.34428
\(15\) 0 0
\(16\) −1254.80 −1.22539
\(17\) 874.338i 0.733765i 0.930267 + 0.366883i \(0.119575\pi\)
−0.930267 + 0.366883i \(0.880425\pi\)
\(18\) − 132.490i − 0.0963834i
\(19\) −1992.26 −1.26608 −0.633042 0.774118i \(-0.718194\pi\)
−0.633042 + 0.774118i \(0.718194\pi\)
\(20\) 0 0
\(21\) −2029.99 −1.00449
\(22\) − 1393.07i − 0.613645i
\(23\) − 2091.74i − 0.824495i −0.911072 0.412248i \(-0.864744\pi\)
0.911072 0.412248i \(-0.135256\pi\)
\(24\) −1198.76 −0.424819
\(25\) 0 0
\(26\) 1230.57 0.357003
\(27\) − 3916.23i − 1.03385i
\(28\) 2845.90i 0.686000i
\(29\) 46.3621 0.0102369 0.00511845 0.999987i \(-0.498371\pi\)
0.00511845 + 0.999987i \(0.498371\pi\)
\(30\) 0 0
\(31\) −9450.42 −1.76623 −0.883114 0.469158i \(-0.844558\pi\)
−0.883114 + 0.469158i \(0.844558\pi\)
\(32\) 6578.33i 1.13564i
\(33\) − 2868.52i − 0.458535i
\(34\) 6366.46 0.944498
\(35\) 0 0
\(36\) −382.466 −0.0491854
\(37\) 3374.82i 0.405272i 0.979254 + 0.202636i \(0.0649508\pi\)
−0.979254 + 0.202636i \(0.935049\pi\)
\(38\) 14506.6i 1.62969i
\(39\) 2533.90 0.266764
\(40\) 0 0
\(41\) −10511.6 −0.976578 −0.488289 0.872682i \(-0.662379\pi\)
−0.488289 + 0.872682i \(0.662379\pi\)
\(42\) 14781.3i 1.29297i
\(43\) 4056.27i 0.334546i 0.985911 + 0.167273i \(0.0534961\pi\)
−0.985911 + 0.167273i \(0.946504\pi\)
\(44\) −4021.45 −0.313149
\(45\) 0 0
\(46\) −15230.9 −1.06129
\(47\) 17035.2i 1.12487i 0.826842 + 0.562435i \(0.190135\pi\)
−0.826842 + 0.562435i \(0.809865\pi\)
\(48\) 18813.8i 1.17862i
\(49\) −1523.82 −0.0906658
\(50\) 0 0
\(51\) 13109.4 0.705759
\(52\) − 3552.34i − 0.182182i
\(53\) − 23984.5i − 1.17285i −0.810004 0.586424i \(-0.800535\pi\)
0.810004 0.586424i \(-0.199465\pi\)
\(54\) −28515.9 −1.33077
\(55\) 0 0
\(56\) −10824.8 −0.461265
\(57\) 29870.9i 1.21776i
\(58\) − 337.584i − 0.0131769i
\(59\) 10197.8 0.381398 0.190699 0.981649i \(-0.438925\pi\)
0.190699 + 0.981649i \(0.438925\pi\)
\(60\) 0 0
\(61\) −27440.0 −0.944191 −0.472095 0.881547i \(-0.656502\pi\)
−0.472095 + 0.881547i \(0.656502\pi\)
\(62\) 68812.9i 2.27348i
\(63\) − 2463.52i − 0.0781995i
\(64\) 7746.27 0.236397
\(65\) 0 0
\(66\) −20887.0 −0.590223
\(67\) 317.851i 0.00865040i 0.999991 + 0.00432520i \(0.00137676\pi\)
−0.999991 + 0.00432520i \(0.998623\pi\)
\(68\) − 18378.4i − 0.481987i
\(69\) −31362.5 −0.793026
\(70\) 0 0
\(71\) 39664.7 0.933809 0.466905 0.884308i \(-0.345369\pi\)
0.466905 + 0.884308i \(0.345369\pi\)
\(72\) − 1454.77i − 0.0330722i
\(73\) 4764.06i 0.104633i 0.998631 + 0.0523167i \(0.0166605\pi\)
−0.998631 + 0.0523167i \(0.983339\pi\)
\(74\) 24573.7 0.521664
\(75\) 0 0
\(76\) 41876.9 0.831650
\(77\) − 25902.7i − 0.497873i
\(78\) − 18450.5i − 0.343377i
\(79\) 74545.9 1.34387 0.671933 0.740612i \(-0.265464\pi\)
0.671933 + 0.740612i \(0.265464\pi\)
\(80\) 0 0
\(81\) −54296.4 −0.919514
\(82\) 76539.5i 1.25705i
\(83\) − 14234.5i − 0.226803i −0.993549 0.113401i \(-0.963825\pi\)
0.993549 0.113401i \(-0.0361746\pi\)
\(84\) 42669.9 0.659817
\(85\) 0 0
\(86\) 29535.6 0.430625
\(87\) − 695.130i − 0.00984618i
\(88\) − 15296.2i − 0.210561i
\(89\) 132052. 1.76713 0.883566 0.468307i \(-0.155136\pi\)
0.883566 + 0.468307i \(0.155136\pi\)
\(90\) 0 0
\(91\) 22881.1 0.289650
\(92\) 43967.9i 0.541585i
\(93\) 141695.i 1.69882i
\(94\) 124041. 1.44793
\(95\) 0 0
\(96\) 98632.1 1.09230
\(97\) − 19366.7i − 0.208990i −0.994525 0.104495i \(-0.966677\pi\)
0.994525 0.104495i \(-0.0333226\pi\)
\(98\) 11095.6i 0.116704i
\(99\) 3481.12 0.0356970
\(100\) 0 0
\(101\) −90391.7 −0.881709 −0.440855 0.897579i \(-0.645325\pi\)
−0.440855 + 0.897579i \(0.645325\pi\)
\(102\) − 95455.5i − 0.908449i
\(103\) 59762.2i 0.555051i 0.960718 + 0.277526i \(0.0895144\pi\)
−0.960718 + 0.277526i \(0.910486\pi\)
\(104\) 13511.9 0.122499
\(105\) 0 0
\(106\) −174643. −1.50968
\(107\) − 178407.i − 1.50645i −0.657766 0.753223i \(-0.728498\pi\)
0.657766 0.753223i \(-0.271502\pi\)
\(108\) 82318.3i 0.679105i
\(109\) 37689.5 0.303847 0.151923 0.988392i \(-0.451453\pi\)
0.151923 + 0.988392i \(0.451453\pi\)
\(110\) 0 0
\(111\) 50600.3 0.389804
\(112\) 169889.i 1.27974i
\(113\) − 38616.5i − 0.284497i −0.989831 0.142248i \(-0.954567\pi\)
0.989831 0.142248i \(-0.0454331\pi\)
\(114\) 217504. 1.56749
\(115\) 0 0
\(116\) −974.522 −0.00672429
\(117\) 3075.04i 0.0207676i
\(118\) − 74255.3i − 0.490933i
\(119\) 118378. 0.766307
\(120\) 0 0
\(121\) −124449. −0.772728
\(122\) 199804.i 1.21536i
\(123\) 157605.i 0.939305i
\(124\) 198646. 1.16018
\(125\) 0 0
\(126\) −17938.0 −0.100658
\(127\) − 301119.i − 1.65664i −0.560255 0.828320i \(-0.689297\pi\)
0.560255 0.828320i \(-0.310703\pi\)
\(128\) 154102.i 0.831351i
\(129\) 60817.6 0.321777
\(130\) 0 0
\(131\) −100245. −0.510371 −0.255186 0.966892i \(-0.582137\pi\)
