Properties

Label 325.6.b.h.274.12
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 378 x^{16} + 59175 x^{14} + 4956036 x^{12} + 239061247 x^{10} + 6629044458 x^{8} + \cdots + 134659641600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.12
Root \(4.20685i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.h.274.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.20685i q^{2} +29.5845i q^{3} +21.7161 q^{4} -94.8732 q^{6} -11.5734i q^{7} +172.260i q^{8} -632.245 q^{9} +O(q^{10})\) \(q+3.20685i q^{2} +29.5845i q^{3} +21.7161 q^{4} -94.8732 q^{6} -11.5734i q^{7} +172.260i q^{8} -632.245 q^{9} -596.700 q^{11} +642.461i q^{12} -169.000i q^{13} +37.1142 q^{14} +142.504 q^{16} +2093.43i q^{17} -2027.52i q^{18} -35.4251 q^{19} +342.394 q^{21} -1913.53i q^{22} -2783.24i q^{23} -5096.22 q^{24} +541.958 q^{26} -11515.6i q^{27} -251.329i q^{28} +370.244 q^{29} +5055.06 q^{31} +5969.30i q^{32} -17653.1i q^{33} -6713.33 q^{34} -13729.9 q^{36} +4124.15i q^{37} -113.603i q^{38} +4999.79 q^{39} -18104.1 q^{41} +1098.01i q^{42} +7906.34i q^{43} -12958.0 q^{44} +8925.44 q^{46} -13185.2i q^{47} +4215.93i q^{48} +16673.1 q^{49} -61933.3 q^{51} -3670.02i q^{52} -38295.0i q^{53} +36929.0 q^{54} +1993.63 q^{56} -1048.03i q^{57} +1187.32i q^{58} -17886.6 q^{59} +7392.00 q^{61} +16210.8i q^{62} +7317.23i q^{63} -14582.5 q^{64} +56610.8 q^{66} -23357.0i q^{67} +45461.2i q^{68} +82340.9 q^{69} -33166.9 q^{71} -108910. i q^{72} +10831.7i q^{73} -13225.5 q^{74} -769.295 q^{76} +6905.85i q^{77} +16033.6i q^{78} +17755.2 q^{79} +187049. q^{81} -58057.3i q^{82} +84243.8i q^{83} +7435.46 q^{84} -25354.5 q^{86} +10953.5i q^{87} -102787. i q^{88} +46498.8 q^{89} -1955.91 q^{91} -60441.1i q^{92} +149552. i q^{93} +42283.1 q^{94} -176599. q^{96} +154213. i q^{97} +53468.0i q^{98} +377260. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9} - 2844 q^{11} + 684 q^{14} - 2122 q^{16} + 816 q^{19} - 7824 q^{21} + 16938 q^{24} - 1690 q^{26} + 17474 q^{29} + 1496 q^{31} + 35578 q^{34} + 1024 q^{36} + 3718 q^{39} - 57352 q^{41} + 61198 q^{44} - 24112 q^{46} + 81814 q^{49} - 62012 q^{51} + 205522 q^{54} - 46004 q^{56} + 176284 q^{59} + 56330 q^{61} + 201690 q^{64} + 85154 q^{66} + 363494 q^{69} - 141124 q^{71} + 271352 q^{74} + 92746 q^{76} + 328146 q^{79} - 139870 q^{81} + 691312 q^{84} - 589840 q^{86} + 505396 q^{89} + 4056 q^{91} + 1003212 q^{94} - 638362 q^{96} + 1515552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.20685i 0.566897i 0.958988 + 0.283448i \(0.0914784\pi\)
−0.958988 + 0.283448i \(0.908522\pi\)
\(3\) 29.5845i 1.89785i 0.315503 + 0.948925i \(0.397827\pi\)
−0.315503 + 0.948925i \(0.602173\pi\)
\(4\) 21.7161 0.678628
\(5\) 0 0
\(6\) −94.8732 −1.07588
\(7\) − 11.5734i − 0.0892722i −0.999003 0.0446361i \(-0.985787\pi\)
0.999003 0.0446361i \(-0.0142128\pi\)
\(8\) 172.260i 0.951609i
\(9\) −632.245 −2.60183
\(10\) 0 0
\(11\) −596.700 −1.48687 −0.743437 0.668806i \(-0.766806\pi\)
−0.743437 + 0.668806i \(0.766806\pi\)
\(12\) 642.461i 1.28793i
\(13\) − 169.000i − 0.277350i
\(14\) 37.1142 0.0506081
\(15\) 0 0
\(16\) 142.504 0.139164
\(17\) 2093.43i 1.75686i 0.477872 + 0.878429i \(0.341408\pi\)
−0.477872 + 0.878429i \(0.658592\pi\)
\(18\) − 2027.52i − 1.47497i
\(19\) −35.4251 −0.0225127 −0.0112563 0.999937i \(-0.503583\pi\)
−0.0112563 + 0.999937i \(0.503583\pi\)
\(20\) 0 0
\(21\) 342.394 0.169425
\(22\) − 1913.53i − 0.842904i
\(23\) − 2783.24i − 1.09706i −0.836130 0.548531i \(-0.815187\pi\)
0.836130 0.548531i \(-0.184813\pi\)
\(24\) −5096.22 −1.80601
\(25\) 0 0
\(26\) 541.958 0.157229
\(27\) − 11515.6i − 3.04004i
\(28\) − 251.329i − 0.0605826i
\(29\) 370.244 0.0817511 0.0408755 0.999164i \(-0.486985\pi\)
0.0408755 + 0.999164i \(0.486985\pi\)
\(30\) 0 0
\(31\) 5055.06 0.944761 0.472381 0.881395i \(-0.343395\pi\)
