Properties

Label 325.6.b.h.274.3
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 378 x^{16} + 59175 x^{14} + 4956036 x^{12} + 239061247 x^{10} + 6629044458 x^{8} + \cdots + 134659641600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.3
Root \(-7.11691i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.h.274.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.11691i q^{2} +3.22994i q^{3} -33.8842 q^{4} +26.2172 q^{6} -20.7248i q^{7} +15.2938i q^{8} +232.567 q^{9} +O(q^{10})\) \(q-8.11691i q^{2} +3.22994i q^{3} -33.8842 q^{4} +26.2172 q^{6} -20.7248i q^{7} +15.2938i q^{8} +232.567 q^{9} +134.772 q^{11} -109.444i q^{12} -169.000i q^{13} -168.222 q^{14} -960.156 q^{16} +2192.81i q^{17} -1887.73i q^{18} +1981.97 q^{19} +66.9401 q^{21} -1093.93i q^{22} +4227.53i q^{23} -49.3980 q^{24} -1371.76 q^{26} +1536.06i q^{27} +702.244i q^{28} -2547.33 q^{29} -1368.81 q^{31} +8282.90i q^{32} +435.305i q^{33} +17798.9 q^{34} -7880.36 q^{36} +14161.1i q^{37} -16087.5i q^{38} +545.861 q^{39} +11750.1 q^{41} -543.347i q^{42} -6627.63i q^{43} -4566.63 q^{44} +34314.5 q^{46} -14822.2i q^{47} -3101.25i q^{48} +16377.5 q^{49} -7082.67 q^{51} +5726.43i q^{52} -24261.4i q^{53} +12468.0 q^{54} +316.961 q^{56} +6401.66i q^{57} +20676.4i q^{58} -1438.11 q^{59} +16295.7 q^{61} +11110.5i q^{62} -4819.92i q^{63} +36506.5 q^{64} +3533.33 q^{66} +16700.2i q^{67} -74301.7i q^{68} -13654.7 q^{69} +27153.9 q^{71} +3556.83i q^{72} -63222.7i q^{73} +114944. q^{74} -67157.5 q^{76} -2793.12i q^{77} -4430.70i q^{78} +58165.8 q^{79} +51552.5 q^{81} -95374.1i q^{82} +121286. i q^{83} -2268.21 q^{84} -53795.9 q^{86} -8227.72i q^{87} +2061.17i q^{88} +49897.1 q^{89} -3502.50 q^{91} -143246. i q^{92} -4421.18i q^{93} -120311. q^{94} -26753.3 q^{96} -21395.4i q^{97} -132934. i q^{98} +31343.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9} - 2844 q^{11} + 684 q^{14} - 2122 q^{16} + 816 q^{19} - 7824 q^{21} + 16938 q^{24} - 1690 q^{26} + 17474 q^{29} + 1496 q^{31} + 35578 q^{34} + 1024 q^{36} + 3718 q^{39} - 57352 q^{41} + 61198 q^{44} - 24112 q^{46} + 81814 q^{49} - 62012 q^{51} + 205522 q^{54} - 46004 q^{56} + 176284 q^{59} + 56330 q^{61} + 201690 q^{64} + 85154 q^{66} + 363494 q^{69} - 141124 q^{71} + 271352 q^{74} + 92746 q^{76} + 328146 q^{79} - 139870 q^{81} + 691312 q^{84} - 589840 q^{86} + 505396 q^{89} + 4056 q^{91} + 1003212 q^{94} - 638362 q^{96} + 1515552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 8.11691i − 1.43488i −0.696620 0.717440i \(-0.745314\pi\)
0.696620 0.717440i \(-0.254686\pi\)
\(3\) 3.22994i 0.207201i 0.994619 + 0.103601i \(0.0330364\pi\)
−0.994619 + 0.103601i \(0.966964\pi\)
\(4\) −33.8842 −1.05888
\(5\) 0 0
\(6\) 26.2172 0.297309
\(7\) − 20.7248i − 0.159862i −0.996800 0.0799312i \(-0.974530\pi\)
0.996800 0.0799312i \(-0.0254700\pi\)
\(8\) 15.2938i 0.0844869i
\(9\) 232.567 0.957068
\(10\) 0 0
\(11\) 134.772 0.335828 0.167914 0.985802i \(-0.446297\pi\)
0.167914 + 0.985802i \(0.446297\pi\)
\(12\) − 109.444i − 0.219401i
\(13\) − 169.000i − 0.277350i
\(14\) −168.222 −0.229383
\(15\) 0 0
\(16\) −960.156 −0.937652
\(17\) 2192.81i 1.84026i 0.391612 + 0.920131i \(0.371918\pi\)
−0.391612 + 0.920131i \(0.628082\pi\)
\(18\) − 1887.73i − 1.37328i
\(19\) 1981.97 1.25954 0.629772 0.776780i \(-0.283148\pi\)
0.629772 + 0.776780i \(0.283148\pi\)
\(20\) 0 0
\(21\) 66.9401 0.0331236
\(22\) − 1093.93i − 0.481873i
\(23\) 4227.53i 1.66635i 0.553006 + 0.833177i \(0.313481\pi\)
−0.553006 + 0.833177i \(0.686519\pi\)
\(24\) −49.3980 −0.0175058
\(25\) 0 0
\(26\) −1371.76 −0.397964
\(27\) 1536.06i 0.405507i
\(28\) 702.244i 0.169275i
\(29\) −2547.33 −0.562457 −0.281229 0.959641i \(-0.590742\pi\)
−0.281229 + 0.959641i \(0.590742\pi\)
\(30\) 0 0
\(31\) −1368.81 −0.255822 −0.127911 0.991786i \(-0.540827\pi\)
−0.127911 + 0.991786i \(0.540827\pi\)
\(32\) 8282.90i 1.42991i
\(33\) 435.305i 0.0695840i
\(34\) 17798.9 2.64055
\(35\) 0 0
\(36\) −7880.36 −1.01342
\(37\) 14161.1i 1.70056i 0.526327 + 0.850282i \(0.323569\pi\)
−0.526327 + 0.850282i \(0.676431\pi\)
\(38\) − 16087.5i − 1.80729i
\(39\) 545.861 0.0574672
\(40\) 0 0
\(41\) 11750.1 1.09164 0.545821 0.837902i \(-0.316218\pi\)
0.545821 + 0.837902i \(0.316218\pi\)
\(42\) − 543.347i − 0.0475285i
\(43\) − 6627.63i − 0.546622i −0.961926 0.273311i \(-0.911881\pi\)
0.961926 0.273311i \(-0.0881189\pi\)
\(44\) −4566.63 −0.355602
\(45\) 0 0
\(46\) 34314.5 2.39102
\(47\) − 14822.2i − 0.978744i −0.872075 0.489372i \(-0.837226\pi\)
0.872075 0.489372i \(-0.162774\pi\)
\(48\) − 3101.25i − 0.194283i
\(49\) 16377.5 0.974444
\(50\) 0 0
\(51\) −7082.67 −0.381304
\(52\) 5726.43i 0.293681i
\(53\) − 24261.4i − 1.18639i −0.805060 0.593193i \(-0.797867\pi\)
0.805060 0.593193i \(-0.202133\pi\)
\(54\) 12468.0 0.581853
\(55\) 0 0
\(56\) 316.961 0.0135063
\(57\) 6401.66i 0.260979i
\(58\) 20676.4i 0.807059i
\(59\) −1438.11 −0.0537850 −0.0268925 0.999638i \(-0.508561\pi\)
−0.0268925 + 0.999638i \(0.508561\pi\)
\(60\) 0 0
\(61\) 16295.7 0.560724 0.280362 0.959894i \(-0.409546\pi\)
0.280362 + 0.959894i \(0.409546\pi\)
\(62\) 11110.5i 0.367074i