−0.255186 + 0.966892i \(0.582137\pi\)
\(132\) 60295.6i 0.301197i
\(133\) 269735.i 1.32223i
\(134\) 2314.42 0.0111347
\(135\) 0 0
\(136\) 69905.2 0.324087
\(137\) − 72376.9i − 0.329457i −0.986339 0.164728i \(-0.947325\pi\)
0.986339 0.164728i \(-0.0526748\pi\)
\(138\) 228365.i 1.02078i
\(139\) −296858. −1.30320 −0.651601 0.758562i \(-0.725902\pi\)
−0.651601 + 0.758562i \(0.725902\pi\)
\(140\) 0 0
\(141\) 255417. 1.08194
\(142\) − 288817.i − 1.20199i
\(143\) 32332.7i 0.132221i
\(144\) −22831.8 −0.0917558
\(145\) 0 0
\(146\) 34689.3 0.134683
\(147\) 22847.4i 0.0872053i
\(148\) − 70938.0i − 0.266210i
\(149\) −16259.4 −0.0599981 −0.0299991 0.999550i \(-0.509550\pi\)
−0.0299991 + 0.999550i \(0.509550\pi\)
\(150\) 0 0
\(151\) 383495. 1.36873 0.684364 0.729140i \(-0.260080\pi\)
0.684364 + 0.729140i \(0.260080\pi\)
\(152\) 159285.i 0.559200i
\(153\) 15909.0i 0.0549434i
\(154\) −188610. −0.640859
\(155\) 0 0
\(156\) −53262.0 −0.175229
\(157\) − 235502.i − 0.762510i −0.924470 0.381255i \(-0.875492\pi\)
0.924470 0.381255i \(-0.124508\pi\)
\(158\) − 542804.i − 1.72982i
\(159\) −359612. −1.12808
\(160\) 0 0
\(161\) −283204. −0.861061
\(162\) 395358.i 1.18359i
\(163\) 205165.i 0.604832i 0.953176 + 0.302416i \(0.0977932\pi\)
−0.953176 + 0.302416i \(0.902207\pi\)
\(164\) 220951. 0.641483
\(165\) 0 0
\(166\) −103648. −0.291939
\(167\) − 68965.6i − 0.191356i −0.995412 0.0956778i \(-0.969498\pi\)
0.995412 0.0956778i \(-0.0305018\pi\)
\(168\) 162302.i 0.443660i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −36250.2 −0.0948027
\(172\) − 85261.9i − 0.219753i
\(173\) 613056.i 1.55735i 0.627430 + 0.778673i \(0.284107\pi\)
−0.627430 + 0.778673i \(0.715893\pi\)
\(174\) −5061.56 −0.0126739
\(175\) 0 0
\(176\) −240066. −0.584182
\(177\) − 152901.i − 0.366841i
\(178\) − 961530.i − 2.27464i
\(179\) 637734. 1.48767 0.743836 0.668362i \(-0.233004\pi\)
0.743836 + 0.668362i \(0.233004\pi\)
\(180\) 0 0
\(181\) 145338. 0.329749 0.164875 0.986315i \(-0.447278\pi\)
0.164875 + 0.986315i \(0.447278\pi\)
\(182\) − 166608.i − 0.372836i
\(183\) 411421.i 0.908153i
\(184\) −167239. −0.364161
\(185\) 0 0
\(186\) 1.03175e6 2.18671
\(187\) 167276.i 0.349808i
\(188\) − 358076.i − 0.738891i
\(189\) −530224. −1.07970
\(190\) 0 0
\(191\) −967379. −1.91873 −0.959364 0.282173i \(-0.908945\pi\)
−0.959364 + 0.282173i \(0.908945\pi\)
\(192\) − 116143.i − 0.227375i
\(193\) − 9104.15i − 0.0175932i −0.999961 0.00879662i \(-0.997200\pi\)
0.999961 0.00879662i \(-0.00280009\pi\)
\(194\) −141018. −0.269011
\(195\) 0 0
\(196\) 32030.4 0.0595555
\(197\) 567218.i 1.04132i 0.853764 + 0.520660i \(0.174314\pi\)
−0.853764 + 0.520660i \(0.825686\pi\)
\(198\) − 25347.7i − 0.0459489i
\(199\) 321297. 0.575141 0.287571 0.957759i \(-0.407152\pi\)
0.287571 + 0.957759i \(0.407152\pi\)
\(200\) 0 0
\(201\) 4765.69 0.00832023
\(202\) 658185.i 1.13493i
\(203\) − 6277.03i − 0.0106909i
\(204\) −275556. −0.463591
\(205\) 0 0
\(206\) 435156. 0.714459
\(207\) − 38060.3i − 0.0617371i
\(208\) − 212061.i − 0.339863i
\(209\) −381154. −0.603580
\(210\) 0 0
\(211\) −165479. −0.255880 −0.127940 0.991782i \(-0.540836\pi\)
−0.127940 + 0.991782i \(0.540836\pi\)
\(212\) 504150.i 0.770407i
\(213\) − 594712.i − 0.898168i
\(214\) −1.29907e6 −1.93909
\(215\) 0 0
\(216\) −313111. −0.456629
\(217\) 1.27951e6i 1.84456i
\(218\) − 274435.i − 0.391109i
\(219\) 71429.8 0.100640
\(220\) 0 0
\(221\) −147763. −0.203510
\(222\) − 368445.i − 0.501753i
\(223\) − 1.14125e6i − 1.53680i −0.639968 0.768402i \(-0.721052\pi\)
0.639968 0.768402i \(-0.278948\pi\)
\(224\) 890649. 1.18601
\(225\) 0 0
\(226\) −281185. −0.366202
\(227\) − 573565.i − 0.738785i −0.929273 0.369393i \(-0.879566\pi\)
0.929273 0.369393i \(-0.120434\pi\)
\(228\) − 627880.i − 0.799908i
\(229\) −1.11647e6 −1.40688 −0.703440 0.710755i \(-0.748353\pi\)
−0.703440 + 0.710755i \(0.748353\pi\)
\(230\) 0 0
\(231\) −388372. −0.478871
\(232\) − 3706.75i − 0.00452140i
\(233\) − 1.08552e6i − 1.30993i −0.755658 0.654967i \(-0.772683\pi\)
0.755658 0.654967i \(-0.227317\pi\)
\(234\) 22390.8 0.0267319
\(235\) 0 0
\(236\) −214356. −0.250528
\(237\) − 1.11770e6i − 1.29257i
\(238\) − 861964.i − 0.986386i
\(239\) −497543. −0.563425 −0.281712 0.959499i \(-0.590902\pi\)
−0.281712 + 0.959499i \(0.590902\pi\)
\(240\) 0 0
\(241\) −1.68881e6 −1.87300 −0.936499 0.350669i \(-0.885954\pi\)
−0.936499 + 0.350669i \(0.885954\pi\)
\(242\) 906169.i 0.994651i
\(243\) − 137552.i − 0.149434i
\(244\) 576783. 0.620209
\(245\) 0 0
\(246\) 1.14759e6 1.20907
\(247\) − 336692.i − 0.351148i
\(248\) 755581.i 0.780103i
\(249\) −213425. −0.218146
\(250\) 0 0
\(251\) −358692. −0.359366 −0.179683 0.983725i \(-0.557507\pi\)
−0.179683 + 0.983725i \(0.557507\pi\)
