Properties

Label 325.6.b.h.274.2
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 378 x^{16} + 59175 x^{14} + 4956036 x^{12} + 239061247 x^{10} + 6629044458 x^{8} + \cdots + 134659641600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.2
Root \(-9.23858i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.h.274.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.23858i q^{2} +11.6375i q^{3} -35.8743 q^{4} +95.8765 q^{6} +195.071i q^{7} +31.9185i q^{8} +107.569 q^{9} +64.5579 q^{11} -417.487i q^{12} +169.000i q^{13} +1607.11 q^{14} -885.013 q^{16} -426.010i q^{17} -886.215i q^{18} +959.570 q^{19} -2270.14 q^{21} -531.866i q^{22} -499.768i q^{23} -371.452 q^{24} +1392.32 q^{26} +4079.74i q^{27} -6998.03i q^{28} -1288.17 q^{29} -6738.17 q^{31} +8312.65i q^{32} +751.292i q^{33} -3509.72 q^{34} -3858.95 q^{36} +6218.21i q^{37} -7905.50i q^{38} -1966.74 q^{39} -6498.90 q^{41} +18702.7i q^{42} -15640.4i q^{43} -2315.97 q^{44} -4117.38 q^{46} +6299.21i q^{47} -10299.3i q^{48} -21245.7 q^{49} +4957.69 q^{51} -6062.75i q^{52} +40397.3i q^{53} +33611.3 q^{54} -6226.38 q^{56} +11167.0i q^{57} +10612.7i q^{58} -25614.1 q^{59} +24197.9 q^{61} +55513.0i q^{62} +20983.6i q^{63} +40164.0 q^{64} +6189.58 q^{66} +39183.3i q^{67} +15282.8i q^{68} +5816.04 q^{69} -32681.2 q^{71} +3433.44i q^{72} +14507.0i q^{73} +51229.3 q^{74} -34423.9 q^{76} +12593.4i q^{77} +16203.1i q^{78} -79037.9 q^{79} -21338.7 q^{81} +53541.7i q^{82} +102366. i q^{83} +81439.5 q^{84} -128855. q^{86} -14991.1i q^{87} +2060.59i q^{88} +48103.8 q^{89} -32967.0 q^{91} +17928.8i q^{92} -78415.4i q^{93} +51896.6 q^{94} -96738.4 q^{96} -73361.2i q^{97} +175035. i q^{98} +6944.42 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9} - 2844 q^{11} + 684 q^{14} - 2122 q^{16} + 816 q^{19} - 7824 q^{21} + 16938 q^{24} - 1690 q^{26} + 17474 q^{29} + 1496 q^{31} + 35578 q^{34} + 1024 q^{36} + 3718 q^{39}+ \cdots + 1515552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 8.23858i − 1.45639i −0.685370 0.728195i \(-0.740360\pi\)
0.685370 0.728195i \(-0.259640\pi\)
\(3\) 11.6375i 0.746545i 0.927722 + 0.373273i \(0.121764\pi\)
−0.927722 + 0.373273i \(0.878236\pi\)
\(4\) −35.8743 −1.12107
\(5\) 0 0
\(6\) 95.8765 1.08726
\(7\) 195.071i 1.50469i 0.658768 + 0.752346i \(0.271078\pi\)
−0.658768 + 0.752346i \(0.728922\pi\)
\(8\) 31.9185i 0.176327i
\(9\) 107.569 0.442670
\(10\) 0 0
\(11\) 64.5579 0.160867 0.0804337 0.996760i \(-0.474369\pi\)
0.0804337 + 0.996760i \(0.474369\pi\)
\(12\) − 417.487i − 0.836930i
\(13\) 169.000i 0.277350i
\(14\) 1607.11 2.19142
\(15\) 0 0
\(16\) −885.013 −0.864271
\(17\) − 426.010i − 0.357518i −0.983893 0.178759i \(-0.942792\pi\)
0.983893 0.178759i \(-0.0572082\pi\)
\(18\) − 886.215i − 0.644700i
\(19\) 959.570 0.609807 0.304904 0.952383i \(-0.401376\pi\)
0.304904 + 0.952383i \(0.401376\pi\)
\(20\) 0 0
\(21\) −2270.14 −1.12332
\(22\) − 531.866i − 0.234286i
\(23\) − 499.768i − 0.196992i −0.995137 0.0984960i \(-0.968597\pi\)
0.995137 0.0984960i \(-0.0314032\pi\)
\(24\) −371.452 −0.131636
\(25\) 0 0
\(26\) 1392.32 0.403930
\(27\) 4079.74i 1.07702i
\(28\) − 6998.03i − 1.68687i
\(29\) −1288.17 −0.284432 −0.142216 0.989836i \(-0.545423\pi\)
−0.142216 + 0.989836i \(0.545423\pi\)
\(30\) 0 0
\(31\) −6738.17 −1.25932 −0.629662 0.776869i \(-0.716807\pi\)
−0.629662 + 0.776869i \(0.716807\pi\)
\(32\) 8312.65i 1.43504i
\(33\) 751.292i 0.120095i
\(34\) −3509.72 −0.520685
\(35\) 0 0
\(36\) −3858.95 −0.496264
\(37\) 6218.21i 0.746726i 0.927685 + 0.373363i \(0.121795\pi\)
−0.927685 + 0.373363i \(0.878205\pi\)
\(38\) − 7905.50i − 0.888117i
\(39\) −1966.74 −0.207054
\(40\) 0 0
\(41\) −6498.90 −0.603782 −0.301891 0.953342i \(-0.597618\pi\)
−0.301891 + 0.953342i \(0.597618\pi\)
\(42\) 18702.7i 1.63599i
\(43\) − 15640.4i − 1.28996i −0.764200 0.644980i \(-0.776866\pi\)
0.764200 0.644980i \(-0.223134\pi\)
\(44\) −2315.97 −0.180344
\(45\) 0 0
\(46\) −4117.38 −0.286897
\(47\) 6299.21i 0.415951i 0.978134 + 0.207975i \(0.0666874\pi\)
−0.978134 + 0.207975i \(0.933313\pi\)
\(48\) − 10299.3i − 0.645217i
\(49\) −21245.7 −1.26410
\(50\) 0 0
\(51\) 4957.69 0.266903
\(52\) − 6062.75i − 0.310929i
\(53\) 40397.3i 1.97543i 0.156254 + 0.987717i \(0.450058\pi\)
−0.156254 + 0.987717i \(0.549942\pi\)
\(54\) 33611.3 1.56856
\(55\) 0 0
\(56\) −6226.38 −0.265317
\(57\) 11167.0i 0.455249i
\(58\) 10612.7i 0.414244i
\(59\) −25614.1 −0.957965 −0.478982 0.877824i \(-0.658994\pi\)
−0.478982 + 0.877824i \(0.658994\pi\)
\(60\) 0 0
\(61\) 24197.9 0.832632 0.416316 0.909220i \(-0.363321\pi\)
0.416316 + 0.909220i \(0.363321\pi\)
\(62\) 55513.0i 1.83407i
\(63\) 20983.6i 0.666082i
\(64\) 40164.0 1.22571
\(65\) 0 0
\(66\) 6189.58 0.174905
\(67\) 39183.3i 1.06639i 0.845994 + 0.533193i \(0.179008\pi\)
−0.845994 + 0.533193i \(0.820992\pi\)
\(68\) 15282.8i 0.400803i
\(69\) 5816.04 0.147064
\(70\) 0 0
\(71\) −32681.2 −0.769401 −0.384700 0.923041i \(-0.625695\pi\)
−0.384700 + 0.923041i \(0.625695\pi\)
\(72\) 3433.44i 0.0780545i