\(63\) − 4819.92i − 0.152999i
\(64\) 36506.5 1.11409
\(65\) 0 0
\(66\) 3533.33 0.0998446
\(67\) 16700.2i 0.454502i 0.973836 + 0.227251i \(0.0729738\pi\)
−0.973836 + 0.227251i \(0.927026\pi\)
\(68\) − 74301.7i − 1.94862i
\(69\) −13654.7 −0.345270
\(70\) 0 0
\(71\) 27153.9 0.639273 0.319636 0.947540i \(-0.396439\pi\)
0.319636 + 0.947540i \(0.396439\pi\)
\(72\) 3556.83i 0.0808597i
\(73\) − 63222.7i − 1.38856i −0.719703 0.694282i \(-0.755722\pi\)
0.719703 0.694282i \(-0.244278\pi\)
\(74\) 114944. 2.44011
\(75\) 0 0
\(76\) −67157.5 −1.33371
\(77\) − 2793.12i − 0.0536863i
\(78\) − 4430.70i − 0.0824586i
\(79\) 58165.8 1.04858 0.524288 0.851541i \(-0.324331\pi\)
0.524288 + 0.851541i \(0.324331\pi\)
\(80\) 0 0
\(81\) 51552.5 0.873046
\(82\) − 95374.1i − 1.56638i
\(83\) 121286.i 1.93249i 0.257632 + 0.966243i \(0.417058\pi\)
−0.257632 + 0.966243i \(0.582942\pi\)
\(84\) −2268.21 −0.0350740
\(85\) 0 0
\(86\) −53795.9 −0.784337
\(87\) − 8227.72i − 0.116542i
\(88\) 2061.17i 0.0283731i
\(89\) 49897.1 0.667729 0.333865 0.942621i \(-0.391647\pi\)
0.333865 + 0.942621i \(0.391647\pi\)
\(90\) 0 0
\(91\) −3502.50 −0.0443378
\(92\) − 143246.i − 1.76447i
\(93\) − 4421.18i − 0.0530067i
\(94\) −120311. −1.40438
\(95\) 0 0
\(96\) −26753.3 −0.296278
\(97\) − 21395.4i − 0.230883i −0.993314 0.115441i \(-0.963172\pi\)
0.993314 0.115441i \(-0.0368283\pi\)
\(98\) − 132934.i − 1.39821i
\(99\) 31343.5 0.321410
\(100\) 0 0
\(101\) −107983. −1.05330 −0.526648 0.850084i \(-0.676551\pi\)
−0.526648 + 0.850084i \(0.676551\pi\)
\(102\) 57489.4i 0.547126i
\(103\) 40865.0i 0.379541i 0.981828 + 0.189771i \(0.0607744\pi\)
−0.981828 + 0.189771i \(0.939226\pi\)
\(104\) 2584.65 0.0234325
\(105\) 0 0
\(106\) −196928. −1.70232
\(107\) − 74698.6i − 0.630744i −0.948968 0.315372i \(-0.897871\pi\)
0.948968 0.315372i \(-0.102129\pi\)
\(108\) − 52048.0i − 0.429383i
\(109\) 84724.3 0.683033 0.341517 0.939876i \(-0.389059\pi\)
0.341517 + 0.939876i \(0.389059\pi\)
\(110\) 0 0
\(111\) −45739.6 −0.352359
\(112\) 19899.1i 0.149895i
\(113\) 92231.9i 0.679493i 0.940517 + 0.339747i \(0.110341\pi\)
−0.940517 + 0.339747i \(0.889659\pi\)
\(114\) 51961.7 0.374473
\(115\) 0 0
\(116\) 86314.1 0.595575
\(117\) − 39303.9i − 0.265443i
\(118\) 11673.0i 0.0771751i
\(119\) 45445.7 0.294188
\(120\) 0 0
\(121\) −142888. −0.887219
\(122\) − 132271.i − 0.804572i
\(123\) 37952.0i 0.226189i
\(124\) 46381.0 0.270885
\(125\) 0 0
\(126\) −39122.9 −0.219535
\(127\) − 330445.i − 1.81799i −0.416812 0.908993i \(-0.636853\pi\)
0.416812 0.908993i \(-0.363147\pi\)
\(128\) − 31267.3i − 0.168681i
\(129\) 21406.9 0.113261
\(130\) 0 0
\(131\) −73109.1 −0.372214 −0.186107 0.982529i \(-0.559587\pi\)
−0.186107 + 0.982529i \(0.559587\pi\)
\(132\) − 14750.0i − 0.0736811i
\(133\) − 41076.0i − 0.201354i
\(134\) 135554. 0.652156
\(135\) 0 0
\(136\) −33536.4 −0.155478
\(137\) − 137616.i − 0.626421i −0.949684 0.313211i \(-0.898595\pi\)
0.949684 0.313211i \(-0.101405\pi\)
\(138\) 110834.i 0.495422i
\(139\) −366876. −1.61058 −0.805291 0.592880i \(-0.797991\pi\)
−0.805291 + 0.592880i \(0.797991\pi\)
\(140\) 0 0
\(141\) 47875.0 0.202797
\(142\) − 220406.i − 0.917280i
\(143\) − 22776.4i − 0.0931420i
\(144\) −223301. −0.897397
\(145\) 0 0
\(146\) −513173. −1.99242
\(147\) 52898.4i 0.201906i
\(148\) − 479838.i − 1.80070i
\(149\) 426714. 1.57460 0.787302 0.616567i \(-0.211477\pi\)
0.787302 + 0.616567i \(0.211477\pi\)
\(150\) 0 0
\(151\) 22573.4 0.0805663 0.0402832 0.999188i \(-0.487174\pi\)
0.0402832 + 0.999188i \(0.487174\pi\)
\(152\) 30311.8i 0.106415i
\(153\) 509977.i 1.76125i
\(154\) −22671.5 −0.0770334
\(155\) 0 0
\(156\) −18496.0 −0.0608510
\(157\) 496911.i 1.60890i 0.594018 + 0.804451i \(0.297541\pi\)
−0.594018 + 0.804451i \(0.702459\pi\)
\(158\) − 472127.i − 1.50458i
\(159\) 78363.0 0.245821
\(160\) 0 0
\(161\) 87614.9 0.266387
\(162\) − 418447.i − 1.25272i
\(163\) − 129489.i − 0.381737i −0.981616 0.190868i \(-0.938870\pi\)
0.981616 0.190868i \(-0.0611303\pi\)
\(164\) −398141. −1.15592
\(165\) 0 0
\(166\) 984469. 2.77289
\(167\) − 413362.i − 1.14694i −0.819227 0.573469i \(-0.805597\pi\)
0.819227 0.573469i \(-0.194403\pi\)
\(168\) 1023.77i 0.00279852i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 460942. 1.20547
\(172\) 224572.i 0.578808i
\(173\) 2949.45i 0.00749249i 0.999993 + 0.00374625i \(0.00119247\pi\)
−0.999993 + 0.00374625i \(0.998808\pi\)
\(174\) −66783.7 −0.167223
\(175\) 0 0
\(176\) −129402. −0.314890
\(177\) − 4645.01i − 0.0111443i
\(178\) − 405010.i − 0.958112i
\(179\) 431301. 1.00612 0.503058 0.864253i \(-0.332208\pi\)
0.503058 + 0.864253i \(0.332208\pi\)
\(180\) 0 0
\(181\) 65154.9 0.147826 0.0739129 0.997265i \(-0.476451\pi\)
0.0739129 + 0.997265i \(0.476451\pi\)
\(182\) 28429.5i 0.0636195i
\(183\) 52634.3i 0.116183i
\(184\) −64654.9 −0.140785
\(185\) 0 0
\(186\) −35886.3 −0.0760582
\(187\) 295529.i 0.618012i
\(188\) 502239.i 1.03637i
\(189\) 31834.5 0.0648252
\(190\) 0 0
\(191\) 405278. 0.803840 0.401920 0.915675i \(-0.368343\pi\)
0.401920 + 0.915675i \(0.368343\pi\)
\(192\) 117914.i 0.230841i