\(252\) 51782.6i 0.0513668i
\(253\) − 400187.i − 0.393062i
\(254\) −2.19259e6 −2.13242
\(255\) 0 0
\(256\) 1.36997e6 1.30651
\(257\) − 715783.i − 0.676003i −0.941146 0.338001i \(-0.890249\pi\)
0.941146 0.338001i \(-0.109751\pi\)
\(258\) − 442841.i − 0.414189i
\(259\) 456922. 0.423246
\(260\) 0 0
\(261\) 843.583 0.000766525 0
\(262\) 729933.i 0.656946i
\(263\) 167988.i 0.149757i 0.997193 + 0.0748787i \(0.0238569\pi\)
−0.997193 + 0.0748787i \(0.976143\pi\)
\(264\) −229344. −0.202524
\(265\) 0 0
\(266\) 1.96407e6 1.70197
\(267\) − 1.97991e6i − 1.69968i
\(268\) − 6681.15i − 0.00568217i
\(269\) −1.93165e6 −1.62760 −0.813800 0.581145i \(-0.802605\pi\)
−0.813800 + 0.581145i \(0.802605\pi\)
\(270\) 0 0
\(271\) 2.04198e6 1.68900 0.844499 0.535558i \(-0.179899\pi\)
0.844499 + 0.535558i \(0.179899\pi\)
\(272\) − 1.09712e6i − 0.899150i
\(273\) − 343068.i − 0.278595i
\(274\) −527010. −0.424075
\(275\) 0 0
\(276\) 659232. 0.520914
\(277\) − 1.05919e6i − 0.829416i −0.909955 0.414708i \(-0.863884\pi\)
0.909955 0.414708i \(-0.136116\pi\)
\(278\) 2.16156e6i 1.67747i
\(279\) −171955. −0.132253
\(280\) 0 0
\(281\) −935578. −0.706829 −0.353414 0.935467i \(-0.614979\pi\)
−0.353414 + 0.935467i \(0.614979\pi\)
\(282\) − 1.85981e6i − 1.39266i
\(283\) − 827252.i − 0.614005i −0.951709 0.307002i \(-0.900674\pi\)
0.951709 0.307002i \(-0.0993260\pi\)
\(284\) −833743. −0.613390
\(285\) 0 0
\(286\) 235429. 0.170194
\(287\) 1.42317e6i 1.01989i
\(288\) 119696.i 0.0850353i
\(289\) 655390. 0.461589
\(290\) 0 0
\(291\) −290374. −0.201013
\(292\) − 100139.i − 0.0687303i
\(293\) 1.77525e6i 1.20806i 0.796960 + 0.604032i \(0.206440\pi\)
−0.796960 + 0.604032i \(0.793560\pi\)
\(294\) 166362. 0.112250
\(295\) 0 0
\(296\) 269824. 0.178999
\(297\) − 749243.i − 0.492869i
\(298\) 118392.i 0.0772292i
\(299\) 353504. 0.228674
\(300\) 0 0
\(301\) 549184. 0.349383
\(302\) − 2.79241e6i − 1.76182i
\(303\) 1.35529e6i 0.848056i
\(304\) 2.49989e6 1.55145
\(305\) 0 0
\(306\) 115841. 0.0707228
\(307\) 293202.i 0.177550i 0.996052 + 0.0887750i \(0.0282952\pi\)
−0.996052 + 0.0887750i \(0.971705\pi\)
\(308\) 544470.i 0.327037i
\(309\) 896043. 0.533866
\(310\) 0 0
\(311\) −2.34227e6 −1.37321 −0.686605 0.727031i \(-0.740900\pi\)
−0.686605 + 0.727031i \(0.740900\pi\)
\(312\) − 202590.i − 0.117824i
\(313\) 1.20634e6i 0.695997i 0.937495 + 0.347999i \(0.113139\pi\)
−0.937495 + 0.347999i \(0.886861\pi\)
\(314\) −1.71480e6 −0.981499
\(315\) 0 0
\(316\) −1.56694e6 −0.882743
\(317\) 2.21969e6i 1.24063i 0.784352 + 0.620316i \(0.212996\pi\)
−0.784352 + 0.620316i \(0.787004\pi\)
\(318\) 2.61850e6i 1.45206i
\(319\) 8869.88 0.00488024
\(320\) 0 0
\(321\) −2.67495e6 −1.44895
\(322\) 2.06214e6i 1.10835i
\(323\) − 1.74191e6i − 0.929008i
\(324\) 1.14130e6 0.604000
\(325\) 0 0
\(326\) 1.49390e6 0.778536
\(327\) − 565097.i − 0.292249i
\(328\) 840420.i 0.431332i
\(329\) 2.30642e6 1.17476
\(330\) 0 0
\(331\) 1.37355e6 0.689087 0.344544 0.938770i \(-0.388034\pi\)
0.344544 + 0.938770i \(0.388034\pi\)
\(332\) 299207.i 0.148980i
\(333\) 61406.7i 0.0303462i
\(334\) −502171. −0.246312
\(335\) 0 0
\(336\) 2.54723e6 1.23089
\(337\) − 428681.i − 0.205617i −0.994701 0.102809i \(-0.967217\pi\)
0.994701 0.102809i \(-0.0327829\pi\)
\(338\) 207966.i 0.0990149i
\(339\) −578996. −0.273638
\(340\) 0 0
\(341\) −1.80803e6 −0.842015
\(342\) 263955.i 0.122029i
\(343\) − 2.06921e6i − 0.949663i
\(344\) 324307. 0.147761
\(345\) 0 0
\(346\) 4.46395e6 2.00461
\(347\) − 3.34049e6i − 1.48932i −0.667446 0.744658i \(-0.732612\pi\)
0.667446 0.744658i \(-0.267388\pi\)
\(348\) 14611.5i 0.00646764i
\(349\) 1.65843e6 0.728840 0.364420 0.931235i \(-0.381267\pi\)
0.364420 + 0.931235i \(0.381267\pi\)
\(350\) 0 0
\(351\) 661843. 0.286739
\(352\) 1.25855e6i 0.541394i
\(353\) 2.62106e6i 1.11954i 0.828648 + 0.559771i \(0.189111\pi\)
−0.828648 + 0.559771i \(0.810889\pi\)
\(354\) −1.11335e6 −0.472195
\(355\) 0 0
\(356\) −2.77570e6 −1.16077
\(357\) − 1.77490e6i − 0.737059i
\(358\) − 4.64364e6i − 1.91492i
\(359\) 818855. 0.335329 0.167664 0.985844i \(-0.446377\pi\)
0.167664 + 0.985844i \(0.446377\pi\)
\(360\) 0 0
\(361\) 1.49300e6 0.602966
\(362\) − 1.05828e6i − 0.424451i
\(363\) 1.86592e6i 0.743235i
\(364\) −480957. −0.190262
\(365\) 0 0
\(366\) 2.99575e6 1.16897
\(367\) 2.81469e6i 1.09085i 0.838160 + 0.545425i \(0.183632\pi\)
−0.838160 + 0.545425i \(0.816368\pi\)
\(368\) 2.62472e6i 1.01033i
\(369\) −191263. −0.0731249
\(370\) 0 0
\(371\) −3.24730e6 −1.22486
\(372\) − 2.97839e6i − 1.11590i
\(373\) − 4.64910e6i − 1.73020i −0.501598 0.865101i \(-0.667254\pi\)
0.501598 0.865101i \(-0.332746\pi\)
\(374\) 1.21802e6 0.450271
\(375\) 0 0
\(376\) 1.36200e6 0.496829
\(377\) 7835.20i 0.00283920i