0.472381 + 0.881395i \(0.343395\pi\)
\(32\) 5969.30i 1.03050i
\(33\) − 17653.1i − 2.82186i
\(34\) −6713.33 −0.995957
\(35\) 0 0
\(36\) −13729.9 −1.76568
\(37\) 4124.15i 0.495256i 0.968855 + 0.247628i \(0.0796511\pi\)
−0.968855 + 0.247628i \(0.920349\pi\)
\(38\) − 113.603i − 0.0127624i
\(39\) 4999.79 0.526369
\(40\) 0 0
\(41\) −18104.1 −1.68197 −0.840985 0.541058i \(-0.818024\pi\)
−0.840985 + 0.541058i \(0.818024\pi\)
\(42\) 1098.01i 0.0960466i
\(43\) 7906.34i 0.652085i 0.945355 + 0.326042i \(0.105715\pi\)
−0.945355 + 0.326042i \(0.894285\pi\)
\(44\) −12958.0 −1.00903
\(45\) 0 0
\(46\) 8925.44 0.621921
\(47\) − 13185.2i − 0.870650i −0.900273 0.435325i \(-0.856634\pi\)
0.900273 0.435325i \(-0.143366\pi\)
\(48\) 4215.93i 0.264113i
\(49\) 16673.1 0.992030
\(50\) 0 0
\(51\) −61933.3 −3.33425
\(52\) − 3670.02i − 0.188218i
\(53\) − 38295.0i − 1.87263i −0.351160 0.936316i \(-0.614213\pi\)
0.351160 0.936316i \(-0.385787\pi\)
\(54\) 36929.0 1.72339
\(55\) 0 0
\(56\) 1993.63 0.0849522
\(57\) − 1048.03i − 0.0427256i
\(58\) 1187.32i 0.0463444i
\(59\) −17886.6 −0.668955 −0.334477 0.942404i \(-0.608560\pi\)
−0.334477 + 0.942404i \(0.608560\pi\)
\(60\) 0 0
\(61\) 7392.00 0.254353 0.127177 0.991880i \(-0.459408\pi\)
0.127177 + 0.991880i \(0.459408\pi\)
\(62\) 16210.8i 0.535582i
\(63\) 7317.23i 0.232271i
\(64\) −14582.5 −0.445023
\(65\) 0 0
\(66\) 56610.8 1.59970
\(67\) − 23357.0i − 0.635667i −0.948147 0.317834i \(-0.897045\pi\)
0.948147 0.317834i \(-0.102955\pi\)
\(68\) 45461.2i 1.19225i
\(69\) 82340.9 2.08206
\(70\) 0 0
\(71\) −33166.9 −0.780835 −0.390417 0.920638i \(-0.627669\pi\)
−0.390417 + 0.920638i \(0.627669\pi\)
\(72\) − 108910.i − 2.47593i
\(73\) 10831.7i 0.237898i 0.992900 + 0.118949i \(0.0379525\pi\)
−0.992900 + 0.118949i \(0.962047\pi\)
\(74\) −13225.5 −0.280759
\(75\) 0 0
\(76\) −769.295 −0.0152777
\(77\) 6905.85i 0.132736i
\(78\) 16033.6i 0.298397i
\(79\) 17755.2 0.320079 0.160039 0.987111i \(-0.448838\pi\)
0.160039 + 0.987111i \(0.448838\pi\)
\(80\) 0 0
\(81\) 187049. 3.16770
\(82\) − 58057.3i − 0.953503i
\(83\) 84243.8i 1.34228i 0.741331 + 0.671139i \(0.234195\pi\)
−0.741331 + 0.671139i \(0.765805\pi\)
\(84\) 7435.46 0.114977
\(85\) 0 0
\(86\) −25354.5 −0.369665
\(87\) 10953.5i 0.155151i
\(88\) − 102787.i − 1.41492i
\(89\) 46498.8 0.622253 0.311126 0.950369i \(-0.399294\pi\)
0.311126 + 0.950369i \(0.399294\pi\)
\(90\) 0 0
\(91\) −1955.91 −0.0247597
\(92\) − 60441.1i − 0.744497i
\(93\) 149552.i 1.79301i
\(94\) 42283.1 0.493568
\(95\) 0 0
\(96\) −176599. −1.95573
\(97\) 154213.i 1.66414i 0.554667 + 0.832072i \(0.312845\pi\)
−0.554667 + 0.832072i \(0.687155\pi\)
\(98\) 53468.0i 0.562379i
\(99\) 377260. 3.86860
\(100\) 0 0
\(101\) −110873. −1.08149 −0.540745 0.841187i \(-0.681858\pi\)
−0.540745 + 0.841187i \(0.681858\pi\)
\(102\) − 198611.i − 1.89018i
\(103\) − 104407.i − 0.969699i −0.874598 0.484849i \(-0.838874\pi\)
0.874598 0.484849i \(-0.161126\pi\)
\(104\) 29111.9 0.263929
\(105\) 0 0
\(106\) 122806. 1.06159
\(107\) − 2229.04i − 0.0188217i −0.999956 0.00941084i \(-0.997004\pi\)
0.999956 0.00941084i \(-0.00299561\pi\)
\(108\) − 250075.i − 2.06305i
\(109\) 47011.7 0.379000 0.189500 0.981881i \(-0.439313\pi\)
0.189500 + 0.981881i \(0.439313\pi\)
\(110\) 0 0
\(111\) −122011. −0.939921
\(112\) − 1649.26i − 0.0124235i
\(113\) − 198706.i − 1.46391i −0.681352 0.731956i \(-0.738608\pi\)
0.681352 0.731956i \(-0.261392\pi\)
\(114\) 3360.89 0.0242210
\(115\) 0 0
\(116\) 8040.27 0.0554786
\(117\) 106849.i 0.721618i
\(118\) − 57359.5i − 0.379228i
\(119\) 24228.2 0.156839
\(120\) 0 0
\(121\) 194999. 1.21079
\(122\) 23705.0i 0.144192i
\(123\) − 535603.i − 3.19213i
\(124\) 109776. 0.641142
\(125\) 0 0
\(126\) −23465.3 −0.131674
\(127\) 87410.5i 0.480899i 0.970662 + 0.240450i \(0.0772949\pi\)
−0.970662 + 0.240450i \(0.922705\pi\)