\(193\) 596684.i 1.15306i 0.817077 + 0.576529i \(0.195593\pi\)
−0.817077 + 0.576529i \(0.804407\pi\)
\(194\) −173665. −0.331289
\(195\) 0 0
\(196\) −554938. −1.03182
\(197\) 240155.i 0.440886i 0.975400 + 0.220443i \(0.0707504\pi\)
−0.975400 + 0.220443i \(0.929250\pi\)
\(198\) − 254413.i − 0.461185i
\(199\) −438913. −0.785680 −0.392840 0.919607i \(-0.628507\pi\)
−0.392840 + 0.919607i \(0.628507\pi\)
\(200\) 0 0
\(201\) −53940.9 −0.0941733
\(202\) 876484.i 1.51135i
\(203\) 52792.9i 0.0899157i
\(204\) 239990. 0.403756
\(205\) 0 0
\(206\) 331698. 0.544596
\(207\) 983186.i 1.59481i
\(208\) 162266.i 0.260058i
\(209\) 267114. 0.422990
\(210\) 0 0
\(211\) −107094. −0.165600 −0.0828000 0.996566i \(-0.526386\pi\)
−0.0828000 + 0.996566i \(0.526386\pi\)
\(212\) 822078.i 1.25624i
\(213\) 87705.6i 0.132458i
\(214\) −606321. −0.905041
\(215\) 0 0
\(216\) −23492.1 −0.0342600
\(217\) 28368.3i 0.0408964i
\(218\) − 687699.i − 0.980071i
\(219\) 204206. 0.287712
\(220\) 0 0
\(221\) 370586. 0.510397
\(222\) 371264.i 0.505593i
\(223\) 865096.i 1.16494i 0.812853 + 0.582468i \(0.197913\pi\)
−0.812853 + 0.582468i \(0.802087\pi\)
\(224\) 171662. 0.228588
\(225\) 0 0
\(226\) 748638. 0.974991
\(227\) 772248.i 0.994700i 0.867550 + 0.497350i \(0.165693\pi\)
−0.867550 + 0.497350i \(0.834307\pi\)
\(228\) − 216915.i − 0.276346i
\(229\) 615081. 0.775075 0.387538 0.921854i \(-0.373326\pi\)
0.387538 + 0.921854i \(0.373326\pi\)
\(230\) 0 0
\(231\) 9021.64 0.0111239
\(232\) − 38958.2i − 0.0475203i
\(233\) 1.38212e6i 1.66784i 0.551882 + 0.833922i \(0.313910\pi\)
−0.551882 + 0.833922i \(0.686090\pi\)
\(234\) −319026. −0.380879
\(235\) 0 0
\(236\) 48729.1 0.0569519
\(237\) 187872.i 0.217266i
\(238\) − 368879.i − 0.422125i
\(239\) 1.15404e6 1.30685 0.653424 0.756993i \(-0.273332\pi\)
0.653424 + 0.756993i \(0.273332\pi\)
\(240\) 0 0
\(241\) −1.36874e6 −1.51802 −0.759011 0.651078i \(-0.774317\pi\)
−0.759011 + 0.651078i \(0.774317\pi\)
\(242\) 1.15981e6i 1.27305i
\(243\) 539774.i 0.586403i
\(244\) −552167. −0.593740
\(245\) 0 0
\(246\) 308053. 0.324555
\(247\) − 334953.i − 0.349335i
\(248\) − 20934.2i − 0.0216136i
\(249\) −391748. −0.400413
\(250\) 0 0
\(251\) 1.37571e6 1.37830 0.689149 0.724620i \(-0.257985\pi\)
0.689149 + 0.724620i \(0.257985\pi\)
\(252\) 163319.i 0.162008i
\(253\) 569752.i 0.559609i
\(254\) −2.68219e6 −2.60859
\(255\) 0 0
\(256\) 914414. 0.872054
\(257\) − 594799.i − 0.561742i −0.959745 0.280871i \(-0.909377\pi\)
0.959745 0.280871i \(-0.0906234\pi\)
\(258\) − 173758.i − 0.162516i
\(259\) 293487. 0.271856
\(260\) 0 0
\(261\) −592425. −0.538310
\(262\) 593420.i 0.534083i
\(263\) − 1.60634e6i − 1.43202i −0.698092 0.716008i \(-0.745967\pi\)
0.698092 0.716008i \(-0.254033\pi\)
\(264\) −6657.46 −0.00587894
\(265\) 0 0
\(266\) −333410. −0.288918
\(267\) 161165.i 0.138354i
\(268\) − 565874.i − 0.481263i
\(269\) 764991. 0.644578 0.322289 0.946641i \(-0.395548\pi\)
0.322289 + 0.946641i \(0.395548\pi\)
\(270\) 0 0
\(271\) 479475. 0.396591 0.198296 0.980142i \(-0.436459\pi\)
0.198296 + 0.980142i \(0.436459\pi\)
\(272\) − 2.10544e6i − 1.72552i
\(273\) − 11312.9i − 0.00918685i
\(274\) −1.11701e6 −0.898839
\(275\) 0 0
\(276\) 462678. 0.365600
\(277\) − 218179.i − 0.170849i −0.996345 0.0854246i \(-0.972775\pi\)
0.996345 0.0854246i \(-0.0272247\pi\)
\(278\) 2.97790e6i 2.31099i
\(279\) −318340. −0.244839
\(280\) 0 0
\(281\) −824857. −0.623179 −0.311590 0.950217i \(-0.600861\pi\)
−0.311590 + 0.950217i \(0.600861\pi\)
\(282\) − 388597.i − 0.290989i
\(283\) 1.37912e6i 1.02361i 0.859101 + 0.511806i \(0.171023\pi\)
−0.859101 + 0.511806i \(0.828977\pi\)
\(284\) −920087. −0.676914
\(285\) 0 0
\(286\) −184874. −0.133648
\(287\) − 243518.i − 0.174512i
\(288\) 1.92633e6i 1.36852i
\(289\) −3.38858e6 −2.38656
\(290\) 0 0
\(291\) 69106.1 0.0478392
\(292\) 2.14225e6i 1.47032i
\(293\) − 2.22384e6i − 1.51334i −0.653799 0.756668i \(-0.726826\pi\)
0.653799 0.756668i \(-0.273174\pi\)
\(294\) 429371. 0.289711
\(295\) 0 0
\(296\) −216577. −0.143676
\(297\) 207017.i 0.136181i
\(298\) − 3.46360e6i − 2.25937i
\(299\) 714453. 0.462163
\(300\) 0 0
\(301\) −137357. −0.0873843
\(302\) − 183226.i − 0.115603i
\(303\) − 348778.i − 0.218244i
\(304\) −1.90300e6 −1.18101
\(305\) 0 0
\(306\) 4.13944e6 2.52719
\(307\) − 2.71603e6i − 1.64471i −0.568975 0.822355i \(-0.692660\pi\)
0.568975 0.822355i \(-0.307340\pi\)
\(308\) 94642.7i 0.0568474i
\(309\) −131992. −0.0786413
\(310\) 0 0
\(311\) −2.07670e6 −1.21751 −0.608754 0.793359i \(-0.708330\pi\)
−0.608754 + 0.793359i \(0.708330\pi\)
\(312\) 8348.27i 0.00485523i
\(313\) − 1.45231e6i − 0.837910i −0.908007 0.418955i \(-0.862396\pi\)
0.908007 0.418955i \(-0.137604\pi\)
\(314\) 4.03338e6 2.30858
\(315\) 0 0
\(316\) −1.97090e6 −1.11032
\(317\) − 1.58790e6i − 0.887511i −0.896148 0.443755i \(-0.853646\pi\)
0.896148 0.443755i \(-0.146354\pi\)
\(318\) − 636065.i − 0.352723i
\(319\) −343308. −0.188889
\(320\) 0 0
\(321\) 241272. 0.130691
\(322\) − 711162.i − 0.382234i
\(323\) 4.34609e6i 2.31789i
\(324\) −1.74681e6 −0.924452
\(325\) 0 0
\(326\) −1.05105e6 −0.547746
\(327\) 273655.i 0.141525i
\(328\) 179703.i 0.0922295i