\(378\) 3.86081e6i 1.38979i
\(379\) 2.33478e6 0.834924 0.417462 0.908694i \(-0.362920\pi\)
0.417462 + 0.908694i \(0.362920\pi\)
\(380\) 0 0
\(381\) −4.51482e6 −1.59341
\(382\) 7.04394e6i 2.46977i
\(383\) − 3.05707e6i − 1.06490i −0.846462 0.532449i \(-0.821272\pi\)
0.846462 0.532449i \(-0.178728\pi\)
\(384\) 2.31053e6 0.799621
\(385\) 0 0
\(386\) −66291.6 −0.0226459
\(387\) 73806.0i 0.0250504i
\(388\) 407083.i 0.137279i
\(389\) −1.25272e6 −0.419741 −0.209871 0.977729i \(-0.567304\pi\)
−0.209871 + 0.977729i \(0.567304\pi\)
\(390\) 0 0
\(391\) 1.82889e6 0.604986
\(392\) 121833.i 0.0400450i
\(393\) 1.50303e6i 0.490891i
\(394\) 4.13018e6 1.34038
\(395\) 0 0
\(396\) −73172.4 −0.0234482
\(397\) − 5.44444e6i − 1.73371i −0.498559 0.866856i \(-0.666137\pi\)
0.498559 0.866856i \(-0.333863\pi\)
\(398\) − 2.33952e6i − 0.740318i
\(399\) 4.04427e6 1.27177
\(400\) 0 0
\(401\) −3.75387e6 −1.16578 −0.582892 0.812549i \(-0.698079\pi\)
−0.582892 + 0.812549i \(0.698079\pi\)
\(402\) − 34701.2i − 0.0107098i
\(403\) − 1.59712e6i − 0.489864i
\(404\) 1.90001e6 0.579167
\(405\) 0 0
\(406\) −45706.0 −0.0137613
\(407\) 645663.i 0.193206i
\(408\) − 1.04812e6i − 0.311718i
\(409\) −4.09010e6 −1.20900 −0.604500 0.796605i \(-0.706627\pi\)
−0.604500 + 0.796605i \(0.706627\pi\)
\(410\) 0 0
\(411\) −1.08518e6 −0.316882
\(412\) − 1.25619e6i − 0.364596i
\(413\) − 1.38070e6i − 0.398313i
\(414\) −277135. −0.0794677
\(415\) 0 0
\(416\) −1.11174e6 −0.314970
\(417\) 4.45094e6i 1.25346i
\(418\) 2.77536e6i 0.776925i
\(419\) −3.67162e6 −1.02170 −0.510849 0.859671i \(-0.670669\pi\)
−0.510849 + 0.859671i \(0.670669\pi\)
\(420\) 0 0
\(421\) 1.59907e6 0.439705 0.219852 0.975533i \(-0.429442\pi\)
0.219852 + 0.975533i \(0.429442\pi\)
\(422\) 1.20493e6i 0.329367i
\(423\) 309964.i 0.0842288i
\(424\) −1.91761e6 −0.518020
\(425\) 0 0
\(426\) −4.33037e6 −1.15612
\(427\) 3.71514e6i 0.986065i
\(428\) 3.75009e6i 0.989536i
\(429\) 484779. 0.127175
\(430\) 0 0
\(431\) 6.53931e6 1.69566 0.847830 0.530268i \(-0.177909\pi\)
0.847830 + 0.530268i \(0.177909\pi\)
\(432\) 4.91409e6i 1.26688i
\(433\) − 1.60206e6i − 0.410639i −0.978695 0.205319i \(-0.934177\pi\)
0.978695 0.205319i \(-0.0658233\pi\)
\(434\) 9.31668e6 2.37431
\(435\) 0 0
\(436\) −792226. −0.199587
\(437\) 4.16729e6i 1.04388i
\(438\) − 520114.i − 0.129543i
\(439\) 4.84652e6 1.20024 0.600121 0.799909i \(-0.295119\pi\)
0.600121 + 0.799909i \(0.295119\pi\)
\(440\) 0 0
\(441\) −27726.7 −0.00678894
\(442\) 1.07593e6i 0.261957i
\(443\) − 580247.i − 0.140476i −0.997530 0.0702382i \(-0.977624\pi\)
0.997530 0.0702382i \(-0.0223759\pi\)
\(444\) −1.06361e6 −0.256050
\(445\) 0 0
\(446\) −8.30997e6 −1.97816
\(447\) 243784.i 0.0577081i
\(448\) − 1.04878e6i − 0.246881i
\(449\) −2.04347e6 −0.478356 −0.239178 0.970976i \(-0.576878\pi\)
−0.239178 + 0.970976i \(0.576878\pi\)
\(450\) 0 0
\(451\) −2.01104e6 −0.465565
\(452\) 811711.i 0.186877i
\(453\) − 5.74993e6i − 1.31649i
\(454\) −4.17640e6 −0.950960
\(455\) 0 0
\(456\) 2.38824e6 0.537857
\(457\) 1.52332e6i 0.341194i 0.985341 + 0.170597i \(0.0545695\pi\)
−0.985341 + 0.170597i \(0.945430\pi\)
\(458\) 8.12951e6i 1.81093i
\(459\) 3.42411e6 0.758605
\(460\) 0 0
\(461\) 7.87768e6 1.72642 0.863209 0.504847i \(-0.168451\pi\)
0.863209 + 0.504847i \(0.168451\pi\)
\(462\) 2.82792e6i 0.616399i
\(463\) − 136322.i − 0.0295539i −0.999891 0.0147770i \(-0.995296\pi\)
0.999891 0.0147770i \(-0.00470382\pi\)
\(464\) −58175.3 −0.0125442
\(465\) 0 0
\(466\) −7.90420e6 −1.68614
\(467\) 5.56784e6i 1.18139i 0.806894 + 0.590697i \(0.201147\pi\)
−0.806894 + 0.590697i \(0.798853\pi\)
\(468\) − 64636.8i − 0.0136416i
\(469\) 43034.2 0.00903404
\(470\) 0 0
\(471\) −3.53100e6 −0.733407
\(472\) − 815339.i − 0.168455i
\(473\) 776035.i 0.159488i
\(474\) −8.13852e6 −1.66379
\(475\) 0 0
\(476\) −2.48828e6 −0.503363
\(477\) − 436411.i − 0.0878213i
\(478\) 3.62284e6i 0.725237i
\(479\) −3.92083e6 −0.780799 −0.390399 0.920646i \(-0.627663\pi\)
−0.390399 + 0.920646i \(0.627663\pi\)
\(480\) 0 0
\(481\) −570345. −0.112402
\(482\) 1.22970e7i 2.41091i
\(483\) 4.24621e6i 0.828197i
\(484\) 2.61588e6 0.507581
\(485\) 0 0
\(486\) −1.00158e6 −0.192351
\(487\) 8.77882e6i 1.67731i 0.544661 + 0.838656i \(0.316658\pi\)
−0.544661 + 0.838656i \(0.683342\pi\)
\(488\) 2.19389e6i 0.417027i
\(489\) 3.07614e6 0.581747
\(490\) 0 0
\(491\) −9.13377e6 −1.70980 −0.854902 0.518789i \(-0.826383\pi\)
−0.854902 + 0.518789i \(0.826383\pi\)
\(492\) − 3.31282e6i − 0.616999i
\(493\) 40536.2i 0.00751148i
\(494\) −2.45161e6 −0.451996
\(495\) 0 0
\(496\) 1.18584e7 2.16432
\(497\) − 5.37026e6i − 0.975223i
\(498\) 1.55405e6i 0.280796i
\(499\) 9.41419e6 1.69251 0.846256 0.532777i \(-0.178852\pi\)
0.846256 + 0.532777i \(0.178852\pi\)