\(73\) 14507.0i 0.318617i 0.987229 + 0.159309i \(0.0509265\pi\)
−0.987229 + 0.159309i \(0.949073\pi\)
\(74\) 51229.3 1.08752
\(75\) 0 0
\(76\) −34423.9 −0.683637
\(77\) 12593.4i 0.242056i
\(78\) 16203.1i 0.301552i
\(79\) −79037.9 −1.42484 −0.712422 0.701751i \(-0.752402\pi\)
−0.712422 + 0.701751i \(0.752402\pi\)
\(80\) 0 0
\(81\) −21338.7 −0.361373
\(82\) 53541.7i 0.879342i
\(83\) 102366.i 1.63102i 0.578744 + 0.815509i \(0.303543\pi\)
−0.578744 + 0.815509i \(0.696457\pi\)
\(84\) 81439.5 1.25932
\(85\) 0 0
\(86\) −128855. −1.87868
\(87\) − 14991.1i − 0.212341i
\(88\) 2060.59i 0.0283652i
\(89\) 48103.8 0.643731 0.321866 0.946785i \(-0.395690\pi\)
0.321866 + 0.946785i \(0.395690\pi\)
\(90\) 0 0
\(91\) −32967.0 −0.417327
\(92\) 17928.8i 0.220842i
\(93\) − 78415.4i − 0.940143i
\(94\) 51896.6 0.605786
\(95\) 0 0
\(96\) −96738.4 −1.07132
\(97\) − 73361.2i − 0.791657i −0.918324 0.395829i \(-0.870457\pi\)
0.918324 0.395829i \(-0.129543\pi\)
\(98\) 175035.i 1.84102i
\(99\) 6944.42 0.0712111
\(100\) 0 0
\(101\) 22470.8 0.219187 0.109594 0.993976i \(-0.465045\pi\)
0.109594 + 0.993976i \(0.465045\pi\)
\(102\) − 40844.3i − 0.388715i
\(103\) − 116368.i − 1.08078i −0.841413 0.540392i \(-0.818276\pi\)
0.841413 0.540392i \(-0.181724\pi\)
\(104\) −5394.23 −0.0489042
\(105\) 0 0
\(106\) 332816. 2.87700
\(107\) 33242.7i 0.280697i 0.990102 + 0.140348i \(0.0448222\pi\)
−0.990102 + 0.140348i \(0.955178\pi\)
\(108\) − 146358.i − 1.20741i
\(109\) 87314.5 0.703915 0.351957 0.936016i \(-0.385516\pi\)
0.351957 + 0.936016i \(0.385516\pi\)
\(110\) 0 0
\(111\) −72364.4 −0.557465
\(112\) − 172640.i − 1.30046i
\(113\) 211485.i 1.55806i 0.626988 + 0.779029i \(0.284287\pi\)
−0.626988 + 0.779029i \(0.715713\pi\)
\(114\) 92000.1 0.663020
\(115\) 0 0
\(116\) 46212.2 0.318868
\(117\) 18179.1i 0.122775i
\(118\) 211024.i 1.39517i
\(119\) 83102.3 0.537954
\(120\) 0 0
\(121\) −156883. −0.974122
\(122\) − 199356.i − 1.21264i
\(123\) − 75630.9i − 0.450751i
\(124\) 241727. 1.41179
\(125\) 0 0
\(126\) 172875. 0.970075
\(127\) 74724.8i 0.411107i 0.978646 + 0.205554i \(0.0658995\pi\)
−0.978646 + 0.205554i \(0.934100\pi\)
\(128\) − 64890.1i − 0.350069i
\(129\) 182015. 0.963013
\(130\) 0 0
\(131\) 27550.2 0.140264 0.0701320 0.997538i \(-0.477658\pi\)
0.0701320 + 0.997538i \(0.477658\pi\)
\(132\) − 26952.1i − 0.134635i
\(133\) 187184.i 0.917572i
\(134\) 322815. 1.55307
\(135\) 0 0
\(136\) 13597.6 0.0630399
\(137\) − 266022.i − 1.21092i −0.795876 0.605460i \(-0.792989\pi\)
0.795876 0.605460i \(-0.207011\pi\)
\(138\) − 47916.0i − 0.214182i
\(139\) 263800. 1.15808 0.579039 0.815300i \(-0.303428\pi\)
0.579039 + 0.815300i \(0.303428\pi\)
\(140\) 0 0
\(141\) −73307.0 −0.310526
\(142\) 269247.i 1.12055i
\(143\) 10910.3i 0.0446166i
\(144\) −95199.8 −0.382587
\(145\) 0 0
\(146\) 119517. 0.464031
\(147\) − 247247.i − 0.943708i
\(148\) − 223074.i − 0.837133i
\(149\) −4746.74 −0.0175158 −0.00875790 0.999962i \(-0.502788\pi\)
−0.00875790 + 0.999962i \(0.502788\pi\)
\(150\) 0 0
\(151\) −94651.9 −0.337821 −0.168911 0.985631i \(-0.554025\pi\)
−0.168911 + 0.985631i \(0.554025\pi\)
\(152\) 30628.1i 0.107525i
\(153\) − 45825.4i − 0.158262i
\(154\) 103752. 0.352528
\(155\) 0 0
\(156\) 70555.2 0.232123
\(157\) 264887.i 0.857652i 0.903387 + 0.428826i \(0.141073\pi\)
−0.903387 + 0.428826i \(0.858927\pi\)
\(158\) 651160.i 2.07513i
\(159\) −470123. −1.47475
\(160\) 0 0
\(161\) 97490.2 0.296412
\(162\) 175801.i 0.526300i
\(163\) 121957.i 0.359533i 0.983709 + 0.179766i \(0.0575342\pi\)
−0.983709 + 0.179766i \(0.942466\pi\)
\(164\) 233143. 0.676883
\(165\) 0 0
\(166\) 843348. 2.37540
\(167\) 465583.i 1.29183i 0.763408 + 0.645916i \(0.223524\pi\)
−0.763408 + 0.645916i \(0.776476\pi\)
\(168\) − 72459.5i − 0.198071i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 103220. 0.269943
\(172\) 561087.i 1.44614i
\(173\) 69307.4i 0.176062i 0.996118 + 0.0880308i \(0.0280574\pi\)
−0.996118 + 0.0880308i \(0.971943\pi\)
\(174\) −123505. −0.309252
\(175\) 0 0
\(176\) −57134.6 −0.139033
\(177\) − 298084.i − 0.715164i
\(178\) − 396307.i − 0.937524i
\(179\) −305640. −0.712981 −0.356491 0.934299i \(-0.616027\pi\)
−0.356491 + 0.934299i \(0.616027\pi\)
\(180\) 0 0
\(181\) −284602. −0.645715 −0.322858 0.946448i \(-0.604644\pi\)
−0.322858 + 0.946448i \(0.604644\pi\)
\(182\) 271601.i 0.607790i
\(183\) 281603.i 0.621598i
\(184\) 15951.9 0.0347350
\(185\) 0 0
\(186\) −646032. −1.36921
\(187\) − 27502.3i − 0.0575129i
\(188\) − 225980.i − 0.466310i
\(189\) −795839. −1.62058
\(190\) 0 0
\(191\) −536766. −1.06464 −0.532319 0.846544i \(-0.678679\pi\)
−0.532319 + 0.846544i \(0.678679\pi\)
\(192\) 467409.i 0.915048i
\(193\) − 931130.i − 1.79936i −0.436555 0.899678i \(-0.643801\pi\)
0.436555 0.899678i \(-0.356199\pi\)
\(194\) −604393. −1.15296
\(195\) 0 0
\(196\) 762175. 1.41715
\(197\) − 210297.i − 0.386071i −0.981192 0.193036i \(-0.938167\pi\)
0.981192 0.193036i \(-0.0618333\pi\)
\(198\) − 57212.2i − 0.103711i
\(199\) −853286. −1.52743 −0.763716 0.645552i \(-0.776627\pi\)
−0.763716 + 0.645552i \(0.776627\pi\)