\(329\) −307188. −0.156464
\(330\) 0 0
\(331\) −2.91368e6 −1.46174 −0.730872 0.682515i \(-0.760886\pi\)
−0.730872 + 0.682515i \(0.760886\pi\)
\(332\) − 4.10969e6i − 2.04627i
\(333\) 3.29341e6i 1.62756i
\(334\) −3.35522e6 −1.64572
\(335\) 0 0
\(336\) −64272.9 −0.0310585
\(337\) 2.39665e6i 1.14956i 0.818309 + 0.574778i \(0.194912\pi\)
−0.818309 + 0.574778i \(0.805088\pi\)
\(338\) 231827.i 0.110375i
\(339\) −297904. −0.140792
\(340\) 0 0
\(341\) −184477. −0.0859124
\(342\) − 3.74142e6i − 1.72970i
\(343\) − 687743.i − 0.315639i
\(344\) 101362. 0.0461824
\(345\) 0 0
\(346\) 23940.4 0.0107508
\(347\) 529222.i 0.235947i 0.993017 + 0.117973i \(0.0376398\pi\)
−0.993017 + 0.117973i \(0.962360\pi\)
\(348\) 278790.i 0.123404i
\(349\) 847145. 0.372301 0.186151 0.982521i \(-0.440399\pi\)
0.186151 + 0.982521i \(0.440399\pi\)
\(350\) 0 0
\(351\) 259594. 0.112467
\(352\) 1.11630e6i 0.480203i
\(353\) 3.44913e6i 1.47324i 0.676308 + 0.736619i \(0.263579\pi\)
−0.676308 + 0.736619i \(0.736421\pi\)
\(354\) −37703.1 −0.0159908
\(355\) 0 0
\(356\) −1.69072e6 −0.707046
\(357\) 146787.i 0.0609562i
\(358\) − 3.50083e6i − 1.44366i
\(359\) 192156. 0.0786895 0.0393448 0.999226i \(-0.487473\pi\)
0.0393448 + 0.999226i \(0.487473\pi\)
\(360\) 0 0
\(361\) 1.45211e6 0.586451
\(362\) − 528856.i − 0.212112i
\(363\) − 461519.i − 0.183833i
\(364\) 118679. 0.0469485
\(365\) 0 0
\(366\) 427228. 0.166708
\(367\) 1.34308e6i 0.520518i 0.965539 + 0.260259i \(0.0838079\pi\)
−0.965539 + 0.260259i \(0.916192\pi\)
\(368\) − 4.05909e6i − 1.56246i
\(369\) 2.73268e6 1.04478
\(370\) 0 0
\(371\) −502814. −0.189658
\(372\) 149808.i 0.0561277i
\(373\) − 3.94149e6i − 1.46686i −0.679765 0.733430i \(-0.737918\pi\)
0.679765 0.733430i \(-0.262082\pi\)
\(374\) 2.39878e6 0.886773
\(375\) 0 0
\(376\) 226688. 0.0826911
\(377\) 430498.i 0.155998i
\(378\) − 258398.i − 0.0930164i
\(379\) 769080. 0.275026 0.137513 0.990500i \(-0.456089\pi\)
0.137513 + 0.990500i \(0.456089\pi\)
\(380\) 0 0
\(381\) 1.06732e6 0.376689
\(382\) − 3.28960e6i − 1.15341i
\(383\) 1.33597e6i 0.465371i 0.972552 + 0.232685i \(0.0747513\pi\)
−0.972552 + 0.232685i \(0.925249\pi\)
\(384\) 100992. 0.0349509
\(385\) 0 0
\(386\) 4.84323e6 1.65450
\(387\) − 1.54137e6i − 0.523155i
\(388\) 724967.i 0.244477i
\(389\) −158354. −0.0530584 −0.0265292 0.999648i \(-0.508446\pi\)
−0.0265292 + 0.999648i \(0.508446\pi\)
\(390\) 0 0
\(391\) −9.27019e6 −3.06653
\(392\) 250473.i 0.0823278i
\(393\) − 236138.i − 0.0771232i
\(394\) 1.94932e6 0.632619
\(395\) 0 0
\(396\) −1.06205e6 −0.340335
\(397\) 2.11342e6i 0.672992i 0.941685 + 0.336496i \(0.109242\pi\)
−0.941685 + 0.336496i \(0.890758\pi\)
\(398\) 3.56261e6i 1.12736i
\(399\) 132673. 0.0417207
\(400\) 0 0
\(401\) −2.39852e6 −0.744874 −0.372437 0.928057i \(-0.621478\pi\)
−0.372437 + 0.928057i \(0.621478\pi\)
\(402\) 437833.i 0.135127i
\(403\) 231329.i 0.0709524i
\(404\) 3.65890e6 1.11531
\(405\) 0 0
\(406\) 428515. 0.129018
\(407\) 1.90852e6i 0.571098i
\(408\) − 108321.i − 0.0322152i
\(409\) 2.12794e6 0.629000 0.314500 0.949257i \(-0.398163\pi\)
0.314500 + 0.949257i \(0.398163\pi\)
\(410\) 0 0
\(411\) 444491. 0.129795
\(412\) − 1.38468e6i − 0.401889i
\(413\) 29804.6i 0.00859820i
\(414\) 7.98043e6 2.28837
\(415\) 0 0
\(416\) 1.39981e6 0.396584
\(417\) − 1.18499e6i − 0.333714i
\(418\) − 2.16814e6i − 0.606941i
\(419\) 3.35254e6 0.932908 0.466454 0.884545i \(-0.345531\pi\)
0.466454 + 0.884545i \(0.345531\pi\)
\(420\) 0 0
\(421\) 205253. 0.0564397 0.0282198 0.999602i \(-0.491016\pi\)
0.0282198 + 0.999602i \(0.491016\pi\)
\(422\) 869275.i 0.237616i
\(423\) − 3.44717e6i − 0.936724i
\(424\) 371048. 0.100234
\(425\) 0 0
\(426\) 711898. 0.190061
\(427\) − 337726.i − 0.0896386i
\(428\) 2.53110e6i 0.667882i
\(429\) 73566.6 0.0192991
\(430\) 0 0
\(431\) −6.22797e6 −1.61493 −0.807464 0.589917i \(-0.799161\pi\)
−0.807464 + 0.589917i \(0.799161\pi\)
\(432\) − 1.47485e6i − 0.380224i
\(433\) − 4.07150e6i − 1.04360i −0.853067 0.521801i \(-0.825260\pi\)
0.853067 0.521801i \(-0.174740\pi\)
\(434\) 230263. 0.0586814
\(435\) 0 0
\(436\) −2.87081e6 −0.723251
\(437\) 8.37885e6i 2.09885i
\(438\) − 1.65752e6i − 0.412832i
\(439\) −1.75484e6 −0.434588 −0.217294 0.976106i \(-0.569723\pi\)
−0.217294 + 0.976106i \(0.569723\pi\)
\(440\) 0 0
\(441\) 3.80887e6 0.932609
\(442\) − 3.00801e6i − 0.732358i
\(443\) 4.08504e6i 0.988979i 0.869184 + 0.494489i \(0.164645\pi\)
−0.869184 + 0.494489i \(0.835355\pi\)
\(444\) 1.54985e6 0.373106
\(445\) 0 0
\(446\) 7.02191e6 1.67154
\(447\) 1.37826e6i 0.326260i
\(448\) − 756592.i − 0.178101i
\(449\) −4.32979e6 −1.01356 −0.506782 0.862074i \(-0.669165\pi\)
−0.506782 + 0.862074i \(0.669165\pi\)
\(450\) 0 0
\(451\) 1.58358e6 0.366604
\(452\) − 3.12520e6i − 0.719502i
\(453\) 72910.7i 0.0166934i
\(454\) 6.26826e6 1.42728
\(455\) 0 0
\(456\) −97905.5 −0.0220493
\(457\) 4.37096e6i 0.979009i 0.872001 + 0.489504i \(0.162822\pi\)
−0.872001 + 0.489504i \(0.837178\pi\)
\(458\) − 4.99256e6i − 1.11214i
\(459\) −3.36829e6 −0.746238
\(460\) 0 0
\(461\) −3.13672e6 −0.687421 −0.343711 0.939076i \(-0.611684\pi\)