\(128\) 144254.i 0.778219i
\(129\) −233905. −1.23756
\(130\) 0 0
\(131\) −19351.5 −0.0985226 −0.0492613 0.998786i \(-0.515687\pi\)
−0.0492613 + 0.998786i \(0.515687\pi\)
\(132\) − 383356.i − 1.91500i
\(133\) 409.989i 0.00200975i
\(134\) 74902.4 0.360358
\(135\) 0 0
\(136\) −360614. −1.67184
\(137\) − 79960.9i − 0.363979i −0.983300 0.181989i \(-0.941746\pi\)
0.983300 0.181989i \(-0.0582537\pi\)
\(138\) 264055.i 1.18031i
\(139\) −285962. −1.25537 −0.627684 0.778468i \(-0.715997\pi\)
−0.627684 + 0.778468i \(0.715997\pi\)
\(140\) 0 0
\(141\) 390079. 1.65236
\(142\) − 106361.i − 0.442652i
\(143\) 100842.i 0.412385i
\(144\) −90097.7 −0.362083
\(145\) 0 0
\(146\) −34735.8 −0.134864
\(147\) 493265.i 1.88272i
\(148\) 89560.4i 0.336095i
\(149\) −506571. −1.86928 −0.934641 0.355593i \(-0.884279\pi\)
−0.934641 + 0.355593i \(0.884279\pi\)
\(150\) 0 0
\(151\) −353322. −1.26104 −0.630519 0.776174i \(-0.717158\pi\)
−0.630519 + 0.776174i \(0.717158\pi\)
\(152\) − 6102.31i − 0.0214232i
\(153\) − 1.32356e6i − 4.57105i
\(154\) −22146.0 −0.0752479
\(155\) 0 0
\(156\) 108576. 0.357209
\(157\) 222777.i 0.721308i 0.932700 + 0.360654i \(0.117446\pi\)
−0.932700 + 0.360654i \(0.882554\pi\)
\(158\) 56938.2i 0.181452i
\(159\) 1.13294e6 3.55397
\(160\) 0 0
\(161\) −32211.6 −0.0979371
\(162\) 599840.i 1.79576i
\(163\) 485830.i 1.43224i 0.697978 + 0.716120i \(0.254083\pi\)
−0.697978 + 0.716120i \(0.745917\pi\)
\(164\) −393151. −1.14143
\(165\) 0 0
\(166\) −270157. −0.760933
\(167\) 492737.i 1.36717i 0.729869 + 0.683587i \(0.239581\pi\)
−0.729869 + 0.683587i \(0.760419\pi\)
\(168\) 58980.7i 0.161226i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 22397.3 0.0585742
\(172\) 171695.i 0.442523i
\(173\) 608498.i 1.54577i 0.634549 + 0.772883i \(0.281186\pi\)
−0.634549 + 0.772883i \(0.718814\pi\)
\(174\) −35126.3 −0.0879547
\(175\) 0 0
\(176\) −85032.3 −0.206920
\(177\) − 529166.i − 1.26958i
\(178\) 149115.i 0.352753i
\(179\) 270050. 0.629958 0.314979 0.949099i \(-0.398003\pi\)
0.314979 + 0.949099i \(0.398003\pi\)
\(180\) 0 0
\(181\) −602323. −1.36657 −0.683286 0.730151i \(-0.739450\pi\)
−0.683286 + 0.730151i \(0.739450\pi\)
\(182\) − 6272.30i − 0.0140362i
\(183\) 218689.i 0.482724i
\(184\) 479440. 1.04397
\(185\) 0 0
\(186\) −479590. −1.01645
\(187\) − 1.24915e6i − 2.61223i
\(188\) − 286332.i − 0.590847i
\(189\) −133275. −0.271391
\(190\) 0 0
\(191\) −138491. −0.274688 −0.137344 0.990523i \(-0.543857\pi\)
−0.137344 + 0.990523i \(0.543857\pi\)
\(192\) − 431417.i − 0.844586i
\(193\) 58857.2i 0.113738i 0.998382 + 0.0568691i \(0.0181118\pi\)
−0.998382 + 0.0568691i \(0.981888\pi\)
\(194\) −494537. −0.943398
\(195\) 0 0
\(196\) 362074. 0.673220
\(197\) − 271860.i − 0.499091i −0.968363 0.249545i \(-0.919719\pi\)
0.968363 0.249545i \(-0.0802812\pi\)
\(198\) 1.20982e6i 2.19309i
\(199\) 71334.8 0.127694 0.0638468 0.997960i \(-0.479663\pi\)
0.0638468 + 0.997960i \(0.479663\pi\)
\(200\) 0 0
\(201\) 691006. 1.20640
\(202\) − 355553.i − 0.613093i
\(203\) − 4284.99i − 0.00729810i
\(204\) −1.34495e6 −2.26272
\(205\) 0 0
\(206\) 334818. 0.549719
\(207\) 1.75969e6i 2.85437i
\(208\) − 24083.2i − 0.0385973i
\(209\) 21138.1 0.0334735
\(210\) 0 0
\(211\) 480921. 0.743648 0.371824 0.928303i \(-0.378732\pi\)
0.371824 + 0.928303i \(0.378732\pi\)
\(212\) − 831618.i − 1.27082i
\(213\) − 981228.i − 1.48191i
\(214\) 7148.20 0.0106699
\(215\) 0 0
\(216\) 1.98368e6 2.89292
\(217\) − 58504.3i − 0.0843409i
\(218\) 150759.i 0.214854i
\(219\) −320452. −0.451495
\(220\) 0 0
\(221\) 353790. 0.487265
\(222\) − 391271.i − 0.532838i
\(223\) 1.34684e6i 1.81365i 0.421511 + 0.906823i \(0.361500\pi\)
−0.421511 + 0.906823i \(0.638500\pi\)
\(224\) 69085.1 0.0919950
\(225\) 0 0
\(226\) 637221. 0.829887
\(227\) − 719772.i − 0.927108i −0.886069 0.463554i \(-0.846574\pi\)