\(200\) 0 0
\(201\) −455995. −0.796105
\(202\) − 185128.i − 0.319222i
\(203\) − 251285.i − 0.427983i
\(204\) −177854. −0.299218
\(205\) 0 0
\(206\) −958704. −1.57404
\(207\) − 53759.4i − 0.0872025i
\(208\) − 149567.i − 0.239706i
\(209\) 61947.8 0.0980981
\(210\) 0 0
\(211\) −913530. −1.41259 −0.706296 0.707917i \(-0.749635\pi\)
−0.706296 + 0.707917i \(0.749635\pi\)
\(212\) − 1.44922e6i − 2.21460i
\(213\) − 380328.i − 0.574393i
\(214\) 273873. 0.408804
\(215\) 0 0
\(216\) −130219. −0.189907
\(217\) − 1.31442e6i − 1.89490i
\(218\) − 719348.i − 1.02517i
\(219\) −168825. −0.237862
\(220\) 0 0
\(221\) 71995.7 0.0991576
\(222\) 596180.i 0.811886i
\(223\) 412081.i 0.554908i 0.960739 + 0.277454i \(0.0894906\pi\)
−0.960739 + 0.277454i \(0.910509\pi\)
\(224\) −1.62156e6 −2.15930
\(225\) 0 0
\(226\) 1.74234e6 2.26914
\(227\) 864103.i 1.11302i 0.830843 + 0.556508i \(0.187859\pi\)
−0.830843 + 0.556508i \(0.812141\pi\)
\(228\) − 400607.i − 0.510366i
\(229\) 236005. 0.297395 0.148697 0.988883i \(-0.452492\pi\)
0.148697 + 0.988883i \(0.452492\pi\)
\(230\) 0 0
\(231\) −146555. −0.180706
\(232\) − 41116.5i − 0.0501529i
\(233\) 1.24095e6i 1.49749i 0.662859 + 0.748744i \(0.269343\pi\)
−0.662859 + 0.748744i \(0.730657\pi\)
\(234\) 149770. 0.178808
\(235\) 0 0
\(236\) 918888. 1.07395
\(237\) − 919803.i − 1.06371i
\(238\) − 684645.i − 0.783471i
\(239\) 868458. 0.983454 0.491727 0.870749i \(-0.336366\pi\)
0.491727 + 0.870749i \(0.336366\pi\)
\(240\) 0 0
\(241\) −836767. −0.928029 −0.464015 0.885827i \(-0.653592\pi\)
−0.464015 + 0.885827i \(0.653592\pi\)
\(242\) 1.29250e6i 1.41870i
\(243\) 743048.i 0.807237i
\(244\) −868082. −0.933440
\(245\) 0 0
\(246\) −623092. −0.656469
\(247\) 162167.i 0.169130i
\(248\) − 215072.i − 0.222052i
\(249\) −1.19128e6 −1.21763
\(250\) 0 0
\(251\) −1.94946e6 −1.95313 −0.976565 0.215224i \(-0.930952\pi\)
−0.976565 + 0.215224i \(0.930952\pi\)
\(252\) − 752770.i − 0.746725i
\(253\) − 32264.0i − 0.0316896i
\(254\) 615626. 0.598733
\(255\) 0 0
\(256\) 750647. 0.715873
\(257\) 358481.i 0.338558i 0.985568 + 0.169279i \(0.0541439\pi\)
−0.985568 + 0.169279i \(0.945856\pi\)
\(258\) − 1.49954e6i − 1.40252i
\(259\) −1.21299e6 −1.12359
\(260\) 0 0
\(261\) −138567. −0.125909
\(262\) − 226975.i − 0.204279i
\(263\) 2.02422e6i 1.80454i 0.431167 + 0.902272i \(0.358102\pi\)
−0.431167 + 0.902272i \(0.641898\pi\)
\(264\) −23980.2 −0.0211759
\(265\) 0 0
\(266\) 1.54213e6 1.33634
\(267\) 559808.i 0.480575i
\(268\) − 1.40567e6i − 1.19549i
\(269\) 1.72406e6 1.45268 0.726341 0.687334i \(-0.241219\pi\)
0.726341 + 0.687334i \(0.241219\pi\)
\(270\) 0 0
\(271\) −618168. −0.511309 −0.255654 0.966768i \(-0.582291\pi\)
−0.255654 + 0.966768i \(0.582291\pi\)
\(272\) 377025.i 0.308992i
\(273\) − 383653.i − 0.311553i
\(274\) −2.19164e6 −1.76357
\(275\) 0 0
\(276\) −208646. −0.164869
\(277\) − 535823.i − 0.419587i −0.977746 0.209793i \(-0.932721\pi\)
0.977746 0.209793i \(-0.0672791\pi\)
\(278\) − 2.17334e6i − 1.68661i
\(279\) −724817. −0.557465
\(280\) 0 0
\(281\) 1.19483e6 0.902695 0.451347 0.892348i \(-0.350944\pi\)
0.451347 + 0.892348i \(0.350944\pi\)
\(282\) 603946.i 0.452247i
\(283\) − 2.59984e6i − 1.92966i −0.262875 0.964830i \(-0.584671\pi\)
0.262875 0.964830i \(-0.415329\pi\)
\(284\) 1.17242e6 0.862553
\(285\) 0 0
\(286\) 89885.3 0.0649791
\(287\) − 1.26775e6i − 0.908506i
\(288\) 894182.i 0.635250i
\(289\) 1.23837e6 0.872181
\(290\) 0 0
\(291\) 853741. 0.591008
\(292\) − 520427.i − 0.357193i
\(293\) 2.12976e6i 1.44931i 0.689113 + 0.724654i \(0.258000\pi\)
−0.689113 + 0.724654i \(0.742000\pi\)
\(294\) −2.03696e6 −1.37441
\(295\) 0 0
\(296\) −198476. −0.131668
\(297\) 263380.i 0.173257i
\(298\) 39106.4i 0.0255098i
\(299\) 84460.8 0.0546358
\(300\) 0 0
\(301\) 3.05098e6 1.94099
\(302\) 779798.i 0.492000i
\(303\) 261504.i 0.163633i
\(304\) −849232. −0.527039
\(305\) 0 0
\(306\) −377536. −0.230492
\(307\) − 1.52136e6i − 0.921270i −0.887590 0.460635i \(-0.847622\pi\)
0.887590 0.460635i \(-0.152378\pi\)
\(308\) − 451778.i − 0.271362i
\(309\) 1.35423e6 0.806854
\(310\) 0 0
\(311\) 1.78856e6 1.04858 0.524290 0.851540i \(-0.324331\pi\)
0.524290 + 0.851540i \(0.324331\pi\)
\(312\) − 62775.3i − 0.0365092i
\(313\) 451359.i 0.260412i 0.991487 + 0.130206i \(0.0415639\pi\)
−0.991487 + 0.130206i \(0.958436\pi\)
\(314\) 2.18229e6 1.24908
\(315\) 0 0
\(316\) 2.83543e6 1.59735
\(317\) − 1.39653e6i − 0.780554i −0.920697 0.390277i \(-0.872379\pi\)
0.920697 0.390277i \(-0.127621\pi\)
\(318\) 3.87315e6i 2.14781i
\(319\) −83161.6 −0.0457558
\(320\) 0 0
\(321\) −386862. −0.209553
\(322\) − 803182.i − 0.431692i
\(323\) − 408786.i − 0.218017i
\(324\) 765512. 0.405125
\(325\) 0 0
\(326\) 1.00475e6 0.523620
\(327\) 1.01612e6i 0.525504i
\(328\) − 207435.i − 0.106463i
\(329\) −1.22879e6 −0.625878
\(330\) 0 0
\(331\) 1.37630e6 0.690467 0.345233 0.938517i \(-0.387800\pi\)
0.345233 + 0.938517i \(0.387800\pi\)
\(332\) − 3.67229e6i − 1.82849i
\(333\) 668885.i 0.330553i
\(334\) 3.83575e6 1.88141
\(335\) 0 0
\(336\) 2.00910e6 0.970854