−0.343711 + 0.939076i \(0.611684\pi\)
\(462\) − 73227.8i − 0.0159614i
\(463\) − 6.47218e6i − 1.40313i −0.712605 0.701566i \(-0.752485\pi\)
0.712605 0.701566i \(-0.247515\pi\)
\(464\) 2.44583e6 0.527389
\(465\) 0 0
\(466\) 1.12185e7 2.39316
\(467\) 2.32552e6i 0.493433i 0.969088 + 0.246717i \(0.0793517\pi\)
−0.969088 + 0.246717i \(0.920648\pi\)
\(468\) 1.33178e6i 0.281072i
\(469\) 346110. 0.0726577
\(470\) 0 0
\(471\) −1.60500e6 −0.333366
\(472\) − 21994.1i − 0.00454413i
\(473\) − 893218.i − 0.183571i
\(474\) 1.52494e6 0.311751
\(475\) 0 0
\(476\) −1.53989e6 −0.311510
\(477\) − 5.64241e6i − 1.13545i
\(478\) − 9.36721e6i − 1.87517i
\(479\) 1.16074e6 0.231150 0.115575 0.993299i \(-0.463129\pi\)
0.115575 + 0.993299i \(0.463129\pi\)
\(480\) 0 0
\(481\) 2.39323e6 0.471652
\(482\) 1.11099e7i 2.17818i
\(483\) 282991.i 0.0551957i
\(484\) 4.84163e6 0.939460
\(485\) 0 0
\(486\) 4.38129e6 0.841417
\(487\) 3.63836e6i 0.695158i 0.937651 + 0.347579i \(0.112996\pi\)
−0.937651 + 0.347579i \(0.887004\pi\)
\(488\) 249223.i 0.0473739i
\(489\) 418242. 0.0790962
\(490\) 0 0
\(491\) 8.45015e6 1.58183 0.790917 0.611924i \(-0.209604\pi\)
0.790917 + 0.611924i \(0.209604\pi\)
\(492\) − 1.28597e6i − 0.239508i
\(493\) − 5.58581e6i − 1.03507i
\(494\) −2.71878e6 −0.501253
\(495\) 0 0
\(496\) 1.31427e6 0.239872
\(497\) − 562760.i − 0.102196i
\(498\) 3.17978e6i 0.574545i
\(499\) 6.28285e6 1.12955 0.564775 0.825245i \(-0.308963\pi\)
0.564775 + 0.825245i \(0.308963\pi\)
\(500\) 0 0
\(501\) 1.33514e6 0.237647
\(502\) − 1.11665e7i − 1.97769i
\(503\) − 2.30761e6i − 0.406670i −0.979109 0.203335i \(-0.934822\pi\)
0.979109 0.203335i \(-0.0651781\pi\)
\(504\) 73714.8 0.0129264
\(505\) 0 0
\(506\) 4.62462e6 0.802971
\(507\) − 92250.5i − 0.0159385i
\(508\) 1.11969e7i 1.92503i
\(509\) 2.24701e6 0.384423 0.192212 0.981353i \(-0.438434\pi\)
0.192212 + 0.981353i \(0.438434\pi\)
\(510\) 0 0
\(511\) −1.31028e6 −0.221979
\(512\) − 8.42277e6i − 1.41997i
\(513\) 3.04442e6i 0.510753i
\(514\) −4.82793e6 −0.806033
\(515\) 0 0
\(516\) −725355. −0.119930
\(517\) − 1.99762e6i − 0.328690i
\(518\) − 2.38221e6i − 0.390081i
\(519\) −9526.57 −0.00155245
\(520\) 0 0
\(521\) −1.20692e7 −1.94797 −0.973987 0.226602i \(-0.927238\pi\)
−0.973987 + 0.226602i \(0.927238\pi\)
\(522\) 4.80866e6i 0.772410i
\(523\) − 1.19375e6i − 0.190835i −0.995437 0.0954174i \(-0.969581\pi\)
0.995437 0.0954174i \(-0.0304186\pi\)
\(524\) 2.47724e6 0.394131
\(525\) 0 0
\(526\) −1.30385e7 −2.05477
\(527\) − 3.00154e6i − 0.470780i
\(528\) − 417961.i − 0.0652456i
\(529\) −1.14357e7 −1.77674
\(530\) 0 0
\(531\) −334457. −0.0514759
\(532\) 1.39183e6i 0.213209i
\(533\) − 1.98576e6i − 0.302767i
\(534\) 1.30816e6 0.198522
\(535\) 0 0
\(536\) −255410. −0.0383995
\(537\) 1.39308e6i 0.208468i
\(538\) − 6.20936e6i − 0.924892i
\(539\) 2.20722e6 0.327246
\(540\) 0 0
\(541\) −9.83092e6 −1.44411 −0.722056 0.691834i \(-0.756803\pi\)
−0.722056 + 0.691834i \(0.756803\pi\)
\(542\) − 3.89186e6i − 0.569061i
\(543\) 210447.i 0.0306297i
\(544\) −1.81629e7 −2.63140
\(545\) 0 0
\(546\) −91825.6 −0.0131820
\(547\) 8.63291e6i 1.23364i 0.787104 + 0.616821i \(0.211580\pi\)
−0.787104 + 0.616821i \(0.788420\pi\)
\(548\) 4.66299e6i 0.663305i
\(549\) 3.78986e6 0.536651
\(550\) 0 0
\(551\) −5.04873e6 −0.708440
\(552\) − 208832.i − 0.0291708i
\(553\) − 1.20548e6i − 0.167628i
\(554\) −1.77094e6 −0.245148
\(555\) 0 0
\(556\) 1.24313e7 1.70541
\(557\) − 3.22690e6i − 0.440704i −0.975420 0.220352i \(-0.929279\pi\)
0.975420 0.220352i \(-0.0707207\pi\)
\(558\) 2.58394e6i 0.351315i
\(559\) −1.12007e6 −0.151606
\(560\) 0 0
\(561\) −954544. −0.128053
\(562\) 6.69529e6i 0.894187i
\(563\) 683340.i 0.0908586i 0.998968 + 0.0454293i \(0.0144656\pi\)
−0.998968 + 0.0454293i \(0.985534\pi\)
\(564\) −1.62221e6 −0.214738
\(565\) 0 0
\(566\) 1.11942e7 1.46876
\(567\) − 1.06842e6i − 0.139567i
\(568\) 415285.i 0.0540102i
\(569\) 5.95105e6 0.770572 0.385286 0.922797i \(-0.374103\pi\)
0.385286 + 0.922797i \(0.374103\pi\)
\(570\) 0 0
\(571\) −2.57116e6 −0.330019 −0.165009 0.986292i \(-0.552765\pi\)
−0.165009 + 0.986292i \(0.552765\pi\)
\(572\) 771761.i 0.0986263i
\(573\) 1.30903e6i 0.166556i
\(574\) −1.97661e6 −0.250404
\(575\) 0 0
\(576\) 8.49023e6 1.06626
\(577\) 1.09233e6i 0.136588i 0.997665 + 0.0682940i \(0.0217556\pi\)
−0.997665 + 0.0682940i \(0.978244\pi\)
\(578\) 2.75047e7i 3.42443i
\(579\) −1.92726e6 −0.238915
\(580\) 0 0
\(581\) 2.51364e6 0.308932
\(582\) − 560928.i − 0.0686435i
\(583\) − 3.26975e6i − 0.398422i
\(584\) 966913. 0.117315
\(585\) 0 0
\(586\) −1.80507e7 −2.17146
\(587\) 1.10253e7i 1.32067i 0.750972 + 0.660334i \(0.229585\pi\)
−0.750972 + 0.660334i \(0.770415\pi\)
\(588\) − 1.79242e6i − 0.213794i
\(589\) −2.71294e6 −0.322219
\(590\) 0 0
\(591\) −775689. −0.0913521
\(592\) − 1.35969e7i − 1.59454i
\(593\) 1.27015e7i 1.48327i 0.670806 + 0.741633i \(0.265948\pi\)
−0.670806 + 0.741633i \(0.734052\pi\)
\(594\) 1.68034e6 0.195403
\(595\) 0 0
\(596\) −1.44589e7 −1.66732
\(597\) − 1.41766e6i − 0.162794i
\(598\) − 5.79915e6i − 0.663149i
\(599\) 2.40180e6 0.273508 0.136754 0.990605i \(-0.456333\pi\)