\(500\) 0 0
\(501\) −1.03403e6 −0.184052
\(502\) 2.61180e6i 0.462574i
\(503\) − 5.68086e6i − 1.00114i −0.865697 0.500569i \(-0.833124\pi\)
0.865697 0.500569i \(-0.166876\pi\)
\(504\) −196963. −0.0345389
\(505\) 0 0
\(506\) −2.91395e6 −0.505947
\(507\) 428229.i 0.0739871i
\(508\) 6.32945e6i 1.08819i
\(509\) −2.85772e6 −0.488906 −0.244453 0.969661i \(-0.578608\pi\)
−0.244453 + 0.969661i \(0.578608\pi\)
\(510\) 0 0
\(511\) 645012. 0.109274
\(512\) − 5.04413e6i − 0.850377i
\(513\) 7.80215e6i 1.30894i
\(514\) −5.21195e6 −0.870147
\(515\) 0 0
\(516\) −1.27837e6 −0.211365
\(517\) 3.25913e6i 0.536260i
\(518\) − 3.32706e6i − 0.544799i
\(519\) 9.19185e6 1.49791
\(520\) 0 0
\(521\) 2.64216e6 0.426446 0.213223 0.977004i \(-0.431604\pi\)
0.213223 + 0.977004i \(0.431604\pi\)
\(522\) − 6142.52i 0 0.000986667i
\(523\) − 1.02124e7i − 1.63258i −0.577645 0.816288i \(-0.696028\pi\)
0.577645 0.816288i \(-0.303972\pi\)
\(524\) 2.10714e6 0.335247
\(525\) 0 0
\(526\) 1.22320e6 0.192767
\(527\) − 8.26286e6i − 1.29600i
\(528\) 3.59942e6i 0.561885i
\(529\) 2.06096e6 0.320207
\(530\) 0 0
\(531\) 185555. 0.0285586
\(532\) − 5.66977e6i − 0.868533i
\(533\) − 1.77645e6i − 0.270854i
\(534\) −1.44167e7 −2.18782
\(535\) 0 0
\(536\) 25412.8 0.00382068
\(537\) − 9.56186e6i − 1.43089i
\(538\) 1.40652e7i 2.09504i
\(539\) −291533. −0.0432232
\(540\) 0 0
\(541\) −2.02275e6 −0.297132 −0.148566 0.988902i \(-0.547466\pi\)
−0.148566 + 0.988902i \(0.547466\pi\)
\(542\) − 1.48686e7i − 2.17407i
\(543\) − 2.17913e6i − 0.317163i
\(544\) −5.75169e6 −0.833293
\(545\) 0 0
\(546\) −2.49804e6 −0.358606
\(547\) 2.12905e6i 0.304241i 0.988362 + 0.152120i \(0.0486101\pi\)
−0.988362 + 0.152120i \(0.951390\pi\)
\(548\) 1.52135e6i 0.216410i
\(549\) −499285. −0.0706998
\(550\) 0 0
\(551\) −92365.4 −0.0129608
\(552\) 2.50750e6i 0.350262i
\(553\) − 1.00929e7i − 1.40347i
\(554\) −7.71242e6 −1.06762
\(555\) 0 0
\(556\) 6.23989e6 0.856032
\(557\) − 8.58830e6i − 1.17292i −0.809977 0.586461i \(-0.800521\pi\)
0.809977 0.586461i \(-0.199479\pi\)
\(558\) 1.25209e6i 0.170235i
\(559\) −685510. −0.0927863
\(560\) 0 0
\(561\) 2.50805e6 0.336457
\(562\) 6.81238e6i 0.909826i
\(563\) − 1.02986e7i − 1.36933i −0.728859 0.684664i \(-0.759949\pi\)
0.728859 0.684664i \(-0.240051\pi\)
\(564\) −5.36880e6 −0.710689
\(565\) 0 0
\(566\) −6.02361e6 −0.790343
\(567\) 7.35126e6i 0.960294i
\(568\) − 3.17127e6i − 0.412442i
\(569\) −4.16791e6 −0.539681 −0.269841 0.962905i \(-0.586971\pi\)
−0.269841 + 0.962905i \(0.586971\pi\)
\(570\) 0 0
\(571\) 7.69686e6 0.987923 0.493962 0.869484i \(-0.335548\pi\)
0.493962 + 0.869484i \(0.335548\pi\)
\(572\) − 679625.i − 0.0868519i
\(573\) 1.45044e7i 1.84549i
\(574\) 1.03628e7 1.31280
\(575\) 0 0
\(576\) 140947. 0.0177011
\(577\) − 1.42934e7i − 1.78729i −0.448775 0.893645i \(-0.648140\pi\)
0.448775 0.893645i \(-0.351860\pi\)
\(578\) − 4.77220e6i − 0.594154i
\(579\) −136503. −0.0169217
\(580\) 0 0
\(581\) −1.92723e6 −0.236861
\(582\) 2.11435e6i 0.258743i
\(583\) − 4.58866e6i − 0.559133i
\(584\) 380897. 0.0462141
\(585\) 0 0
\(586\) 1.29264e7 1.55501
\(587\) − 1.52860e7i − 1.83104i −0.402268 0.915522i \(-0.631778\pi\)
0.402268 0.915522i \(-0.368222\pi\)
\(588\) − 480247.i − 0.0572824i
\(589\) 1.88277e7 2.23619
\(590\) 0 0
\(591\) 8.50457e6 1.00157
\(592\) − 4.23473e6i − 0.496617i
\(593\) 8.42604e6i 0.983981i 0.870601 + 0.491991i \(0.163731\pi\)
−0.870601 + 0.491991i \(0.836269\pi\)
\(594\) −5.45559e6 −0.634418
\(595\) 0 0
\(596\) 341768. 0.0394109
\(597\) − 4.81737e6i − 0.553189i
\(598\) − 2.57403e6i − 0.294348i
\(599\) 1.40447e6 0.159936 0.0799680 0.996797i \(-0.474518\pi\)
0.0799680 + 0.996797i \(0.474518\pi\)
\(600\) 0 0
\(601\) 3.45723e6 0.390429 0.195214 0.980761i \(-0.437460\pi\)
0.195214 + 0.980761i \(0.437460\pi\)
\(602\) − 3.99887e6i − 0.449723i
\(603\) 5783.46i 0 0.000647731i
\(604\) −8.06098e6 −0.899075
\(605\) 0 0
\(606\) 9.86848e6 1.09161
\(607\) − 1.56253e7i − 1.72130i −0.509194 0.860652i \(-0.670056\pi\)
0.509194 0.860652i \(-0.329944\pi\)
\(608\) − 1.31058e7i − 1.43782i
\(609\) −94114.5 −0.0102828
\(610\) 0 0
\(611\) −2.87895e6 −0.311983
\(612\) − 334405.i − 0.0360906i
\(613\) 3.97422e6i 0.427170i 0.976924 + 0.213585i \(0.0685141\pi\)
−0.976924 + 0.213585i \(0.931486\pi\)
\(614\) 2.13494e6 0.228541
\(615\) 0 0
\(616\) −2.07098e6 −0.219899
\(617\) − 5.17583e6i − 0.547353i −0.961822 0.273676i \(-0.911760\pi\)
0.961822 0.273676i \(-0.0882397\pi\)
\(618\) − 6.52451e6i − 0.687189i
\(619\) −2.06480e6 −0.216597 −0.108298 0.994118i \(-0.534540\pi\)
−0.108298 + 0.994118i \(0.534540\pi\)
\(620\) 0 0
\(621\) −8.19174e6 −0.852407
\(622\) 1.70552e7i 1.76759i
\(623\) − 1.78787e7i − 1.84550i
\(624\) −3.17954e6 −0.326891