\(337\) − 1.93389e6i − 0.927590i −0.885943 0.463795i \(-0.846487\pi\)
0.885943 0.463795i \(-0.153513\pi\)
\(338\) 235302.i 0.112030i
\(339\) −2.46115e6 −1.16316
\(340\) 0 0
\(341\) −435002. −0.202584
\(342\) − 850385.i − 0.393143i
\(343\) − 865866.i − 0.397388i
\(344\) 499218. 0.227454
\(345\) 0 0
\(346\) 570995. 0.256414
\(347\) − 4.24482e6i − 1.89250i −0.323435 0.946250i \(-0.604838\pi\)
0.323435 0.946250i \(-0.395162\pi\)
\(348\) 537794.i 0.238050i
\(349\) 3.06057e6 1.34505 0.672525 0.740074i \(-0.265210\pi\)
0.672525 + 0.740074i \(0.265210\pi\)
\(350\) 0 0
\(351\) −689476. −0.298711
\(352\) 536647.i 0.230851i
\(353\) − 4.53104e6i − 1.93536i −0.252186 0.967679i \(-0.581149\pi\)
0.252186 0.967679i \(-0.418851\pi\)
\(354\) −2.45579e6 −1.04156
\(355\) 0 0
\(356\) −1.72569e6 −0.721668
\(357\) 967102.i 0.401607i
\(358\) 2.51804e6i 1.03838i
\(359\) 2.68308e6 1.09875 0.549373 0.835577i \(-0.314867\pi\)
0.549373 + 0.835577i \(0.314867\pi\)
\(360\) 0 0
\(361\) −1.55532e6 −0.628135
\(362\) 2.34472e6i 0.940413i
\(363\) − 1.82573e6i − 0.727226i
\(364\) 1.18267e6 0.467853
\(365\) 0 0
\(366\) 2.32001e6 0.905288
\(367\) − 659030.i − 0.255411i −0.991812 0.127706i \(-0.959239\pi\)
0.991812 0.127706i \(-0.0407613\pi\)
\(368\) 442301.i 0.170254i
\(369\) −699079. −0.267276
\(370\) 0 0
\(371\) −7.88034e6 −2.97242
\(372\) 2.81309e6i 1.05397i
\(373\) − 1.73787e6i − 0.646764i −0.946268 0.323382i \(-0.895180\pi\)
0.946268 0.323382i \(-0.104820\pi\)
\(374\) −226580. −0.0837612
\(375\) 0 0
\(376\) −201062. −0.0733432
\(377\) − 217701.i − 0.0788872i
\(378\) 6.55659e6i 2.36020i
\(379\) 4.61878e6 1.65169 0.825847 0.563894i \(-0.190697\pi\)
0.825847 + 0.563894i \(0.190697\pi\)
\(380\) 0 0
\(381\) −869609. −0.306910
\(382\) 4.42219e6i 1.55053i
\(383\) 656507.i 0.228688i 0.993441 + 0.114344i \(0.0364765\pi\)
−0.993441 + 0.114344i \(0.963523\pi\)
\(384\) 755158. 0.261342
\(385\) 0 0
\(386\) −7.67119e6 −2.62056
\(387\) − 1.68242e6i − 0.571026i
\(388\) 2.63178e6i 0.887504i
\(389\) 1.50525e6 0.504352 0.252176 0.967681i \(-0.418854\pi\)
0.252176 + 0.967681i \(0.418854\pi\)
\(390\) 0 0
\(391\) −212906. −0.0704282
\(392\) − 678132.i − 0.222894i
\(393\) 320615.i 0.104714i
\(394\) −1.73255e6 −0.562270
\(395\) 0 0
\(396\) −249126. −0.0798327
\(397\) − 389426.i − 0.124008i −0.998076 0.0620038i \(-0.980251\pi\)
0.998076 0.0620038i \(-0.0197491\pi\)
\(398\) 7.02987e6i 2.22454i
\(399\) −2.17836e6 −0.685009
\(400\) 0 0
\(401\) 3.45560e6 1.07316 0.536578 0.843851i \(-0.319717\pi\)
0.536578 + 0.843851i \(0.319717\pi\)
\(402\) 3.75676e6i 1.15944i
\(403\) − 1.13875e6i − 0.349274i
\(404\) −806125. −0.245725
\(405\) 0 0
\(406\) −2.07023e6 −0.623309
\(407\) 401435.i 0.120124i
\(408\) 158242.i 0.0470622i
\(409\) 5.22273e6 1.54379 0.771896 0.635748i \(-0.219308\pi\)
0.771896 + 0.635748i \(0.219308\pi\)
\(410\) 0 0
\(411\) 3.09582e6 0.904007
\(412\) 4.17460e6i 1.21164i
\(413\) − 4.99658e6i − 1.44144i
\(414\) −442902. −0.127001
\(415\) 0 0
\(416\) −1.40484e6 −0.398009
\(417\) 3.06997e6i 0.864558i
\(418\) − 510362.i − 0.142869i
\(419\) 2.19501e6 0.610805 0.305402 0.952223i \(-0.401209\pi\)
0.305402 + 0.952223i \(0.401209\pi\)
\(420\) 0 0
\(421\) −4.06919e6 −1.11893 −0.559465 0.828854i \(-0.688993\pi\)
−0.559465 + 0.828854i \(0.688993\pi\)
\(422\) 7.52619e6i 2.05728i
\(423\) 677599.i 0.184129i
\(424\) −1.28942e6 −0.348322
\(425\) 0 0
\(426\) −3.13336e6 −0.836540
\(427\) 4.72031e6i 1.25285i
\(428\) − 1.19256e6i − 0.314681i
\(429\) −126968. −0.0333083
\(430\) 0 0
\(431\) −3.69314e6 −0.957641 −0.478821 0.877913i \(-0.658936\pi\)
−0.478821 + 0.877913i \(0.658936\pi\)
\(432\) − 3.61062e6i − 0.930836i
\(433\) − 7.32688e6i − 1.87802i −0.343896 0.939008i \(-0.611747\pi\)
0.343896 0.939008i \(-0.388253\pi\)
\(434\) −1.08290e7 −2.75971
\(435\) 0 0
\(436\) −3.13234e6 −0.789139
\(437\) − 479562.i − 0.120127i
\(438\) 1.39088e6i 0.346420i
\(439\) 4.33121e6 1.07263 0.536313 0.844019i \(-0.319817\pi\)
0.536313 + 0.844019i \(0.319817\pi\)
\(440\) 0 0
\(441\) −2.28538e6 −0.559579
\(442\) − 593143.i − 0.144412i
\(443\) 6.00225e6i 1.45313i 0.687097 + 0.726566i \(0.258885\pi\)
−0.687097 + 0.726566i \(0.741115\pi\)
\(444\) 2.59602e6 0.624958
\(445\) 0 0
\(446\) 3.39497e6 0.808162
\(447\) − 55240.2i − 0.0130763i
\(448\) 7.83484e6i 1.84432i
\(449\) −1.63461e6 −0.382647 −0.191324 0.981527i \(-0.561278\pi\)
−0.191324 + 0.981527i \(0.561278\pi\)
\(450\) 0 0
\(451\) −419556. −0.0971288
\(452\) − 7.58687e6i − 1.74669i
\(453\) − 1.10151e6i − 0.252199i
\(454\) 7.11899e6 1.62098
\(455\) 0 0
\(456\) −356434. −0.0802725
\(457\) 8.14010e6i 1.82322i 0.411056 + 0.911610i \(0.365160\pi\)
−0.411056 + 0.911610i \(0.634840\pi\)
\(458\) − 1.94435e6i − 0.433123i
\(459\) 1.73801e6 0.385053
\(460\) 0 0
\(461\) 1.30948e6 0.286977 0.143489 0.989652i \(-0.454168\pi\)
0.143489 + 0.989652i \(0.454168\pi\)
\(462\) 1.20741e6i 0.263178i
\(463\) − 1.54820e6i − 0.335641i −0.985818 0.167820i \(-0.946327\pi\)
0.985818 0.167820i \(-0.0536728\pi\)
\(464\) 1.14005e6 0.245826