0.136754 + 0.990605i \(0.456333\pi\)
\(600\) 0 0
\(601\) −6.52655e6 −0.737051 −0.368526 0.929618i \(-0.620137\pi\)
−0.368526 + 0.929618i \(0.620137\pi\)
\(602\) 1.11491e6i 0.125386i
\(603\) 3.88393e6i 0.434989i
\(604\) −764880. −0.0853102
\(605\) 0 0
\(606\) −2.83100e6 −0.313154
\(607\) − 1.25664e7i − 1.38433i −0.721740 0.692164i \(-0.756657\pi\)
0.721740 0.692164i \(-0.243343\pi\)
\(608\) 1.64165e7i 1.80103i
\(609\) −170518. −0.0186306
\(610\) 0 0
\(611\) −2.50496e6 −0.271455
\(612\) − 1.72802e7i − 1.86496i
\(613\) 5.17046e6i 0.555748i 0.960617 + 0.277874i \(0.0896298\pi\)
−0.960617 + 0.277874i \(0.910370\pi\)
\(614\) −2.20458e7 −2.35996
\(615\) 0 0
\(616\) 42717.4 0.00453579
\(617\) 7.58899e6i 0.802548i 0.915958 + 0.401274i \(0.131433\pi\)
−0.915958 + 0.401274i \(0.868567\pi\)
\(618\) 1.07137e6i 0.112841i
\(619\) 3.72082e6 0.390312 0.195156 0.980772i \(-0.437479\pi\)
0.195156 + 0.980772i \(0.437479\pi\)
\(620\) 0 0
\(621\) −6.49373e6 −0.675717
\(622\) 1.68563e7i 1.74698i
\(623\) − 1.03411e6i − 0.106745i
\(624\) −524111. −0.0538843
\(625\) 0 0
\(626\) −1.17882e7 −1.20230
\(627\) 862763.i 0.0876441i
\(628\) − 1.68374e7i − 1.70364i
\(629\) −3.10527e7 −3.12948
\(630\) 0 0
\(631\) 1.80988e7 1.80958 0.904788 0.425862i \(-0.140029\pi\)
0.904788 + 0.425862i \(0.140029\pi\)
\(632\) 889575.i 0.0885910i
\(633\) − 345909.i − 0.0343125i
\(634\) −1.28888e7 −1.27347
\(635\) 0 0
\(636\) −2.65527e6 −0.260295
\(637\) − 2.76779e6i − 0.270262i
\(638\) 2.78660e6i 0.271033i
\(639\) 6.31511e6 0.611827
\(640\) 0 0
\(641\) 3.95349e6 0.380046 0.190023 0.981780i \(-0.439144\pi\)
0.190023 + 0.981780i \(0.439144\pi\)
\(642\) − 1.95838e6i − 0.187526i
\(643\) − 2.15047e6i − 0.205119i −0.994727 0.102559i \(-0.967297\pi\)
0.994727 0.102559i \(-0.0327032\pi\)
\(644\) −2.96876e6 −0.282072
\(645\) 0 0
\(646\) 3.52768e7 3.32589
\(647\) − 7.72603e6i − 0.725598i −0.931867 0.362799i \(-0.881821\pi\)
0.931867 0.362799i \(-0.118179\pi\)
\(648\) 788432.i 0.0737610i
\(649\) −193816. −0.0180625
\(650\) 0 0
\(651\) −91628.2 −0.00847377
\(652\) 4.38763e6i 0.404213i
\(653\) 7.07138e6i 0.648965i 0.945892 + 0.324482i \(0.105190\pi\)
−0.945892 + 0.324482i \(0.894810\pi\)
\(654\) 2.22123e6 0.203072
\(655\) 0 0
\(656\) −1.12819e7 −1.02358
\(657\) − 1.47035e7i − 1.32895i
\(658\) 2.49342e6i 0.224507i
\(659\) −8.83103e6 −0.792133 −0.396066 0.918222i \(-0.629625\pi\)
−0.396066 + 0.918222i \(0.629625\pi\)
\(660\) 0 0
\(661\) −8.94111e6 −0.795954 −0.397977 0.917395i \(-0.630288\pi\)
−0.397977 + 0.917395i \(0.630288\pi\)
\(662\) 2.36500e7i 2.09743i
\(663\) 1.19697e6i 0.105755i
\(664\) −1.85492e6 −0.163270
\(665\) 0 0
\(666\) 2.67323e7 2.33535
\(667\) − 1.07689e7i − 0.937253i
\(668\) 1.40064e7i 1.21447i
\(669\) −2.79421e6 −0.241376
\(670\) 0 0
\(671\) 2.19620e6 0.188307
\(672\) 554458.i 0.0473637i
\(673\) − 2.00280e7i − 1.70451i −0.523123 0.852257i \(-0.675233\pi\)
0.523123 0.852257i \(-0.324767\pi\)
\(674\) 1.94534e7 1.64948
\(675\) 0 0
\(676\) 967766. 0.0814524
\(677\) 1.44506e6i 0.121175i 0.998163 + 0.0605877i \(0.0192975\pi\)
−0.998163 + 0.0605877i \(0.980703\pi\)
\(678\) 2.41806e6i 0.202019i
\(679\) −443417. −0.0369095
\(680\) 0 0
\(681\) −2.49432e6 −0.206103
\(682\) 1.49738e6i 0.123274i
\(683\) 3.37739e6i 0.277032i 0.990360 + 0.138516i \(0.0442332\pi\)
−0.990360 + 0.138516i \(0.955767\pi\)
\(684\) −1.56186e7 −1.27645
\(685\) 0 0
\(686\) −5.58235e6 −0.452904
\(687\) 1.98668e6i 0.160596i
\(688\) 6.36356e6i 0.512542i
\(689\) −4.10018e6 −0.329044
\(690\) 0 0
\(691\) −1.36877e7 −1.09052 −0.545262 0.838265i \(-0.683570\pi\)
−0.545262 + 0.838265i \(0.683570\pi\)
\(692\) − 99939.8i − 0.00793366i
\(693\) − 649590.i − 0.0513814i
\(694\) 4.29565e6 0.338555
\(695\) 0 0
\(696\) 125833. 0.00984626
\(697\) 2.57657e7i 2.00891i
\(698\) − 6.87620e6i − 0.534207i
\(699\) −4.46417e6 −0.345579
\(700\) 0 0
\(701\) 2.12015e7 1.62957 0.814784 0.579765i \(-0.196856\pi\)
0.814784 + 0.579765i \(0.196856\pi\)
\(702\) − 2.10710e6i − 0.161377i
\(703\) 2.80669e7i 2.14194i
\(704\) 4.92005e6 0.374143
\(705\) 0 0
\(706\) 2.79963e7 2.11392
\(707\) 2.23792e6i 0.168382i
\(708\) 157392.i 0.0118005i
\(709\) −4.77971e6 −0.357097 −0.178549 0.983931i \(-0.557140\pi\)
−0.178549 + 0.983931i \(0.557140\pi\)
\(710\) 0 0
\(711\) 1.35275e7 1.00356
\(712\) 763115.i 0.0564144i
\(713\) − 5.78668e6i − 0.426291i
\(714\) 1.19146e6 0.0874648
\(715\) 0 0
\(716\) −1.46143e7 −1.06536
\(717\) 3.72747e6i 0.270780i
\(718\) − 1.55971e6i − 0.112910i
\(719\) 1.56246e7 1.12716 0.563580 0.826062i \(-0.309424\pi\)
0.563580 + 0.826062i \(0.309424\pi\)
\(720\) 0 0
\(721\) 846921. 0.0606743
\(722\) − 1.17866e7i − 0.841487i
\(723\) − 4.42095e6i − 0.314536i
\(724\) −2.20772e6 −0.156530
\(725\) 0 0
\(726\) −3.74611e6 −0.263778
\(727\) − 1.10204e7i − 0.773327i −0.922221 0.386664i \(-0.873627\pi\)
0.922221 0.386664i \(-0.126373\pi\)
\(728\) − 53566.4i − 0.00374597i
\(729\) 1.07838e7 0.751543
\(730\) 0 0
\(731\) 1.45332e7 1.00593
\(732\) − 1.78347e6i − 0.123024i
\(733\) − 3.38982e6i − 0.233033i −0.993189 0.116516i \(-0.962827\pi\)
0.993189 0.116516i \(-0.0371727\pi\)