0.886069 0.463554i \(-0.153426\pi\)
\(228\) − 22759.2i − 0.0289948i
\(229\) 568410. 0.716264 0.358132 0.933671i \(-0.383414\pi\)
0.358132 + 0.933671i \(0.383414\pi\)
\(230\) 0 0
\(231\) −204306. −0.251914
\(232\) 63778.2i 0.0777951i
\(233\) − 282144.i − 0.340472i −0.985403 0.170236i \(-0.945547\pi\)
0.985403 0.170236i \(-0.0544531\pi\)
\(234\) −342650. −0.409083
\(235\) 0 0
\(236\) −388426. −0.453972
\(237\) 525278.i 0.607461i
\(238\) 77696.1i 0.0889113i
\(239\) 143244. 0.162211 0.0811056 0.996706i \(-0.474155\pi\)
0.0811056 + 0.996706i \(0.474155\pi\)
\(240\) 0 0
\(241\) −369914. −0.410259 −0.205130 0.978735i \(-0.565762\pi\)
−0.205130 + 0.978735i \(0.565762\pi\)
\(242\) 625334.i 0.686395i
\(243\) 2.73547e6i 2.97178i
\(244\) 160525. 0.172611
\(245\) 0 0
\(246\) 1.71760e6 1.80961
\(247\) 5986.84i 0.00624389i
\(248\) 870783.i 0.899043i
\(249\) −2.49231e6 −2.54744
\(250\) 0 0
\(251\) −731868. −0.733244 −0.366622 0.930370i \(-0.619486\pi\)
−0.366622 + 0.930370i \(0.619486\pi\)
\(252\) 158902.i 0.157626i
\(253\) 1.66076e6i 1.63119i
\(254\) −280312. −0.272620
\(255\) 0 0
\(256\) −929240. −0.886192
\(257\) 1.05879e6i 0.999951i 0.866040 + 0.499975i \(0.166658\pi\)
−0.866040 + 0.499975i \(0.833342\pi\)
\(258\) − 750100.i − 0.701568i
\(259\) 47730.4 0.0442126
\(260\) 0 0
\(261\) −234085. −0.212703
\(262\) − 62057.3i − 0.0558521i
\(263\) − 318172.i − 0.283644i −0.989892 0.141822i \(-0.954704\pi\)
0.989892 0.141822i \(-0.0452960\pi\)
\(264\) 3.04091e6 2.68531
\(265\) 0 0
\(266\) −1314.77 −0.00113932
\(267\) 1.37565e6i 1.18094i
\(268\) − 507223.i − 0.431382i
\(269\) −1.13453e6 −0.955954 −0.477977 0.878372i \(-0.658630\pi\)
−0.477977 + 0.878372i \(0.658630\pi\)
\(270\) 0 0
\(271\) −1.05400e6 −0.871805 −0.435902 0.899994i \(-0.643571\pi\)
−0.435902 + 0.899994i \(0.643571\pi\)
\(272\) 298324.i 0.244492i
\(273\) − 57864.6i − 0.0469901i
\(274\) 256423. 0.206338
\(275\) 0 0
\(276\) 1.78812e6 1.41294
\(277\) − 2.18170e6i − 1.70843i −0.519922 0.854214i \(-0.674039\pi\)
0.519922 0.854214i \(-0.325961\pi\)
\(278\) − 917037.i − 0.711664i
\(279\) −3.19604e6 −2.45811
\(280\) 0 0
\(281\) −2.11562e6 −1.59835 −0.799176 0.601097i \(-0.794730\pi\)
−0.799176 + 0.601097i \(0.794730\pi\)
\(282\) 1.25093e6i 0.936718i
\(283\) 390968.i 0.290185i 0.989418 + 0.145092i \(0.0463480\pi\)
−0.989418 + 0.145092i \(0.953652\pi\)
\(284\) −720256. −0.529896
\(285\) 0 0
\(286\) −323386. −0.233779
\(287\) 209527.i 0.150153i
\(288\) − 3.77406e6i − 2.68119i
\(289\) −2.96261e6 −2.08655
\(290\) 0 0
\(291\) −4.56231e6 −3.15830
\(292\) 235223.i 0.161444i
\(293\) 2.44684e6i 1.66508i 0.553961 + 0.832542i \(0.313116\pi\)
−0.553961 + 0.832542i \(0.686884\pi\)
\(294\) −1.58183e6 −1.06731
\(295\) 0 0
\(296\) −710424. −0.471290
\(297\) 6.87138e6i 4.52015i
\(298\) − 1.62450e6i − 1.05969i
\(299\) −470368. −0.304270
\(300\) 0 0
\(301\) 91503.3 0.0582131
\(302\) − 1.13305e6i − 0.714878i
\(303\) − 3.28013e6i − 2.05251i
\(304\) −5048.23 −0.00313296
\(305\) 0 0
\(306\) 4.24447e6 2.59131
\(307\) − 1.58927e6i − 0.962390i −0.876614 0.481195i \(-0.840203\pi\)
0.876614 0.481195i \(-0.159797\pi\)
\(308\) 149968.i 0.0900787i
\(309\) 3.08884e6 1.84034
\(310\) 0 0
\(311\) 3.15211e6 1.84799 0.923996 0.382403i \(-0.124903\pi\)
0.923996 + 0.382403i \(0.124903\pi\)
\(312\) 861261.i 0.500897i
\(313\) − 1.58939e6i − 0.917001i −0.888694 0.458500i \(-0.848387\pi\)
0.888694 0.458500i \(-0.151613\pi\)
\(314\) −714412. −0.408907
\(315\) 0 0
\(316\) 385573. 0.217215
\(317\) − 1.45529e6i − 0.813396i −0.913563 0.406698i \(-0.866680\pi\)
0.913563 0.406698i \(-0.133320\pi\)
\(318\) 3.63317e6i 2.01473i
\(319\) −220925. −0.121554
\(320\) 0 0
\(321\) 65945.1 0.0357207
\(322\) − 103298.i − 0.0555202i
\(323\) − 74160.0i − 0.0395516i
\(324\) 4.06198e6 2.14969
\(325\) 0 0