\(465\) 0 0
\(466\) 1.02236e7 2.18093
\(467\) − 6.32397e6i − 1.34183i −0.741534 0.670915i \(-0.765902\pi\)
0.741534 0.670915i \(-0.234098\pi\)
\(468\) − 652163.i − 0.137639i
\(469\) −7.64353e6 −1.60458
\(470\) 0 0
\(471\) −3.08262e6 −0.640276
\(472\) − 817566.i − 0.168915i
\(473\) − 1.00971e6i − 0.207512i
\(474\) −7.57787e6 −1.54918
\(475\) 0 0
\(476\) −2.98123e6 −0.603085
\(477\) 4.34549e6i 0.874465i
\(478\) − 7.15486e6i − 1.43229i
\(479\) 803117. 0.159934 0.0799669 0.996798i \(-0.474519\pi\)
0.0799669 + 0.996798i \(0.474519\pi\)
\(480\) 0 0
\(481\) −1.05088e6 −0.207104
\(482\) 6.89377e6i 1.35157i
\(483\) 1.13454e6i 0.221285i
\(484\) 5.62807e6 1.09206
\(485\) 0 0
\(486\) 6.12166e6 1.17565
\(487\) 6.13178e6i 1.17156i 0.810471 + 0.585779i \(0.199211\pi\)
−0.810471 + 0.585779i \(0.800789\pi\)
\(488\) 772362.i 0.146815i
\(489\) −1.41928e6 −0.268407
\(490\) 0 0
\(491\) −236451. −0.0442626 −0.0221313 0.999755i \(-0.507045\pi\)
−0.0221313 + 0.999755i \(0.507045\pi\)
\(492\) 2.71320e6i 0.505324i
\(493\) 548774.i 0.101689i
\(494\) 1.33603e6 0.246319
\(495\) 0 0
\(496\) 5.96337e6 1.08840
\(497\) − 6.37517e6i − 1.15771i
\(498\) 9.81445e6i 1.77334i
\(499\) 1.81339e6 0.326018 0.163009 0.986625i \(-0.447880\pi\)
0.163009 + 0.986625i \(0.447880\pi\)
\(500\) 0 0
\(501\) −5.41822e6 −0.964412
\(502\) 1.60608e7i 2.84452i
\(503\) − 4.69515e6i − 0.827427i −0.910407 0.413713i \(-0.864232\pi\)
0.910407 0.413713i \(-0.135768\pi\)
\(504\) −669765. −0.117448
\(505\) 0 0
\(506\) −265809. −0.0461524
\(507\) − 332378.i − 0.0574266i
\(508\) − 2.68070e6i − 0.460881i
\(509\) −7.10737e6 −1.21595 −0.607973 0.793958i \(-0.708017\pi\)
−0.607973 + 0.793958i \(0.708017\pi\)
\(510\) 0 0
\(511\) −2.82989e6 −0.479421
\(512\) − 8.26075e6i − 1.39266i
\(513\) 3.91480e6i 0.656774i
\(514\) 2.95338e6 0.493073
\(515\) 0 0
\(516\) −6.52965e6 −1.07961
\(517\) 406664.i 0.0669128i
\(518\) 9.99335e6i 1.63639i
\(519\) −806564. −0.131438
\(520\) 0 0
\(521\) 9.92332e6 1.60163 0.800816 0.598911i \(-0.204400\pi\)
0.800816 + 0.598911i \(0.204400\pi\)
\(522\) 1.14160e6i 0.183373i
\(523\) − 1.66096e6i − 0.265525i −0.991148 0.132763i \(-0.957615\pi\)
0.991148 0.132763i \(-0.0423848\pi\)
\(524\) −988343. −0.157246
\(525\) 0 0
\(526\) 1.66767e7 2.62812
\(527\) 2.87053e6i 0.450231i
\(528\) − 664904.i − 0.103794i
\(529\) 6.18658e6 0.961194
\(530\) 0 0
\(531\) −2.75528e6 −0.424062
\(532\) − 6.71510e6i − 1.02866i
\(533\) − 1.09831e6i − 0.167459i
\(534\) 4.61202e6 0.699904
\(535\) 0 0
\(536\) −1.25067e6 −0.188032
\(537\) − 3.55689e6i − 0.532273i
\(538\) − 1.42038e7i − 2.11567i
\(539\) −1.37158e6 −0.203352
\(540\) 0 0
\(541\) 8.08498e6 1.18764 0.593822 0.804597i \(-0.297619\pi\)
0.593822 + 0.804597i \(0.297619\pi\)
\(542\) 5.09283e6i 0.744665i
\(543\) − 3.31205e6i − 0.482056i
\(544\) 3.54127e6 0.513053
\(545\) 0 0
\(546\) −3.16076e6 −0.453743
\(547\) 2.35716e6i 0.336838i 0.985715 + 0.168419i \(0.0538662\pi\)
−0.985715 + 0.168419i \(0.946134\pi\)
\(548\) 9.54333e6i 1.35753i
\(549\) 2.60294e6 0.368581
\(550\) 0 0
\(551\) −1.23609e6 −0.173449
\(552\) 185640.i 0.0259312i
\(553\) − 1.54180e7i − 2.14395i
\(554\) −4.41442e6 −0.611082
\(555\) 0 0
\(556\) −9.46363e6 −1.29829
\(557\) − 3.10870e6i − 0.424562i −0.977209 0.212281i \(-0.931911\pi\)
0.977209 0.212281i \(-0.0680891\pi\)
\(558\) 5.97146e6i 0.811886i
\(559\) 2.64322e6 0.357770
\(560\) 0 0
\(561\) 320058. 0.0429360
\(562\) − 9.84372e6i − 1.31468i
\(563\) − 174928.i − 0.0232589i −0.999932 0.0116295i \(-0.996298\pi\)
0.999932 0.0116295i \(-0.00370186\pi\)
\(564\) 2.62984e6 0.348122
\(565\) 0 0
\(566\) −2.14190e7 −2.81034
\(567\) − 4.16257e6i − 0.543756i
\(568\) − 1.04314e6i − 0.135666i
\(569\) 7.95974e6 1.03067 0.515333 0.856990i \(-0.327668\pi\)
0.515333 + 0.856990i \(0.327668\pi\)
\(570\) 0 0
\(571\) 3.22926e6 0.414488 0.207244 0.978289i \(-0.433551\pi\)
0.207244 + 0.978289i \(0.433551\pi\)
\(572\) − 391399.i − 0.0500183i
\(573\) − 6.24661e6i − 0.794800i
\(574\) −1.04444e7 −1.32314
\(575\) 0 0
\(576\) 4.32040e6 0.542585
\(577\) 1.13083e7i 1.41403i 0.707200 + 0.707014i \(0.249958\pi\)
−0.707200 + 0.707014i \(0.750042\pi\)
\(578\) − 1.02024e7i − 1.27024i
\(579\) 1.08360e7 1.34330
\(580\) 0 0
\(581\) −1.99686e7 −2.45418
\(582\) − 7.03361e6i − 0.860738i
\(583\) 2.60796e6i 0.317783i
\(584\) −463041. −0.0561807
\(585\) 0 0
\(586\) 1.75462e7 2.11076
\(587\) − 9.47132e6i − 1.13453i −0.823536 0.567264i \(-0.808002\pi\)
0.823536 0.567264i \(-0.191998\pi\)
\(588\) 8.86980e6i 1.05796i
\(589\) −6.46574e6 −0.767945
\(590\) 0 0
\(591\) 2.44733e6 0.288220
\(592\) − 5.50320e6i − 0.645373i
\(593\) − 5.00001e6i − 0.583894i −0.956434 0.291947i \(-0.905697\pi\)
0.956434 0.291947i \(-0.0943031\pi\)
\(594\) 2.16988e6 0.252330
\(595\) 0 0
\(596\) 170286. 0.0196365
\(597\) − 9.93011e6i − 1.14030i
\(598\) − 695837.i − 0.0795710i
\(599\) −9.49229e6 −1.08095 −0.540473 0.841361i \(-0.681755\pi\)
−0.540473 + 0.841361i \(0.681755\pi\)
\(600\) 0 0
\(601\) 7.36100e6 0.831286 0.415643 0.909528i \(-0.363557\pi\)