\(734\) 1.09016e7 0.746880
\(735\) 0 0
\(736\) −3.50162e7 −2.38273
\(737\) 2.25072e6i 0.152635i
\(738\) − 2.21809e7i − 1.49913i
\(739\) −2.83527e7 −1.90978 −0.954891 0.296956i \(-0.904029\pi\)
−0.954891 + 0.296956i \(0.904029\pi\)
\(740\) 0 0
\(741\) 1.08188e6 0.0723825
\(742\) 4.08129e6i 0.272137i
\(743\) − 2.16151e7i − 1.43643i −0.695820 0.718216i \(-0.744959\pi\)
0.695820 0.718216i \(-0.255041\pi\)
\(744\) 67616.5 0.00447837
\(745\) 0 0
\(746\) −3.19927e7 −2.10477
\(747\) 2.82072e7i 1.84952i
\(748\) − 1.00138e7i − 0.654401i
\(749\) −1.54812e6 −0.100832
\(750\) 0 0
\(751\) 1.11361e7 0.720500 0.360250 0.932856i \(-0.382691\pi\)
0.360250 + 0.932856i \(0.382691\pi\)
\(752\) 1.42317e7i 0.917721i
\(753\) 4.44347e6i 0.285585i
\(754\) 3.49431e6 0.223838
\(755\) 0 0
\(756\) −1.07869e6 −0.0686422
\(757\) 4.00933e6i 0.254291i 0.991884 + 0.127146i \(0.0405816\pi\)
−0.991884 + 0.127146i \(0.959418\pi\)
\(758\) − 6.24255e6i − 0.394629i
\(759\) −1.84027e6 −0.115952
\(760\) 0 0
\(761\) 3.18411e7 1.99309 0.996543 0.0830812i \(-0.0264761\pi\)
0.996543 + 0.0830812i \(0.0264761\pi\)
\(762\) − 8.66334e6i − 0.540503i
\(763\) − 1.75590e6i − 0.109191i
\(764\) −1.37325e7 −0.851170
\(765\) 0 0
\(766\) 1.08439e7 0.667752
\(767\) 243040.i 0.0149173i
\(768\) 2.95351e6i 0.180690i
\(769\) 2.53683e7 1.54695 0.773474 0.633828i \(-0.218517\pi\)
0.773474 + 0.633828i \(0.218517\pi\)
\(770\) 0 0
\(771\) 1.92117e6 0.116394
\(772\) − 2.02182e7i − 1.22095i
\(773\) 2.50569e7i 1.50827i 0.656720 + 0.754134i \(0.271943\pi\)
−0.656720 + 0.754134i \(0.728057\pi\)
\(774\) −1.25112e7 −0.750664
\(775\) 0 0
\(776\) 327217. 0.0195066
\(777\) 947947.i 0.0563289i
\(778\) 1.28534e6i 0.0761325i
\(779\) 2.32883e7 1.37497
\(780\) 0 0
\(781\) 3.65958e6 0.214686
\(782\) 7.52453e7i 4.40010i
\(783\) − 3.91284e6i − 0.228080i
\(784\) −1.57249e7 −0.913690
\(785\) 0 0
\(786\) −1.91671e6 −0.110663
\(787\) − 2.15591e7i − 1.24078i −0.784294 0.620389i \(-0.786975\pi\)
0.784294 0.620389i \(-0.213025\pi\)
\(788\) − 8.13747e6i − 0.466846i
\(789\) 5.18839e6 0.296715
\(790\) 0 0
\(791\) 1.91149e6 0.108625
\(792\) 479361.i 0.0271550i
\(793\) − 2.75398e6i − 0.155517i
\(794\) 1.71545e7 0.965663
\(795\) 0 0
\(796\) 1.48722e7 0.831941
\(797\) − 2.48604e6i − 0.138631i −0.997595 0.0693157i \(-0.977918\pi\)
0.997595 0.0693157i \(-0.0220816\pi\)
\(798\) − 1.07690e6i − 0.0598642i
\(799\) 3.25024e7 1.80114
\(800\) 0 0
\(801\) 1.16044e7 0.639062
\(802\) 1.94686e7i 1.06881i
\(803\) − 8.52063e6i − 0.466319i
\(804\) 1.82774e6 0.0997183
\(805\) 0 0
\(806\) 1.87767e6 0.101808
\(807\) 2.47088e6i 0.133557i
\(808\) − 1.65146e6i − 0.0889897i
\(809\) 2.67078e7 1.43472 0.717360 0.696703i \(-0.245350\pi\)
0.717360 + 0.696703i \(0.245350\pi\)
\(810\) 0 0
\(811\) 3.53377e6 0.188663 0.0943313 0.995541i \(-0.469929\pi\)
0.0943313 + 0.995541i \(0.469929\pi\)
\(812\) − 1.78885e6i − 0.0952100i
\(813\) 1.54868e6i 0.0821741i
\(814\) 1.54913e7 0.819457
\(815\) 0 0
\(816\) 6.80046e6 0.357531
\(817\) − 1.31358e7i − 0.688495i
\(818\) − 1.72723e7i − 0.902540i
\(819\) −814567. −0.0424343
\(820\) 0 0
\(821\) −8.58501e6 −0.444511 −0.222256 0.974988i \(-0.571342\pi\)
−0.222256 + 0.974988i \(0.571342\pi\)
\(822\) − 3.60789e6i − 0.186240i
\(823\) 1.58052e7i 0.813396i 0.913563 + 0.406698i \(0.133320\pi\)
−0.913563 + 0.406698i \(0.866680\pi\)
\(824\) −624981. −0.0320663
\(825\) 0 0
\(826\) 241921. 0.0123374
\(827\) − 1.82089e7i − 0.925808i −0.886408 0.462904i \(-0.846808\pi\)
0.886408 0.462904i \(-0.153192\pi\)
\(828\) − 3.33145e7i − 1.68872i
\(829\) −1.13685e7 −0.574534 −0.287267 0.957850i \(-0.592747\pi\)
−0.287267 + 0.957850i \(0.592747\pi\)
\(830\) 0 0
\(831\) 704705. 0.0354001
\(832\) − 6.16960e6i − 0.308993i
\(833\) 3.59128e7i 1.79323i
\(834\) −9.61846e6 −0.478840
\(835\) 0 0
\(836\) −9.05093e6 −0.447896
\(837\) − 2.10257e6i − 0.103738i
\(838\) − 2.72123e7i − 1.33861i
\(839\) 2.63011e7 1.28994 0.644970 0.764208i \(-0.276870\pi\)
0.644970 + 0.764208i \(0.276870\pi\)
\(840\) 0 0
\(841\) −1.40223e7 −0.683642
\(842\) − 1.66602e6i − 0.0809841i
\(843\) − 2.66424e6i − 0.129123i
\(844\) 3.62881e6 0.175351
\(845\) 0 0
\(846\) −2.79804e7 −1.34409
\(847\) 2.96132e6i 0.141833i
\(848\) 2.32947e7i 1.11242i
\(849\) −4.45448e6 −0.212094
\(850\) 0 0
\(851\) −5.98666e7 −2.83374
\(852\) − 2.97183e6i − 0.140257i
\(853\) 2.59081e7i 1.21916i 0.792723 + 0.609582i \(0.208663\pi\)
−0.792723 + 0.609582i \(0.791337\pi\)
\(854\) −2.74129e6 −0.128621
\(855\) 0 0
\(856\) 1.14242e6 0.0532896
\(857\) 2.09566e7i 0.974697i 0.873208 + 0.487348i \(0.162036\pi\)
−0.873208 + 0.487348i \(0.837964\pi\)
\(858\) − 597133.i − 0.0276919i
\(859\) −3.29521e7 −1.52370 −0.761852 0.647751i \(-0.775710\pi\)
−0.761852 + 0.647751i \(0.775710\pi\)
\(860\) 0 0
\(861\) 786550. 0.0361592
\(862\) 5.05518e7i 2.31723i
\(863\) − 2.33805e7i − 1.06863i −0.845286 0.534314i \(-0.820570\pi\)
0.845286 0.534314i \(-0.179430\pi\)
\(864\) −1.27230e7 −0.579836
\(865\) 0 0
\(866\) −3.30480e7 −1.49744
\(867\) − 1.09449e7i − 0.494498i
\(868\) − 961238.i − 0.0433044i
\(869\) 7.83911e6 0.352142
\(870\) 0 0