\(326\) −1.55799e6 −0.811932
\(327\) 1.39082e6i 0.719285i
\(328\) − 3.11861e6i − 1.60058i
\(329\) −152598. −0.0777248
\(330\) 0 0
\(331\) 3.21928e6 1.61506 0.807530 0.589826i \(-0.200804\pi\)
0.807530 + 0.589826i \(0.200804\pi\)
\(332\) 1.82945e6i 0.910908i
\(333\) − 2.60747e6i − 1.28857i
\(334\) −1.58013e6 −0.775046
\(335\) 0 0
\(336\) 48792.7 0.0235780
\(337\) − 3.07320e6i − 1.47406i −0.675859 0.737031i \(-0.736227\pi\)
0.675859 0.737031i \(-0.263773\pi\)
\(338\) − 91590.9i − 0.0436074i
\(339\) 5.87863e6 2.77829
\(340\) 0 0
\(341\) −3.01635e6 −1.40474
\(342\) 71824.9i 0.0332055i
\(343\) − 387478.i − 0.177833i
\(344\) −1.36194e6 −0.620530
\(345\) 0 0
\(346\) −1.95136e6 −0.876289
\(347\) − 679230.i − 0.302826i −0.988471 0.151413i \(-0.951618\pi\)
0.988471 0.151413i \(-0.0483823\pi\)
\(348\) 237868.i 0.105290i
\(349\) −3.00182e6 −1.31923 −0.659616 0.751603i \(-0.729281\pi\)
−0.659616 + 0.751603i \(0.729281\pi\)
\(350\) 0 0
\(351\) −1.94614e6 −0.843154
\(352\) − 3.56188e6i − 1.53222i
\(353\) − 2.13910e6i − 0.913682i −0.889548 0.456841i \(-0.848981\pi\)
0.889548 0.456841i \(-0.151019\pi\)
\(354\) 1.69696e6 0.719718
\(355\) 0 0
\(356\) 1.00977e6 0.422278
\(357\) 716779.i 0.297656i
\(358\) 866010.i 0.357121i
\(359\) −4.04695e6 −1.65726 −0.828631 0.559795i \(-0.810880\pi\)
−0.828631 + 0.559795i \(0.810880\pi\)
\(360\) 0 0
\(361\) −2.47484e6 −0.999493
\(362\) − 1.93156e6i − 0.774705i
\(363\) 5.76897e6i 2.29790i
\(364\) −42474.7 −0.0168026
\(365\) 0 0
\(366\) −701303. −0.273655
\(367\) 1.59021e6i 0.616295i 0.951339 + 0.308148i \(0.0997090\pi\)
−0.951339 + 0.308148i \(0.900291\pi\)
\(368\) − 396624.i − 0.152672i
\(369\) 1.14463e7 4.37620
\(370\) 0 0
\(371\) −443204. −0.167174
\(372\) 3.24768e6i 1.21679i
\(373\) 3.36023e6i 1.25054i 0.780409 + 0.625270i \(0.215011\pi\)
−0.780409 + 0.625270i \(0.784989\pi\)
\(374\) 4.00584e6 1.48086
\(375\) 0 0
\(376\) 2.27128e6 0.828518
\(377\) − 62571.3i − 0.0226737i
\(378\) − 427394.i − 0.153850i
\(379\) −849174. −0.303668 −0.151834 0.988406i \(-0.548518\pi\)
−0.151834 + 0.988406i \(0.548518\pi\)
\(380\) 0 0
\(381\) −2.58600e6 −0.912674
\(382\) − 444121.i − 0.155720i
\(383\) 4.04395e6i 1.40867i 0.709868 + 0.704335i \(0.248755\pi\)
−0.709868 + 0.704335i \(0.751245\pi\)
\(384\) −4.26768e6 −1.47694
\(385\) 0 0
\(386\) −188746. −0.0644777
\(387\) − 4.99874e6i − 1.69662i
\(388\) 3.34890e6i 1.12934i
\(389\) 2.94042e6 0.985226 0.492613 0.870249i \(-0.336042\pi\)
0.492613 + 0.870249i \(0.336042\pi\)
\(390\) 0 0
\(391\) 5.82653e6 1.92738
\(392\) 2.87209e6i 0.944025i
\(393\) − 572504.i − 0.186981i
\(394\) 871814. 0.282933
\(395\) 0 0
\(396\) 8.19263e6 2.62534
\(397\) − 1.24060e6i − 0.395053i −0.980298 0.197526i \(-0.936709\pi\)
0.980298 0.197526i \(-0.0632908\pi\)
\(398\) 228760.i 0.0723890i
\(399\) −12129.3 −0.00381421
\(400\) 0 0
\(401\) −972004. −0.301861 −0.150931 0.988544i \(-0.548227\pi\)
−0.150931 + 0.988544i \(0.548227\pi\)
\(402\) 2.21595e6i 0.683904i
\(403\) − 854305.i − 0.262030i
\(404\) −2.40773e6 −0.733930
\(405\) 0 0
\(406\) 13741.3 0.00413727
\(407\) − 2.46088e6i − 0.736383i
\(408\) − 1.06686e7i − 3.17290i
\(409\) −571971. −0.169070 −0.0845348 0.996421i \(-0.526940\pi\)
−0.0845348 + 0.996421i \(0.526940\pi\)
\(410\) 0 0
\(411\) 2.36561e6 0.690777
\(412\) − 2.26731e6i − 0.658065i
\(413\) 207009.i 0.0597191i
\(414\) −5.64306e6 −1.61813
\(415\) 0 0
\(416\) 1.00881e6 0.285809
\(417\) − 8.46005e6i − 2.38250i
\(418\) 67786.9i 0.0189760i
\(419\) 4.06416e6 1.13093 0.565465 0.824772i \(-0.308697\pi\)
0.565465 + 0.824772i \(0.308697\pi\)
\(420\) 0 0
\(421\) −3.73588e6 −1.02728 −0.513639 0.858007i \(-0.671703\pi\)
−0.513639 + 0.858007i \(0.671703\pi\)
\(422\) 1.54224e6i 0.421572i
\(423\) 8.33631e6i 2.26528i
\(424\) 6.59668e6 1.78201
\(425\) 0 0
\(426\) 3.14665e6 0.840088