0.415643 + 0.909528i \(0.363557\pi\)
\(602\) − 2.51358e7i − 2.82684i
\(603\) 4.21490e6i 0.472057i
\(604\) 3.39557e6 0.378722
\(605\) 0 0
\(606\) 2.15442e6 0.238314
\(607\) − 1.14445e7i − 1.26074i −0.776295 0.630370i \(-0.782903\pi\)
0.776295 0.630370i \(-0.217097\pi\)
\(608\) 7.97657e6i 0.875099i
\(609\) 2.92432e6 0.319508
\(610\) 0 0
\(611\) −1.06457e6 −0.115364
\(612\) 1.64395e6i 0.177423i
\(613\) 1.01622e7i 1.09229i 0.837691 + 0.546144i \(0.183905\pi\)
−0.837691 + 0.546144i \(0.816095\pi\)
\(614\) −1.25339e7 −1.34173
\(615\) 0 0
\(616\) −401962. −0.0426809
\(617\) 1.19269e7i 1.26129i 0.776072 + 0.630644i \(0.217209\pi\)
−0.776072 + 0.630644i \(0.782791\pi\)
\(618\) − 1.11569e7i − 1.17509i
\(619\) −6.13819e6 −0.643893 −0.321946 0.946758i \(-0.604337\pi\)
−0.321946 + 0.946758i \(0.604337\pi\)
\(620\) 0 0
\(621\) 2.03892e6 0.212164
\(622\) − 1.47352e7i − 1.52714i
\(623\) 9.38366e6i 0.968617i
\(624\) 1.74059e6 0.178951
\(625\) 0 0
\(626\) 3.71856e6 0.379262
\(627\) 720917.i 0.0732347i
\(628\) − 9.50262e6i − 0.961489i
\(629\) 2.64902e6 0.266968
\(630\) 0 0
\(631\) 9.80829e6 0.980663 0.490332 0.871536i \(-0.336876\pi\)
0.490332 + 0.871536i \(0.336876\pi\)
\(632\) − 2.52277e6i − 0.251238i
\(633\) − 1.06312e7i − 1.05456i
\(634\) −1.15055e7 −1.13679
\(635\) 0 0
\(636\) 1.68653e7 1.65330
\(637\) − 3.59053e6i − 0.350598i
\(638\) 685134.i 0.0666383i
\(639\) −3.51548e6 −0.340591
\(640\) 0 0
\(641\) 1.57763e6 0.151657 0.0758283 0.997121i \(-0.475840\pi\)
0.0758283 + 0.997121i \(0.475840\pi\)
\(642\) 3.18719e6i 0.305190i
\(643\) 1.87484e7i 1.78829i 0.447779 + 0.894144i \(0.352215\pi\)
−0.447779 + 0.894144i \(0.647785\pi\)
\(644\) −3.49739e6 −0.332299
\(645\) 0 0
\(646\) −3.36782e6 −0.317518
\(647\) − 1.32643e7i − 1.24573i −0.782331 0.622863i \(-0.785969\pi\)
0.782331 0.622863i \(-0.214031\pi\)
\(648\) − 681101.i − 0.0637198i
\(649\) −1.65360e6 −0.154105
\(650\) 0 0
\(651\) 1.52966e7 1.41463
\(652\) − 4.37513e6i − 0.403062i
\(653\) 7.19177e6i 0.660013i 0.943979 + 0.330007i \(0.107051\pi\)
−0.943979 + 0.330007i \(0.892949\pi\)
\(654\) 8.37141e6 0.765339
\(655\) 0 0
\(656\) 5.75161e6 0.521831
\(657\) 1.56050e6i 0.141042i
\(658\) 1.01235e7i 0.911522i
\(659\) 2.13493e6 0.191501 0.0957503 0.995405i \(-0.469475\pi\)
0.0957503 + 0.995405i \(0.469475\pi\)
\(660\) 0 0
\(661\) −3.54104e6 −0.315230 −0.157615 0.987501i \(-0.550380\pi\)
−0.157615 + 0.987501i \(0.550380\pi\)
\(662\) − 1.13388e7i − 1.00559i
\(663\) 837850.i 0.0740256i
\(664\) −3.26736e6 −0.287592
\(665\) 0 0
\(666\) 5.51067e6 0.481414
\(667\) 643786.i 0.0560308i
\(668\) − 1.67025e7i − 1.44824i
\(669\) −4.79559e6 −0.414264
\(670\) 0 0
\(671\) 1.56217e6 0.133943
\(672\) − 1.88709e7i − 1.61201i
\(673\) − 1.59930e7i − 1.36110i −0.732700 0.680551i \(-0.761740\pi\)
0.732700 0.680551i \(-0.238260\pi\)
\(674\) −1.59325e7 −1.35093
\(675\) 0 0
\(676\) 1.02461e6 0.0862362
\(677\) 6.51782e6i 0.546551i 0.961936 + 0.273275i \(0.0881070\pi\)
−0.961936 + 0.273275i \(0.911893\pi\)
\(678\) 2.02764e7i 1.69401i
\(679\) 1.43107e7 1.19120
\(680\) 0 0
\(681\) −1.00560e7 −0.830916
\(682\) 3.58380e6i 0.295041i
\(683\) − 2.30581e7i − 1.89135i −0.325118 0.945673i \(-0.605404\pi\)
0.325118 0.945673i \(-0.394596\pi\)
\(684\) −3.70293e6 −0.302626
\(685\) 0 0
\(686\) −7.13351e6 −0.578752
\(687\) 2.74651e6i 0.222019i
\(688\) 1.38419e7i 1.11487i
\(689\) −6.82714e6 −0.547887
\(690\) 0 0
\(691\) 1.77699e7 1.41576 0.707880 0.706333i \(-0.249652\pi\)
0.707880 + 0.706333i \(0.249652\pi\)
\(692\) − 2.48635e6i − 0.197377i
\(693\) 1.35466e6i 0.107151i
\(694\) −3.49713e7 −2.75622
\(695\) 0 0
\(696\) 478493. 0.0374414
\(697\) 2.76860e6i 0.215863i
\(698\) − 2.52148e7i − 1.95892i
\(699\) −1.44415e7 −1.11794
\(700\) 0 0
\(701\) −7.07397e6 −0.543711 −0.271856 0.962338i \(-0.587637\pi\)
−0.271856 + 0.962338i \(0.587637\pi\)
\(702\) 5.68031e6i 0.435040i
\(703\) 5.96681e6i 0.455359i
\(704\) 2.59291e6 0.197177
\(705\) 0 0
\(706\) −3.73294e7 −2.81863
\(707\) 4.38341e6i 0.329810i
\(708\) 1.06936e7i 0.801750i
\(709\) 8.17421e6 0.610703 0.305352 0.952240i \(-0.401226\pi\)
0.305352 + 0.952240i \(0.401226\pi\)
\(710\) 0 0
\(711\) −8.50201e6 −0.630736
\(712\) 1.53540e6i 0.113507i
\(713\) 3.36752e6i 0.248077i
\(714\) 7.96755e6 0.584897
\(715\) 0 0
\(716\) 1.09646e7 0.799303
\(717\) 1.01067e7i 0.734193i
\(718\) − 2.21048e7i − 1.60020i
\(719\) 5.47393e6 0.394891 0.197446 0.980314i \(-0.436735\pi\)
0.197446 + 0.980314i \(0.436735\pi\)
\(720\) 0 0
\(721\) 2.26999e7 1.62625
\(722\) 1.28137e7i 0.914810i
\(723\) − 9.73786e6i − 0.692816i
\(724\) 1.02099e7 0.723893
\(725\) 0 0
\(726\) −1.50414e7 −1.05912
\(727\) 1.55536e7i 1.09143i 0.837972 + 0.545714i \(0.183741\pi\)
−0.837972 + 0.545714i \(0.816259\pi\)
\(728\) − 1.05226e6i − 0.0735858i
\(729\) −1.38325e7 −0.964012
\(730\) 0 0
\(731\) −6.66296e6 −0.461183
\(732\) − 1.01023e7i − 0.696855i
\(733\) 1.49050e7i 1.02464i 0.858795 + 0.512320i \(0.171214\pi\)
−0.858795 + 0.512320i \(0.828786\pi\)
\(734\) −5.42948e6 −0.371979
\(735\) 0 0
\(736\) 4.15439e6 0.282692