\(871\) 2.82234e6 0.126056
\(872\) 1.29575e6i 0.0577074i
\(873\) − 4.97588e6i − 0.220971i
\(874\) 6.80103e7 3.01159
\(875\) 0 0
\(876\) −6.91935e6 −0.304653
\(877\) − 6.24910e6i − 0.274359i −0.990546 0.137179i \(-0.956196\pi\)
0.990546 0.137179i \(-0.0438036\pi\)
\(878\) 1.42439e7i 0.623581i
\(879\) 7.18290e6 0.313565
\(880\) 0 0
\(881\) 8.57115e6 0.372048 0.186024 0.982545i \(-0.440440\pi\)
0.186024 + 0.982545i \(0.440440\pi\)
\(882\) − 3.09162e7i − 1.33818i
\(883\) − 2.98999e7i − 1.29053i −0.763958 0.645265i \(-0.776747\pi\)
0.763958 0.645265i \(-0.223253\pi\)
\(884\) −1.25570e7 −0.540449
\(885\) 0 0
\(886\) 3.31579e7 1.41907
\(887\) − 3.63685e7i − 1.55209i −0.630680 0.776043i \(-0.717224\pi\)
0.630680 0.776043i \(-0.282776\pi\)
\(888\) − 699531.i − 0.0297697i
\(889\) −6.84843e6 −0.290627
\(890\) 0 0
\(891\) 6.94782e6 0.293194
\(892\) − 2.93131e7i − 1.23353i
\(893\) − 2.93772e7i − 1.23277i
\(894\) 1.11872e7 0.468144
\(895\) 0 0
\(896\) −648011. −0.0269657
\(897\) 2.30764e6i 0.0957608i
\(898\) 3.51445e7i 1.45434i
\(899\) 3.48680e6 0.143889
\(900\) 0 0
\(901\) 5.32007e7 2.18326
\(902\) − 1.28537e7i − 0.526033i
\(903\) − 443654.i − 0.0181061i
\(904\) −1.41057e6 −0.0574083
\(905\) 0 0
\(906\) 591809. 0.0239531
\(907\) − 2.51577e7i − 1.01544i −0.861523 0.507718i \(-0.830489\pi\)
0.861523 0.507718i \(-0.169511\pi\)
\(908\) − 2.61670e7i − 1.05327i
\(909\) −2.51132e7 −1.00807
\(910\) 0 0
\(911\) −4.68717e7 −1.87118 −0.935588 0.353092i \(-0.885130\pi\)
−0.935588 + 0.353092i \(0.885130\pi\)
\(912\) − 6.14659e6i − 0.244707i
\(913\) 1.63460e7i 0.648983i
\(914\) 3.54787e7 1.40476
\(915\) 0 0
\(916\) −2.08415e7 −0.820712
\(917\) 1.51517e6i 0.0595031i
\(918\) 2.73401e7i 1.07076i
\(919\) 879544. 0.0343533 0.0171767 0.999852i \(-0.494532\pi\)
0.0171767 + 0.999852i \(0.494532\pi\)
\(920\) 0 0
\(921\) 8.77264e6 0.340785
\(922\) 2.54604e7i 0.986367i
\(923\) − 4.58901e6i − 0.177302i
\(924\) −305691. −0.0117788
\(925\) 0 0
\(926\) −5.25341e7 −2.01332
\(927\) 9.50388e6i 0.363247i
\(928\) − 2.10992e7i − 0.804261i
\(929\) −2.05492e7 −0.781187 −0.390593 0.920563i \(-0.627730\pi\)
−0.390593 + 0.920563i \(0.627730\pi\)
\(930\) 0 0
\(931\) 3.24597e7 1.22736
\(932\) − 4.68320e7i − 1.76605i
\(933\) − 6.70761e6i − 0.252269i
\(934\) 1.88761e7 0.708018
\(935\) 0 0
\(936\) 601105. 0.0224265
\(937\) − 3.29842e7i − 1.22732i −0.789571 0.613659i \(-0.789697\pi\)
0.789571 0.613659i \(-0.210303\pi\)
\(938\) − 2.80934e6i − 0.104255i
\(939\) 4.69087e6 0.173616
\(940\) 0 0
\(941\) 1.67975e7 0.618400 0.309200 0.950997i \(-0.399939\pi\)
0.309200 + 0.950997i \(0.399939\pi\)
\(942\) 1.30276e7i 0.478341i
\(943\) 4.96737e7i 1.81906i
\(944\) 1.38081e6 0.0504316
\(945\) 0 0
\(946\) −7.25017e6 −0.263403
\(947\) 1.07215e7i 0.388492i 0.980953 + 0.194246i \(0.0622259\pi\)
−0.980953 + 0.194246i \(0.937774\pi\)
\(948\) − 6.36590e6i − 0.230059i
\(949\) −1.06846e7 −0.385118
\(950\) 0 0
\(951\) 5.12881e6 0.183893
\(952\) 695036.i 0.0248551i
\(953\) − 1.79930e7i − 0.641758i −0.947120 0.320879i \(-0.896022\pi\)
0.947120 0.320879i \(-0.103978\pi\)
\(954\) −4.57989e7 −1.62924
\(955\) 0 0
\(956\) −3.91036e7 −1.38380
\(957\) − 1.10886e6i − 0.0391380i
\(958\) − 9.42158e6i − 0.331673i
\(959\) −2.85206e6 −0.100141
\(960\) 0 0
\(961\) −2.67555e7 −0.934555
\(962\) − 1.94256e7i − 0.676764i
\(963\) − 1.73725e7i − 0.603664i
\(964\) 4.63786e7 1.60740
\(965\) 0 0
\(966\) 2.29702e6 0.0791992
\(967\) − 4.83225e7i − 1.66182i −0.556409 0.830908i \(-0.687821\pi\)
0.556409 0.830908i \(-0.312179\pi\)
\(968\) − 2.18529e6i − 0.0749585i
\(969\) −1.40376e7 −0.480269
\(970\) 0 0
\(971\) 4.13992e7 1.40911 0.704553 0.709652i \(-0.251148\pi\)
0.704553 + 0.709652i \(0.251148\pi\)
\(972\) − 1.82898e7i − 0.620931i
\(973\) 7.60345e6i 0.257471i
\(974\) 2.95322e7 0.997468
\(975\) 0 0
\(976\) −1.56464e7 −0.525764
\(977\) − 2.77983e7i − 0.931713i −0.884860 0.465856i \(-0.845746\pi\)
0.884860 0.465856i \(-0.154254\pi\)
\(978\) − 3.39483e6i − 0.113494i
\(979\) 6.72472e6 0.224242
\(980\) 0 0
\(981\) 1.97041e7 0.653709
\(982\) − 6.85891e7i − 2.26974i
\(983\) − 2.08694e7i − 0.688853i −0.938813 0.344426i \(-0.888073\pi\)
0.938813 0.344426i \(-0.111927\pi\)
\(984\) −580430. −0.0191100
\(985\) 0 0
\(986\) −4.53395e7 −1.48520
\(987\) − 992202.i − 0.0324196i
\(988\) 1.13496e7i 0.369904i
\(989\) 2.80185e7 0.910866
\(990\) 0 0
\(991\) 5.53538e7 1.79045 0.895227 0.445611i \(-0.147014\pi\)
0.895227 + 0.445611i \(0.147014\pi\)
\(992\) − 1.13377e7i − 0.365802i
\(993\) − 9.41101e6i − 0.302875i
\(994\) −4.56787e6 −0.146638
\(995\) 0 0
\(996\) 1.32741e7 0.423990
\(997\) − 3.35323e6i − 0.106838i −0.998572 0.0534189i \(-0.982988\pi\)
0.998572 0.0534189i \(-0.0170119\pi\)
\(998\) − 5.09973e7i − 1.62077i
\(999\) −2.17523e7 −0.689590
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.h.274.3 18
5.2 odd 4 325.6.a.i.1.8 yes 9
5.3 odd 4 325.6.a.h.1.2 9
5.4 even 2 inner 325.6.b.h.274.16 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.2 9 5.3 odd 4
325.6.a.i.1.8 yes 9 5.2 odd 4
325.6.b.h.274.3 18 1.1 even 1 trivial
325.6.b.h.274.16 18 5.4 even 2 inner