\(427\) − 85550.6i − 0.0227067i
\(428\) − 48406.0i − 0.0127729i
\(429\) −2.98337e6 −0.782644
\(430\) 0 0
\(431\) −1.53689e6 −0.398520 −0.199260 0.979947i \(-0.563854\pi\)
−0.199260 + 0.979947i \(0.563854\pi\)
\(432\) − 1.64103e6i − 0.423065i
\(433\) − 112160.i − 0.0287487i −0.999897 0.0143744i \(-0.995424\pi\)
0.999897 0.0143744i \(-0.00457566\pi\)
\(434\) 187615. 0.0478126
\(435\) 0 0
\(436\) 1.02091e6 0.257200
\(437\) 98596.5i 0.0246978i
\(438\) − 1.02764e6i − 0.255951i
\(439\) 164279. 0.0406837 0.0203418 0.999793i \(-0.493525\pi\)
0.0203418 + 0.999793i \(0.493525\pi\)
\(440\) 0 0
\(441\) −1.05415e7 −2.58110
\(442\) 1.13455e6i 0.276229i
\(443\) − 4.62345e6i − 1.11933i −0.828720 0.559664i \(-0.810930\pi\)
0.828720 0.559664i \(-0.189070\pi\)
\(444\) −2.64960e6 −0.637857
\(445\) 0 0
\(446\) −4.31910e6 −1.02815
\(447\) − 1.49867e7i − 3.54761i
\(448\) 168769.i 0.0397282i
\(449\) −421554. −0.0986820 −0.0493410 0.998782i \(-0.515712\pi\)
−0.0493410 + 0.998782i \(0.515712\pi\)
\(450\) 0 0
\(451\) 1.08027e7 2.50088
\(452\) − 4.31512e6i − 0.993452i
\(453\) − 1.04529e7i − 2.39326i
\(454\) 2.30820e6 0.525574
\(455\) 0 0
\(456\) 180534. 0.0406581
\(457\) 5.34433e6i 1.19702i 0.801114 + 0.598512i \(0.204241\pi\)
−0.801114 + 0.598512i \(0.795759\pi\)
\(458\) 1.82281e6i 0.406047i
\(459\) 2.41072e7 5.34091
\(460\) 0 0
\(461\) −4.95164e6 −1.08517 −0.542584 0.840002i \(-0.682554\pi\)
−0.542584 + 0.840002i \(0.682554\pi\)
\(462\) − 655180.i − 0.142809i
\(463\) 3.87726e6i 0.840567i 0.907393 + 0.420283i \(0.138069\pi\)
−0.907393 + 0.420283i \(0.861931\pi\)
\(464\) 52761.5 0.0113768
\(465\) 0 0
\(466\) 904795. 0.193013
\(467\) − 1.64031e6i − 0.348043i −0.984742 0.174022i \(-0.944324\pi\)
0.984742 0.174022i \(-0.0556763\pi\)
\(468\) 2.32035e6i 0.489711i
\(469\) −270320. −0.0567474
\(470\) 0 0
\(471\) −6.59075e6 −1.36893
\(472\) − 3.08113e6i − 0.636583i
\(473\) − 4.71771e6i − 0.969568i
\(474\) −1.68449e6 −0.344368
\(475\) 0 0
\(476\) 526141. 0.106435
\(477\) 2.42118e7i 4.87227i
\(478\) 459361.i 0.0919570i
\(479\) −2.63694e6 −0.525123 −0.262561 0.964915i \(-0.584567\pi\)
−0.262561 + 0.964915i \(0.584567\pi\)
\(480\) 0 0
\(481\) 696981. 0.137359
\(482\) − 1.18626e6i − 0.232575i
\(483\) − 952965.i − 0.185870i
\(484\) 4.23463e6 0.821678
\(485\) 0 0
\(486\) −8.77225e6 −1.68469
\(487\) − 3.47150e6i − 0.663277i −0.943407 0.331639i \(-0.892399\pi\)
0.943407 0.331639i \(-0.107601\pi\)
\(488\) 1.27334e6i 0.242045i
\(489\) −1.43731e7 −2.71817
\(490\) 0 0
\(491\) −2.74272e6 −0.513425 −0.256713 0.966488i \(-0.582639\pi\)
−0.256713 + 0.966488i \(0.582639\pi\)
\(492\) − 1.16312e7i − 2.16627i
\(493\) 775082.i 0.143625i
\(494\) −19198.9 −0.00353964
\(495\) 0 0
\(496\) 720368. 0.131477
\(497\) 383854.i 0.0697068i
\(498\) − 7.99248e6i − 1.44414i
\(499\) 1.00565e7 1.80799 0.903996 0.427540i \(-0.140620\pi\)
0.903996 + 0.427540i \(0.140620\pi\)
\(500\) 0 0
\(501\) −1.45774e7 −2.59469
\(502\) − 2.34699e6i − 0.415674i
\(503\) 5.52516e6i 0.973699i 0.873486 + 0.486850i \(0.161854\pi\)
−0.873486 + 0.486850i \(0.838146\pi\)
\(504\) −1.26046e6 −0.221031
\(505\) 0 0
\(506\) −5.32580e6 −0.924717
\(507\) − 844964.i − 0.145988i
\(508\) 1.89821e6i 0.326352i
\(509\) 6.59944e6 1.12905 0.564524 0.825416i \(-0.309060\pi\)
0.564524 + 0.825416i \(0.309060\pi\)
\(510\) 0 0
\(511\) 125360. 0.0212377
\(512\) 1.63618e6i 0.275839i
\(513\) 407943.i 0.0684393i
\(514\) −3.39540e6 −0.566869
\(515\) 0 0
\(516\) −5.07951e6 −0.839842
\(517\) 7.86763e6i 1.29455i
\(518\) 153064.i 0.0250640i
\(519\) −1.80021e7 −2.93363
\(520\) 0 0
\(521\) −653159. −0.105420 −0.0527102 0.998610i \(-0.516786\pi\)
−0.0527102 + 0.998610i \(0.516786\pi\)
\(522\) − 750677.i − 0.120580i
\(523\) 3.60676e6i 0.576584i 0.957543 + 0.288292i \(0.0930874\pi\)
−0.957543 + 0.288292i \(0.906913\pi\)