\(625\) 0 0
\(626\) 8.78390e6 0.895883
\(627\) 5.71483e6i 0.580543i
\(628\) 4.95020e6i 0.500869i
\(629\) −2.95074e6 −0.297374
\(630\) 0 0
\(631\) −1.72030e7 −1.72001 −0.860003 0.510289i \(-0.829539\pi\)
−0.860003 + 0.510289i \(0.829539\pi\)
\(632\) − 5.96010e6i − 0.593555i
\(633\) 2.48110e6i 0.246113i
\(634\) 1.61626e7 1.59693
\(635\) 0 0
\(636\) 7.55896e6 0.741002
\(637\) − 257526.i − 0.0251462i
\(638\) − 64585.8i − 0.00628182i
\(639\) 721720. 0.0699224
\(640\) 0 0
\(641\) −7.98432e6 −0.767526 −0.383763 0.923432i \(-0.625372\pi\)
−0.383763 + 0.923432i \(0.625372\pi\)
\(642\) 1.94775e7i 1.86508i
\(643\) 5.66314e6i 0.540169i 0.962837 + 0.270085i \(0.0870517\pi\)
−0.962837 + 0.270085i \(0.912948\pi\)
\(644\) 5.95288e6 0.565604
\(645\) 0 0
\(646\) −1.26837e7 −1.19581
\(647\) − 3.74193e6i − 0.351427i −0.984441 0.175713i \(-0.943777\pi\)
0.984441 0.175713i \(-0.0562232\pi\)
\(648\) 4.34111e6i 0.406128i
\(649\) 1.95103e6 0.181824
\(650\) 0 0
\(651\) 1.91842e7 1.77416
\(652\) − 4.31253e6i − 0.397295i
\(653\) − 1.41967e7i − 1.30288i −0.758702 0.651438i \(-0.774166\pi\)
0.758702 0.651438i \(-0.225834\pi\)
\(654\) −4.11474e6 −0.376182
\(655\) 0 0
\(656\) 1.31899e7 1.19669
\(657\) 86684.6i 0.00783481i
\(658\) − 1.67941e7i − 1.51214i
\(659\) 7.43083e6 0.666536 0.333268 0.942832i \(-0.391849\pi\)
0.333268 + 0.942832i \(0.391849\pi\)
\(660\) 0 0
\(661\) 1.44503e7 1.28639 0.643194 0.765703i \(-0.277609\pi\)
0.643194 + 0.765703i \(0.277609\pi\)
\(662\) − 1.00015e7i − 0.886989i
\(663\) 2.21548e6i 0.195742i
\(664\) −1.13808e6 −0.100174
\(665\) 0 0
\(666\) 447131. 0.0390615
\(667\) − 96977.5i − 0.00844027i
\(668\) 1.44964e6i 0.125695i
\(669\) −1.71113e7 −1.47815
\(670\) 0 0
\(671\) −5.24975e6 −0.450125
\(672\) − 1.33539e7i − 1.14074i
\(673\) 8.38558e6i 0.713667i 0.934168 + 0.356834i \(0.116144\pi\)
−0.934168 + 0.356834i \(0.883856\pi\)
\(674\) −3.12143e6 −0.264669
\(675\) 0 0
\(676\) 600346. 0.0505283
\(677\) 1.53211e7i 1.28475i 0.766390 + 0.642376i \(0.222051\pi\)
−0.766390 + 0.642376i \(0.777949\pi\)
\(678\) 4.21594e6i 0.352225i
\(679\) −2.62208e6 −0.218259
\(680\) 0 0
\(681\) −8.59974e6 −0.710587
\(682\) 1.31651e7i 1.08384i
\(683\) − 1.08140e7i − 0.887021i −0.896269 0.443510i \(-0.853733\pi\)
0.896269 0.443510i \(-0.146267\pi\)
\(684\) 761972. 0.0622729
\(685\) 0 0
\(686\) −1.50669e7 −1.22240
\(687\) 1.67397e7i 1.35318i
\(688\) − 5.08981e6i − 0.409950i
\(689\) 4.05339e6 0.325290
\(690\) 0 0
\(691\) 2.25890e7 1.79971 0.899853 0.436193i \(-0.143673\pi\)
0.899853 + 0.436193i \(0.143673\pi\)
\(692\) − 1.28863e7i − 1.02297i
\(693\) − 471314.i − 0.0372801i
\(694\) −2.43237e7 −1.91704
\(695\) 0 0
\(696\) −55577.1 −0.00434883
\(697\) − 9.19065e6i − 0.716579i
\(698\) − 1.20758e7i − 0.938159i
\(699\) −1.62758e7 −1.25994
\(700\) 0 0
\(701\) 1.06616e7 0.819461 0.409731 0.912207i \(-0.365623\pi\)
0.409731 + 0.912207i \(0.365623\pi\)
\(702\) − 4.81919e6i − 0.369089i
\(703\) − 6.72353e6i − 0.513108i
\(704\) 1.48200e6 0.112698
\(705\) 0 0
\(706\) 1.90852e7 1.44107
\(707\) 1.22383e7i 0.920812i
\(708\) 3.21395e6i 0.240966i
\(709\) 1.17029e7 0.874333 0.437166 0.899381i \(-0.355982\pi\)
0.437166 + 0.899381i \(0.355982\pi\)
\(710\) 0 0
\(711\) 1.35640e6 0.100627
\(712\) − 1.05578e7i − 0.780501i
\(713\) 1.97678e7i 1.45625i
\(714\) −1.29238e7 −0.948738
\(715\) 0 0
\(716\) −1.34050e7 −0.977204
\(717\) 7.45990e6i 0.541920i
\(718\) − 5.96247e6i − 0.431633i
\(719\) −2.34149e6 −0.168915 −0.0844577 0.996427i \(-0.526916\pi\)
−0.0844577 + 0.996427i \(0.526916\pi\)
\(720\) 0 0
\(721\) 8.09128e6 0.579668
\(722\) − 1.08713e7i − 0.776135i
\(723\) 2.53211e7i 1.80151i
\(724\) −3.05498e6 −0.216602
\(725\) 0 0
\(726\) 1.35866e7 0.956687
\(727\) − 6.10487e6i − 0.428391i −0.976791 0.214195i \(-0.931287\pi\)
0.976791 0.214195i \(-0.0687129\pi\)
\(728\) − 1.82940e6i − 0.127932i
\(729\) −1.52564e7 −1.06325
\(730\) 0 0
\(731\) −3.54655e6 −0.245478
\(732\) − 8.64799e6i − 0.596537i
\(733\) − 1.79993e7i − 1.23736i −0.785642 0.618681i \(-0.787667\pi\)
0.785642 0.618681i \(-0.212333\pi\)
\(734\) 2.04951e7 1.40414
\(735\) 0 0
\(736\) 1.37602e7 0.936330
\(737\) 60810.4i 0.00412391i
\(738\) 1.39268e6i 0.0941260i
\(739\) −2.02603e7 −1.36469 −0.682346 0.731030i \(-0.739040\pi\)
−0.682346 + 0.731030i \(0.739040\pi\)
\(740\) 0 0
\(741\) −5.04819e6 −0.337746
\(742\) 2.36451e7i 1.57664i
\(743\) 2.77445e7i 1.84376i 0.387472 + 0.921881i \(0.373348\pi\)
−0.387472 + 0.921881i \(0.626652\pi\)
\(744\) 1.13288e7 0.750328
\(745\) 0 0
\(746\) −3.38523e7 −2.22711
\(747\) − 259005.i − 0.0169827i
\(748\) − 3.51611e6i − 0.229778i
\(749\) −2.41548e7 −1.57326
\(750\) 0 0
\(751\) −2.16593e7 −1.40134 −0.700672 0.713483i \(-0.747117\pi\)
−0.700672 + 0.713483i \(0.747117\pi\)