\(737\) 2.52959e6i 0.171547i
\(738\) 5.75942e6i 0.389258i
\(739\) −1.31574e6 −0.0886256 −0.0443128 0.999018i \(-0.514110\pi\)
−0.0443128 + 0.999018i \(0.514110\pi\)
\(740\) 0 0
\(741\) −1.88722e6 −0.126263
\(742\) 6.49229e7i 4.32900i
\(743\) 1.76450e7i 1.17260i 0.810094 + 0.586300i \(0.199416\pi\)
−0.810094 + 0.586300i \(0.800584\pi\)
\(744\) 2.50290e6 0.165772
\(745\) 0 0
\(746\) −1.43176e7 −0.941941
\(747\) 1.10113e7i 0.722003i
\(748\) 986626.i 0.0644761i
\(749\) −6.48469e6 −0.422362
\(750\) 0 0
\(751\) −1.08240e7 −0.700308 −0.350154 0.936692i \(-0.613871\pi\)
−0.350154 + 0.936692i \(0.613871\pi\)
\(752\) − 5.57489e6i − 0.359494i
\(753\) − 2.26869e7i − 1.45810i
\(754\) −1.79355e6 −0.114891
\(755\) 0 0
\(756\) 2.85502e7 1.81679
\(757\) 2.74661e7i 1.74204i 0.491251 + 0.871018i \(0.336540\pi\)
−0.491251 + 0.871018i \(0.663460\pi\)
\(758\) − 3.80522e7i − 2.40551i
\(759\) 375472. 0.0236577
\(760\) 0 0
\(761\) 3.08096e6 0.192852 0.0964261 0.995340i \(-0.469259\pi\)
0.0964261 + 0.995340i \(0.469259\pi\)
\(762\) 7.16435e6i 0.446981i
\(763\) 1.70325e7i 1.05918i
\(764\) 1.92561e7 1.19353
\(765\) 0 0
\(766\) 5.40869e6 0.333058
\(767\) − 4.32879e6i − 0.265692i
\(768\) 8.73565e6i 0.534432i
\(769\) −3.97374e6 −0.242317 −0.121159 0.992633i \(-0.538661\pi\)
−0.121159 + 0.992633i \(0.538661\pi\)
\(770\) 0 0
\(771\) −4.17182e6 −0.252749
\(772\) 3.34036e7i 2.01721i
\(773\) 1.29080e6i 0.0776978i 0.999245 + 0.0388489i \(0.0123691\pi\)
−0.999245 + 0.0388489i \(0.987631\pi\)
\(774\) −1.38607e7 −0.831637
\(775\) 0 0
\(776\) 2.34158e6 0.139590
\(777\) − 1.41162e7i − 0.838813i
\(778\) − 1.24011e7i − 0.734533i
\(779\) −6.23615e6 −0.368191
\(780\) 0 0
\(781\) −2.10983e6 −0.123771
\(782\) 1.75405e6i 0.102571i
\(783\) − 5.25540e6i − 0.306339i
\(784\) 1.88027e7 1.09252
\(785\) 0 0
\(786\) 2.64142e6 0.152504
\(787\) − 2.52309e7i − 1.45210i −0.687642 0.726050i \(-0.741354\pi\)
0.687642 0.726050i \(-0.258646\pi\)
\(788\) 7.54425e6i 0.432813i
\(789\) −2.35568e7 −1.34717
\(790\) 0 0
\(791\) −4.12546e7 −2.34440
\(792\) 221656.i 0.0125564i
\(793\) 4.08944e6i 0.230931i
\(794\) −3.20832e6 −0.180603
\(795\) 0 0
\(796\) 3.06110e7 1.71236
\(797\) − 2.89490e7i − 1.61431i −0.590339 0.807155i \(-0.701006\pi\)
0.590339 0.807155i \(-0.298994\pi\)
\(798\) 1.79466e7i 0.997641i
\(799\) 2.68353e6 0.148710
\(800\) 0 0
\(801\) 5.17447e6 0.284960
\(802\) − 2.84693e7i − 1.56293i
\(803\) 936540.i 0.0512551i
\(804\) 1.63585e7 0.892490
\(805\) 0 0
\(806\) −9.38169e6 −0.508679
\(807\) 2.00637e7i 1.08449i
\(808\) 717236.i 0.0386486i
\(809\) 1.89823e7 1.01971 0.509855 0.860260i \(-0.329699\pi\)
0.509855 + 0.860260i \(0.329699\pi\)
\(810\) 0 0
\(811\) −2.83661e7 −1.51442 −0.757212 0.653169i \(-0.773439\pi\)
−0.757212 + 0.653169i \(0.773439\pi\)
\(812\) 9.01466e6i 0.479799i
\(813\) − 7.19392e6i − 0.381715i
\(814\) 3.30725e6 0.174947
\(815\) 0 0
\(816\) −4.38762e6 −0.230677
\(817\) − 1.50080e7i − 0.786627i
\(818\) − 4.30279e7i − 2.24836i
\(819\) −3.54622e6 −0.184738
\(820\) 0 0
\(821\) 3.27149e7 1.69390 0.846951 0.531671i \(-0.178436\pi\)
0.846951 + 0.531671i \(0.178436\pi\)
\(822\) − 2.55052e7i − 1.31659i
\(823\) − 1.40256e7i − 0.721809i −0.932603 0.360904i \(-0.882468\pi\)
0.932603 0.360904i \(-0.117532\pi\)
\(824\) 3.71428e6 0.190571
\(825\) 0 0
\(826\) −4.11647e7 −2.09930
\(827\) 2.33094e7i 1.18513i 0.805522 + 0.592566i \(0.201885\pi\)
−0.805522 + 0.592566i \(0.798115\pi\)
\(828\) 1.92858e6i 0.0977602i
\(829\) −2.47785e7 −1.25224 −0.626122 0.779725i \(-0.715359\pi\)
−0.626122 + 0.779725i \(0.715359\pi\)
\(830\) 0 0
\(831\) 6.23563e6 0.313241
\(832\) 6.78772e6i 0.339951i
\(833\) 9.05089e6i 0.451938i
\(834\) 2.52922e7 1.25913
\(835\) 0 0
\(836\) −2.22233e6 −0.109975
\(837\) − 2.74900e7i − 1.35632i
\(838\) − 1.80838e7i − 0.889569i
\(839\) 2.58285e7 1.26676 0.633380 0.773841i \(-0.281667\pi\)
0.633380 + 0.773841i \(0.281667\pi\)
\(840\) 0 0
\(841\) −1.88518e7 −0.919098
\(842\) 3.35244e7i 1.62960i
\(843\) 1.39048e7i 0.673903i
\(844\) 3.27722e7 1.58361
\(845\) 0 0
\(846\) 5.58245e6 0.268163
\(847\) − 3.06034e7i − 1.46575i
\(848\) − 3.57521e7i − 1.70731i
\(849\) 3.02556e7 1.44058
\(850\) 0 0
\(851\) 3.10766e6 0.147099
\(852\) 1.36440e7i 0.643935i
\(853\) 1.49617e7i 0.704060i 0.935989 + 0.352030i \(0.114508\pi\)
−0.935989 + 0.352030i \(0.885492\pi\)
\(854\) 3.88887e7 1.82465
\(855\) 0 0
\(856\) −1.06106e6 −0.0494943
\(857\) − 7.36028e6i − 0.342328i −0.985243 0.171164i \(-0.945247\pi\)
0.985243 0.171164i \(-0.0547528\pi\)
\(858\) 1.04604e6i 0.0485099i
\(859\) −2.71276e7 −1.25438 −0.627190 0.778866i \(-0.715795\pi\)
−0.627190 + 0.778866i \(0.715795\pi\)
\(860\) 0 0
\(861\) 1.47534e7 0.678241
\(862\) 3.04263e7i 1.39470i
\(863\) 3.14458e7i 1.43726i 0.695393 + 0.718630i \(0.255230\pi\)
−0.695393 + 0.718630i \(0.744770\pi\)
\(864\) −3.39135e7 −1.54557
\(865\) 0 0
\(866\) −6.03631e7 −2.73512
\(867\) 1.44115e7i 0.651123i
\(868\) 4.71539e7i 2.12431i
\(869\) −5.10252e6 −0.229211
\(870\) 0 0
\(871\) −6.62198e6 −0.295762
\(872\) 2.78695e6i 0.124119i