\(524\) −420239. −0.0668602
\(525\) 0 0
\(526\) 1.02033e6 0.160797
\(527\) 1.05824e7i 1.65981i
\(528\) − 2.51564e6i − 0.392703i
\(529\) −1.31008e6 −0.203544
\(530\) 0 0
\(531\) 1.13087e7 1.74051
\(532\) 8903.36i 0.00136388i
\(533\) 3.05960e6i 0.466495i
\(534\) −4.41149e6 −0.669472
\(535\) 0 0
\(536\) 4.02346e6 0.604906
\(537\) 7.98931e6i 1.19557i
\(538\) − 3.63828e6i − 0.541927i
\(539\) −9.94881e6 −1.47502
\(540\) 0 0
\(541\) −1.92001e6 −0.282040 −0.141020 0.990007i \(-0.545038\pi\)
−0.141020 + 0.990007i \(0.545038\pi\)
\(542\) − 3.38004e6i − 0.494223i
\(543\) − 1.78194e7i − 2.59355i
\(544\) −1.24963e7 −1.81044
\(545\) 0 0
\(546\) 185563. 0.0266385
\(547\) 7.41583e6i 1.05972i 0.848085 + 0.529860i \(0.177756\pi\)
−0.848085 + 0.529860i \(0.822244\pi\)
\(548\) − 1.73644e6i − 0.247006i
\(549\) −4.67356e6 −0.661784
\(550\) 0 0
\(551\) −13115.9 −0.00184043
\(552\) 1.41840e7i 1.98130i
\(553\) − 205488.i − 0.0285741i
\(554\) 6.99640e6 0.968502
\(555\) 0 0
\(556\) −6.20998e6 −0.851928
\(557\) − 3.52870e6i − 0.481922i −0.970535 0.240961i \(-0.922537\pi\)
0.970535 0.240961i \(-0.0774626\pi\)
\(558\) − 1.02492e7i − 1.39349i
\(559\) 1.33617e6 0.180856
\(560\) 0 0
\(561\) 3.69556e7 4.95761
\(562\) − 6.78449e6i − 0.906100i
\(563\) − 4.31809e6i − 0.574144i −0.957909 0.287072i \(-0.907318\pi\)
0.957909 0.287072i \(-0.0926818\pi\)
\(564\) 8.47100e6 1.12134
\(565\) 0 0
\(566\) −1.25378e6 −0.164505
\(567\) − 2.16480e6i − 0.282787i
\(568\) − 5.71332e6i − 0.743049i
\(569\) 3.99812e6 0.517696 0.258848 0.965918i \(-0.416657\pi\)
0.258848 + 0.965918i \(0.416657\pi\)
\(570\) 0 0
\(571\) 298969. 0.0383739 0.0191869 0.999816i \(-0.493892\pi\)
0.0191869 + 0.999816i \(0.493892\pi\)
\(572\) 2.18990e6i 0.279856i
\(573\) − 4.09720e6i − 0.521316i
\(574\) −671921. −0.0851213
\(575\) 0 0
\(576\) 9.21972e6 1.15787
\(577\) − 2.22363e6i − 0.278050i −0.990289 0.139025i \(-0.955603\pi\)
0.990289 0.139025i \(-0.0443969\pi\)
\(578\) − 9.50064e6i − 1.18286i
\(579\) −1.74126e6 −0.215858
\(580\) 0 0
\(581\) 974988. 0.119828
\(582\) − 1.46307e7i − 1.79043i
\(583\) 2.28506e7i 2.78437i
\(584\) −1.86587e6 −0.226386
\(585\) 0 0
\(586\) −7.84665e6 −0.943931
\(587\) − 3.25215e6i − 0.389560i −0.980847 0.194780i \(-0.937601\pi\)
0.980847 0.194780i \(-0.0623993\pi\)
\(588\) 1.07118e7i 1.27767i
\(589\) −179076. −0.0212691
\(590\) 0 0
\(591\) 8.04285e6 0.947199
\(592\) 587709.i 0.0689220i
\(593\) 1.23502e7i 1.44224i 0.692810 + 0.721121i \(0.256373\pi\)
−0.692810 + 0.721121i \(0.743627\pi\)
\(594\) −2.20355e7 −2.56246
\(595\) 0 0
\(596\) −1.10007e7 −1.26855
\(597\) 2.11041e6i 0.242343i
\(598\) − 1.50840e6i − 0.172490i
\(599\) 1.26026e7 1.43513 0.717567 0.696490i \(-0.245256\pi\)
0.717567 + 0.696490i \(0.245256\pi\)
\(600\) 0 0
\(601\) 1.10475e7 1.24760 0.623802 0.781582i \(-0.285587\pi\)
0.623802 + 0.781582i \(0.285587\pi\)
\(602\) 293437.i 0.0330008i
\(603\) 1.47673e7i 1.65390i
\(604\) −7.67277e6 −0.855776
\(605\) 0 0
\(606\) 1.05189e7 1.16356
\(607\) 1.47315e7i 1.62284i 0.584462 + 0.811421i \(0.301306\pi\)
−0.584462 + 0.811421i \(0.698694\pi\)
\(608\) − 211463.i − 0.0231993i
\(609\) 126769. 0.0138507
\(610\) 0 0
\(611\) −2.22831e6 −0.241475
\(612\) − 2.87426e7i − 3.10204i
\(613\) − 6.38520e6i − 0.686315i −0.939278 0.343157i \(-0.888504\pi\)
0.939278 0.343157i \(-0.111496\pi\)
\(614\) 5.09655e6 0.545576
\(615\) 0 0
\(616\) −1.18960e6 −0.126313
\(617\) 1.69836e7i 1.79604i 0.439954 + 0.898020i \(0.354995\pi\)
−0.439954 + 0.898020i \(0.645005\pi\)
\(618\) 9.90544e6i 1.04328i
\(619\) 1.06421e7 1.11635 0.558175 0.829723i \(-0.311502\pi\)
0.558175 + 0.829723i \(0.311502\pi\)
\(620\) 0 0
\(621\) −3.20508e7 −3.33511
\(622\) 1.01083e7i 1.04762i
\(623\) − 538150.i − 0.0555499i
\(624\) 712492. 0.0732518
\(625\) 0 0
\(626\) 5.09694e6 0.519845
\(627\) 625362.i 0.0635276i