\(752\) − 2.13758e7i − 1.37841i
\(753\) 5.37804e6i 0.345650i
\(754\) 57051.7 0.00365461
\(755\) 0 0
\(756\) 1.11452e7 0.709223
\(757\) − 2.34452e7i − 1.48701i −0.668731 0.743505i \(-0.733162\pi\)
0.668731 0.743505i \(-0.266838\pi\)
\(758\) − 1.70006e7i − 1.07471i
\(759\) −6.00019e6 −0.378060
\(760\) 0 0
\(761\) −2.00518e7 −1.25514 −0.627569 0.778561i \(-0.715950\pi\)
−0.627569 + 0.778561i \(0.715950\pi\)
\(762\) 3.28745e7i 2.05103i
\(763\) − 5.10284e6i − 0.317322i
\(764\) 2.03341e7 1.26035
\(765\) 0 0
\(766\) −2.22599e7 −1.37073
\(767\) 1.72344e6i 0.105781i
\(768\) − 2.05407e7i − 1.25664i
\(769\) −2.69938e7 −1.64607 −0.823034 0.567992i \(-0.807720\pi\)
−0.823034 + 0.567992i \(0.807720\pi\)
\(770\) 0 0
\(771\) −1.07321e7 −0.650201
\(772\) 191367.i 0.0115564i
\(773\) 1.55609e7i 0.936668i 0.883552 + 0.468334i \(0.155146\pi\)
−0.883552 + 0.468334i \(0.844854\pi\)
\(774\) 537416. 0.0322447
\(775\) 0 0
\(776\) −1.54841e6 −0.0923061
\(777\) − 6.85085e6i − 0.407091i
\(778\) 9.12167e6i 0.540288i
\(779\) 2.09418e7 1.23643
\(780\) 0 0
\(781\) 7.58855e6 0.445175
\(782\) − 1.33170e7i − 0.778734i
\(783\) − 181565.i − 0.0105834i
\(784\) 1.91209e6 0.111101
\(785\) 0 0
\(786\) 1.09442e7 0.631872
\(787\) 2.60132e7i 1.49712i 0.663067 + 0.748560i \(0.269255\pi\)
−0.663067 + 0.748560i \(0.730745\pi\)
\(788\) − 1.19228e7i − 0.684010i
\(789\) 2.51872e6 0.144041
\(790\) 0 0
\(791\) −5.22834e6 −0.297114
\(792\) − 278323.i − 0.0157665i
\(793\) − 4.63736e6i − 0.261871i
\(794\) −3.96435e7 −2.23162
\(795\) 0 0
\(796\) −6.75360e6 −0.377792
\(797\) 1.36342e7i 0.760296i 0.924926 + 0.380148i \(0.124127\pi\)
−0.924926 + 0.380148i \(0.875873\pi\)
\(798\) − 2.94482e7i − 1.63701i
\(799\) −1.48945e7 −0.825390
\(800\) 0 0
\(801\) 2.40275e6 0.132320
\(802\) 2.73337e7i 1.50059i
\(803\) 911448.i 0.0498819i
\(804\) −100174. −0.00546530
\(805\) 0 0
\(806\) −1.16294e7 −0.630550
\(807\) 2.89621e7i 1.56548i
\(808\) 7.22701e6i 0.389431i
\(809\) 7.65343e6 0.411135 0.205568 0.978643i \(-0.434096\pi\)
0.205568 + 0.978643i \(0.434096\pi\)
\(810\) 0 0
\(811\) 1.95683e7 1.04472 0.522360 0.852725i \(-0.325052\pi\)
0.522360 + 0.852725i \(0.325052\pi\)
\(812\) 131942.i 0.00702251i
\(813\) − 3.06164e7i − 1.62453i
\(814\) 4.70137e6 0.248693
\(815\) 0 0
\(816\) −1.64497e7 −0.864832
\(817\) − 8.08115e6i − 0.423563i
\(818\) 2.97820e7i 1.55622i
\(819\) 416334. 0.0216886
\(820\) 0 0
\(821\) −2.71975e7 −1.40822 −0.704112 0.710089i \(-0.748654\pi\)
−0.704112 + 0.710089i \(0.748654\pi\)
\(822\) 7.90172e6i 0.407889i
\(823\) 3.39792e7i 1.74870i 0.485300 + 0.874348i \(0.338710\pi\)
−0.485300 + 0.874348i \(0.661290\pi\)
\(824\) 4.77811e6 0.245153
\(825\) 0 0
\(826\) −1.00535e7 −0.512706
\(827\) 2.56121e7i 1.30221i 0.758988 + 0.651105i \(0.225694\pi\)
−0.758988 + 0.651105i \(0.774306\pi\)
\(828\) 800020.i 0.0405532i
\(829\) −1.33798e7 −0.676180 −0.338090 0.941114i \(-0.609781\pi\)
−0.338090 + 0.941114i \(0.609781\pi\)
\(830\) 0 0
\(831\) −1.58809e7 −0.797759
\(832\) 1.30912e6i 0.0655648i
\(833\) − 1.33233e6i − 0.0665274i
\(834\) 3.24094e7 1.61345
\(835\) 0 0
\(836\) 8.01178e6 0.396473
\(837\) 3.70100e7i 1.82602i
\(838\) 2.67348e7i 1.31512i
\(839\) 1.59865e7 0.784056 0.392028 0.919953i \(-0.371774\pi\)
0.392028 + 0.919953i \(0.371774\pi\)
\(840\) 0 0
\(841\) −2.05090e7 −0.999895
\(842\) − 1.16435e7i − 0.565985i
\(843\) 1.40276e7i 0.679851i
\(844\) 3.47832e6 0.168079
\(845\) 0 0
\(846\) 2.25699e6 0.108419
\(847\) 1.68493e7i 0.806998i
\(848\) 3.00958e7i 1.43720i
\(849\) −1.24034e7 −0.590570
\(850\) 0 0
\(851\) 7.05925e6 0.334145
\(852\) 1.25007e7i 0.589978i
\(853\) 2.04688e7i 0.963209i 0.876389 + 0.481605i \(0.159946\pi\)
−0.876389 + 0.481605i \(0.840054\pi\)
\(854\) 2.70517e7 1.26926
\(855\) 0 0
\(856\) −1.42640e7 −0.665362
\(857\) − 1.31659e7i − 0.612349i −0.951975 0.306175i \(-0.900951\pi\)
0.951975 0.306175i \(-0.0990492\pi\)
\(858\) − 3.52990e6i − 0.163698i
\(859\) 3.58429e7 1.65737 0.828686 0.559713i \(-0.189089\pi\)
0.828686 + 0.559713i \(0.189089\pi\)
\(860\) 0 0
\(861\) 2.13383e7 0.980962
\(862\) − 4.76158e7i − 2.18264i
\(863\) 9.29285e6i 0.424739i 0.977189 + 0.212369i \(0.0681180\pi\)
−0.977189 + 0.212369i \(0.931882\pi\)
\(864\) 2.57623e7 1.17409
\(865\) 0 0
\(866\) −1.16654e7 −0.528572
\(867\) − 9.82658e6i − 0.443971i
\(868\) − 2.68949e7i − 1.21163i
\(869\) 1.42619e7 0.640662
\(870\) 0 0
\(871\) −53716.8 −0.00239919
\(872\) − 3.01336e6i − 0.134202i
\(873\) − 352387.i − 0.0156489i
\(874\) 3.03440e7 1.34368
\(875\) 0 0
\(876\) −1.50144e6 −0.0661070
\(877\) 3.01018e7i 1.32158i 0.750570 + 0.660791i \(0.229779\pi\)
−0.750570 + 0.660791i \(0.770221\pi\)
\(878\) − 3.52898e7i − 1.54494i
\(879\) 2.66171e7 1.16195
\(880\) 0 0