\(873\) − 7.89138e6i − 0.350443i
\(874\) −3.95091e6 −0.174952
\(875\) 0 0
\(876\) 6.05646e6 0.266661
\(877\) − 3.94061e7i − 1.73007i −0.501708 0.865037i \(-0.667295\pi\)
0.501708 0.865037i \(-0.332705\pi\)
\(878\) − 3.56831e7i − 1.56216i
\(879\) −2.47850e7 −1.08197
\(880\) 0 0
\(881\) −2.67060e7 −1.15923 −0.579614 0.814891i \(-0.696797\pi\)
−0.579614 + 0.814891i \(0.696797\pi\)
\(882\) 1.88283e7i 0.814965i
\(883\) 4.33871e7i 1.87266i 0.351120 + 0.936330i \(0.385801\pi\)
−0.351120 + 0.936330i \(0.614199\pi\)
\(884\) −2.58279e6 −0.111163
\(885\) 0 0
\(886\) 4.94501e7 2.11633
\(887\) 3.25024e7i 1.38710i 0.720410 + 0.693549i \(0.243954\pi\)
−0.720410 + 0.693549i \(0.756046\pi\)
\(888\) − 2.30976e6i − 0.0982959i
\(889\) −1.45766e7 −0.618590
\(890\) 0 0
\(891\) −1.37758e6 −0.0581332
\(892\) − 1.47831e7i − 0.622091i
\(893\) 6.04453e6i 0.253650i
\(894\) −455101. −0.0190443
\(895\) 0 0
\(896\) 1.26582e7 0.526746
\(897\) 982911.i 0.0407881i
\(898\) 1.34669e7i 0.557283i
\(899\) 8.67991e6 0.358192
\(900\) 0 0
\(901\) 1.72097e7 0.706253
\(902\) 3.45654e6i 0.141457i
\(903\) 3.55058e7i 1.44904i
\(904\) −6.75029e6 −0.274727
\(905\) 0 0
\(906\) −9.07489e6 −0.367300
\(907\) 3.43395e7i 1.38604i 0.720918 + 0.693020i \(0.243720\pi\)
−0.720918 + 0.693020i \(0.756280\pi\)
\(908\) − 3.09991e7i − 1.24777i
\(909\) 2.41716e6 0.0970277
\(910\) 0 0
\(911\) 3.18788e7 1.27264 0.636320 0.771425i \(-0.280456\pi\)
0.636320 + 0.771425i \(0.280456\pi\)
\(912\) − 9.88293e6i − 0.393458i
\(913\) 6.60851e6i 0.262378i
\(914\) 6.70629e7 2.65532
\(915\) 0 0
\(916\) −8.46652e6 −0.333401
\(917\) 5.37425e6i 0.211054i
\(918\) − 1.43188e7i − 0.560788i
\(919\) 2.12110e7 0.828460 0.414230 0.910172i \(-0.364051\pi\)
0.414230 + 0.910172i \(0.364051\pi\)
\(920\) 0 0
\(921\) 1.77049e7 0.687770
\(922\) − 1.07883e7i − 0.417951i
\(923\) − 5.52313e6i − 0.213393i
\(924\) 5.25757e6 0.202584
\(925\) 0 0
\(926\) −1.27550e7 −0.488823
\(927\) − 1.25175e7i − 0.478431i
\(928\) − 1.07081e7i − 0.408172i
\(929\) −1.66040e6 −0.0631210 −0.0315605 0.999502i \(-0.510048\pi\)
−0.0315605 + 0.999502i \(0.510048\pi\)
\(930\) 0 0
\(931\) −2.03867e7 −0.770857
\(932\) − 4.45181e7i − 1.67879i
\(933\) 2.08143e7i 0.782813i
\(934\) −5.21005e7 −1.95423
\(935\) 0 0
\(936\) −580251. −0.0216484
\(937\) 6.93039e6i 0.257875i 0.991653 + 0.128937i \(0.0411566\pi\)
−0.991653 + 0.128937i \(0.958843\pi\)
\(938\) 6.29719e7i 2.33690i
\(939\) −5.25269e6 −0.194410
\(940\) 0 0
\(941\) −1.29119e7 −0.475352 −0.237676 0.971344i \(-0.576386\pi\)
−0.237676 + 0.971344i \(0.576386\pi\)
\(942\) 2.53964e7i 0.932492i
\(943\) 3.24794e6i 0.118940i
\(944\) 2.26688e7 0.827941
\(945\) 0 0
\(946\) −8.31858e6 −0.302219
\(947\) 2.15320e7i 0.780207i 0.920771 + 0.390104i \(0.127561\pi\)
−0.920771 + 0.390104i \(0.872439\pi\)
\(948\) 3.29973e7i 1.19250i
\(949\) −2.45168e6 −0.0883686
\(950\) 0 0
\(951\) 1.62521e7 0.582719
\(952\) 2.65250e6i 0.0948557i
\(953\) 3.37555e7i 1.20396i 0.798511 + 0.601980i \(0.205621\pi\)
−0.798511 + 0.601980i \(0.794379\pi\)
\(954\) 3.58007e7 1.27356
\(955\) 0 0
\(956\) −3.11553e7 −1.10252
\(957\) − 967793.i − 0.0341588i
\(958\) − 6.61655e6i − 0.232926i
\(959\) 5.18931e7 1.82206
\(960\) 0 0
\(961\) 1.67737e7 0.585897
\(962\) 8.65774e6i 0.301625i
\(963\) 3.57588e6i 0.124256i
\(964\) 3.00184e7 1.04039
\(965\) 0 0
\(966\) 9.34702e6 0.322278
\(967\) 2.32723e6i 0.0800336i 0.999199 + 0.0400168i \(0.0127411\pi\)
−0.999199 + 0.0400168i \(0.987259\pi\)
\(968\) − 5.00748e6i − 0.171764i
\(969\) 4.75725e6 0.162760
\(970\) 0 0
\(971\) 2.32618e7 0.791762 0.395881 0.918302i \(-0.370439\pi\)
0.395881 + 0.918302i \(0.370439\pi\)
\(972\) − 2.66563e7i − 0.904970i
\(973\) 5.14597e7i 1.74255i
\(974\) 5.05172e7 1.70625
\(975\) 0 0
\(976\) −2.14155e7 −0.719619
\(977\) − 1.85849e7i − 0.622908i −0.950261 0.311454i \(-0.899184\pi\)
0.950261 0.311454i \(-0.100816\pi\)
\(978\) 1.16928e7i 0.390906i
\(979\) 3.10548e6 0.103555
\(980\) 0 0
\(981\) 9.39232e6 0.311602
\(982\) 1.94802e6i 0.0644636i
\(983\) 1.42083e6i 0.0468986i 0.999725 + 0.0234493i \(0.00746482\pi\)
−0.999725 + 0.0234493i \(0.992535\pi\)
\(984\) 2.41403e6 0.0794794
\(985\) 0 0
\(986\) 4.52112e6 0.148100
\(987\) − 1.43001e7i − 0.467246i
\(988\) − 5.81763e6i − 0.189607i
\(989\) −7.81656e6 −0.254112
\(990\) 0 0
\(991\) −2.86425e6 −0.0926462 −0.0463231 0.998927i \(-0.514750\pi\)
−0.0463231 + 0.998927i \(0.514750\pi\)
\(992\) − 5.60120e7i − 1.80718i
\(993\) 1.60167e7i 0.515465i
\(994\) −5.25223e7 −1.68608
\(995\) 0 0
\(996\) 4.27363e7 1.36505
\(997\) − 4.95795e7i − 1.57966i −0.613325 0.789831i \(-0.710168\pi\)
0.613325 0.789831i \(-0.289832\pi\)
\(998\) − 1.49398e7i − 0.474809i
\(999\) −2.53687e7 −0.804238
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.h.274.2 18
5.2 odd 4 325.6.a.h.1.9 9
5.3 odd 4 325.6.a.i.1.1 yes 9
5.4 even 2 inner 325.6.b.h.274.17 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.9 9 5.2 odd 4
325.6.a.i.1.1 yes 9 5.3 odd 4
325.6.b.h.274.2 18 1.1 even 1 trivial
325.6.b.h.274.17 18 5.4 even 2 inner