\(881\) 4.75023e6 0.206193 0.103097 0.994671i \(-0.467125\pi\)
0.103097 + 0.994671i \(0.467125\pi\)
\(882\) 201891.i 0.00873868i
\(883\) 2.31803e7i 1.00050i 0.865881 + 0.500250i \(0.166758\pi\)
−0.865881 + 0.500250i \(0.833242\pi\)
\(884\) 3.10595e6 0.133679
\(885\) 0 0
\(886\) −4.22505e6 −0.180820
\(887\) − 3.60486e7i − 1.53844i −0.638986 0.769219i \(-0.720646\pi\)
0.638986 0.769219i \(-0.279354\pi\)
\(888\) − 4.04560e6i − 0.172167i
\(889\) −4.07689e7 −1.73011
\(890\) 0 0
\(891\) −1.03879e7 −0.438361
\(892\) 2.39888e7i 1.00948i
\(893\) − 3.39385e7i − 1.42418i
\(894\) 1.77511e6 0.0742816
\(895\) 0 0
\(896\) 2.08641e7 0.868221
\(897\) − 5.30026e6i − 0.219946i
\(898\) 1.48794e7i 0.615737i
\(899\) −438142. −0.0180807
\(900\) 0 0
\(901\) 2.09706e7 0.860595
\(902\) 1.46433e7i 0.599272i
\(903\) − 8.23418e6i − 0.336048i
\(904\) −3.08747e6 −0.125656
\(905\) 0 0
\(906\) −4.18679e7 −1.69457
\(907\) − 3.74734e7i − 1.51253i −0.654264 0.756266i \(-0.727021\pi\)
0.654264 0.756266i \(-0.272979\pi\)
\(908\) 1.20562e7i 0.485284i
\(909\) −1.64473e6 −0.0660212
\(910\) 0 0
\(911\) 2.58798e7 1.03315 0.516577 0.856241i \(-0.327206\pi\)
0.516577 + 0.856241i \(0.327206\pi\)
\(912\) − 3.74821e7i − 1.49223i
\(913\) − 2.72332e6i − 0.108124i
\(914\) 1.10920e7 0.439182
\(915\) 0 0
\(916\) 2.34679e7 0.924134
\(917\) 1.35724e7i 0.533006i
\(918\) − 2.49325e7i − 0.976472i
\(919\) −1.10504e6 −0.0431606 −0.0215803 0.999767i \(-0.506870\pi\)
−0.0215803 + 0.999767i \(0.506870\pi\)
\(920\) 0 0
\(921\) 4.39611e6 0.170773
\(922\) − 5.73611e7i − 2.22224i
\(923\) 6.70333e6i 0.258992i
\(924\) 8.16350e6 0.314555
\(925\) 0 0
\(926\) −992628. −0.0380416
\(927\) 1.08740e6i 0.0415615i
\(928\) 304985.i 0.0116254i
\(929\) 2.92574e6 0.111224 0.0556118 0.998452i \(-0.482289\pi\)
0.0556118 + 0.998452i \(0.482289\pi\)
\(930\) 0 0
\(931\) 3.03585e6 0.114790
\(932\) 2.28175e7i 0.860453i
\(933\) 3.51189e7i 1.32080i
\(934\) 4.05421e7 1.52068
\(935\) 0 0
\(936\) 245856. 0.00917258
\(937\) 2.45270e7i 0.912632i 0.889818 + 0.456316i \(0.150831\pi\)
−0.889818 + 0.456316i \(0.849169\pi\)
\(938\) − 313352.i − 0.0116286i
\(939\) 1.80872e7 0.669432
\(940\) 0 0
\(941\) 919876. 0.0338653 0.0169327 0.999857i \(-0.494610\pi\)
0.0169327 + 0.999857i \(0.494610\pi\)
\(942\) 2.57108e7i 0.944037i
\(943\) 2.19874e7i 0.805184i
\(944\) −1.27963e7 −0.467362
\(945\) 0 0
\(946\) 5.65068e6 0.205292
\(947\) 9.61521e6i 0.348405i 0.984710 + 0.174202i \(0.0557347\pi\)
−0.984710 + 0.174202i \(0.944265\pi\)
\(948\) 2.34939e7i 0.849051i
\(949\) −805126. −0.0290201
\(950\) 0 0
\(951\) 3.32808e7 1.19328
\(952\) − 9.46455e6i − 0.338460i
\(953\) − 2.43193e7i − 0.867399i −0.901058 0.433699i \(-0.857208\pi\)
0.901058 0.433699i \(-0.142792\pi\)
\(954\) −3.17772e6 −0.113043
\(955\) 0 0
\(956\) 1.04582e7 0.370096
\(957\) − 132990.i − 0.00469397i
\(958\) 2.85494e7i 1.00504i
\(959\) −9.79921e6 −0.344068
\(960\) 0 0
\(961\) 6.06813e7 2.11956
\(962\) 4.15295e6i 0.144683i
\(963\) − 3.24622e6i − 0.112801i
\(964\) 3.54984e7 1.23031
\(965\) 0 0
\(966\) 3.09186e7 1.06605
\(967\) − 2.12248e7i − 0.729922i −0.931023 0.364961i \(-0.881082\pi\)
0.931023 0.364961i \(-0.118918\pi\)
\(968\) 9.94993e6i 0.341296i
\(969\) −2.61173e7 −0.893549
\(970\) 0 0
\(971\) −3.64590e7 −1.24096 −0.620479 0.784223i \(-0.713062\pi\)
−0.620479 + 0.784223i \(0.713062\pi\)
\(972\) 2.89131e6i 0.0981587i
\(973\) 4.01920e7i 1.36100i
\(974\) 6.39227e7 2.15903
\(975\) 0 0
\(976\) 3.44318e7 1.15700
\(977\) − 1.86618e7i − 0.625487i −0.949838 0.312743i \(-0.898752\pi\)
0.949838 0.312743i \(-0.101248\pi\)
\(978\) − 2.23988e7i − 0.748821i
\(979\) 2.52638e7 0.842445
\(980\) 0 0
\(981\) 685781. 0.0227516
\(982\) 6.65073e7i 2.20085i
\(983\) − 4.07152e6i − 0.134392i −0.997740 0.0671959i \(-0.978595\pi\)
0.997740 0.0671959i \(-0.0214053\pi\)
\(984\) 1.26008e7 0.414869
\(985\) 0 0
\(986\) 295163. 0.00966873
\(987\) − 3.45812e7i − 1.12992i
\(988\) 7.07720e6i 0.230658i
\(989\) 8.48466e6 0.275832
\(990\) 0 0
\(991\) 3.55164e7 1.14880 0.574401 0.818574i \(-0.305235\pi\)
0.574401 + 0.818574i \(0.305235\pi\)
\(992\) − 6.21680e7i − 2.00580i
\(993\) − 2.05943e7i − 0.662786i
\(994\) −3.91033e7 −1.25530
\(995\) 0 0
\(996\) 4.48616e6 0.143293
\(997\) 2.88979e7i 0.920721i 0.887732 + 0.460360i \(0.152280\pi\)
−0.887732 + 0.460360i \(0.847720\pi\)
\(998\) − 6.85491e7i − 2.17859i
\(999\) 1.32166e7 0.418992
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.h.274.5 18
5.2 odd 4 325.6.a.h.1.8 9
5.3 odd 4 325.6.a.i.1.2 yes 9
5.4 even 2 inner 325.6.b.h.274.14 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.8 9 5.2 odd 4
325.6.a.i.1.2 yes 9 5.3 odd 4
325.6.b.h.274.5 18 1.1 even 1 trivial
325.6.b.h.274.14 18 5.4 even 2 inner