\(628\) 4.83784e6i 0.489500i
\(629\) −8.63362e6 −0.870095
\(630\) 0 0
\(631\) 8.93725e6 0.893574 0.446787 0.894640i \(-0.352568\pi\)
0.446787 + 0.894640i \(0.352568\pi\)
\(632\) 3.05850e6i 0.304590i
\(633\) 1.42278e7i 1.41133i
\(634\) 4.66691e6 0.461111
\(635\) 0 0
\(636\) 2.46030e7 2.41183
\(637\) − 2.81775e6i − 0.275140i
\(638\) − 708473.i − 0.0689083i
\(639\) 2.09696e7 2.03160
\(640\) 0 0
\(641\) −1.12700e7 −1.08337 −0.541686 0.840581i \(-0.682214\pi\)
−0.541686 + 0.840581i \(0.682214\pi\)
\(642\) 211476.i 0.0202499i
\(643\) − 1.16584e7i − 1.11202i −0.831177 0.556008i \(-0.812332\pi\)
0.831177 0.556008i \(-0.187668\pi\)
\(644\) −699510. −0.0664629
\(645\) 0 0
\(646\) 237820. 0.0224217
\(647\) 8.09860e6i 0.760587i 0.924866 + 0.380294i \(0.124177\pi\)
−0.924866 + 0.380294i \(0.875823\pi\)
\(648\) 3.22211e7i 3.01441i
\(649\) 1.06729e7 0.994651
\(650\) 0 0
\(651\) 1.73082e6 0.160066
\(652\) 1.05503e7i 0.971958i
\(653\) 2.50550e6i 0.229938i 0.993369 + 0.114969i \(0.0366769\pi\)
−0.993369 + 0.114969i \(0.963323\pi\)
\(654\) −4.46015e6 −0.407760
\(655\) 0 0
\(656\) −2.57992e6 −0.234070
\(657\) − 6.84831e6i − 0.618971i
\(658\) − 489360.i − 0.0440619i
\(659\) 2.14090e7 1.92036 0.960182 0.279376i \(-0.0901274\pi\)
0.960182 + 0.279376i \(0.0901274\pi\)
\(660\) 0 0
\(661\) 1.59525e7 1.42012 0.710060 0.704141i \(-0.248668\pi\)
0.710060 + 0.704141i \(0.248668\pi\)
\(662\) 1.03238e7i 0.915572i
\(663\) 1.04667e7i 0.924755i
\(664\) −1.45118e7 −1.27732
\(665\) 0 0
\(666\) 8.36177e6 0.730488
\(667\) − 1.03048e6i − 0.0896860i
\(668\) 1.07003e7i 0.927803i
\(669\) −3.98455e7 −3.44203
\(670\) 0 0
\(671\) −4.41080e6 −0.378191
\(672\) 2.04385e6i 0.174593i
\(673\) − 9.71969e6i − 0.827208i −0.910457 0.413604i \(-0.864270\pi\)
0.910457 0.413604i \(-0.135730\pi\)
\(674\) 9.85529e6 0.835641
\(675\) 0 0
\(676\) −620234. −0.0522022
\(677\) 1.01440e7i 0.850628i 0.905046 + 0.425314i \(0.139836\pi\)
−0.905046 + 0.425314i \(0.860164\pi\)
\(678\) 1.88519e7i 1.57500i
\(679\) 1.78477e6 0.148562
\(680\) 0 0
\(681\) 2.12941e7 1.75951
\(682\) − 9.67300e6i − 0.796343i
\(683\) 6.41414e6i 0.526122i 0.964779 + 0.263061i \(0.0847321\pi\)
−0.964779 + 0.263061i \(0.915268\pi\)
\(684\) 486383. 0.0397501
\(685\) 0 0
\(686\) 1.24259e6 0.100813
\(687\) 1.68161e7i 1.35936i
\(688\) 1.12669e6i 0.0907471i
\(689\) −6.47185e6 −0.519374
\(690\) 0 0
\(691\) −8.38877e6 −0.668349 −0.334175 0.942511i \(-0.608458\pi\)
−0.334175 + 0.942511i \(0.608458\pi\)
\(692\) 1.32142e7i 1.04900i
\(693\) − 4.36619e6i − 0.345358i
\(694\) 2.17819e6 0.171671
\(695\) 0 0
\(696\) −1.88685e6 −0.147643
\(697\) − 3.78998e7i − 2.95498i
\(698\) − 9.62639e6i − 0.747868i
\(699\) 8.34712e6 0.646165
\(700\) 0 0
\(701\) −5.05150e6 −0.388263 −0.194131 0.980976i \(-0.562189\pi\)
−0.194131 + 0.980976i \(0.562189\pi\)
\(702\) − 6.24099e6i − 0.477981i
\(703\) − 146098.i − 0.0111495i
\(704\) 8.70138e6 0.661693
\(705\) 0 0
\(706\) 6.85979e6 0.517963
\(707\) 1.28318e6i 0.0965470i
\(708\) − 1.14914e7i − 0.861570i
\(709\) −1.37386e7 −1.02642 −0.513212 0.858262i \(-0.671545\pi\)
−0.513212 + 0.858262i \(0.671545\pi\)
\(710\) 0 0
\(711\) −1.12256e7 −0.832791
\(712\) 8.00986e6i 0.592141i
\(713\) − 1.40694e7i − 1.03646i
\(714\) −2.29860e6 −0.168740
\(715\) 0 0
\(716\) 5.86443e6 0.427507
\(717\) 4.23780e6i 0.307852i
\(718\) − 1.29780e7i − 0.939496i
\(719\) 8.31655e6 0.599958 0.299979 0.953946i \(-0.403020\pi\)
0.299979 + 0.953946i \(0.403020\pi\)
\(720\) 0 0
\(721\) −1.20835e6 −0.0865671
\(722\) − 7.93646e6i − 0.566609i
\(723\) − 1.09437e7i − 0.778610i
\(724\) −1.30801e7 −0.927395
\(725\) 0 0
\(726\) −1.85002e7 −1.30267
\(727\) 4.72548e6i 0.331596i 0.986160 + 0.165798i \(0.0530200\pi\)
−0.986160 + 0.165798i \(0.946980\pi\)
\(728\) − 336924.i − 0.0235615i
\(729\) −3.54746e7 −2.47229
\(730\) 0 0
\(731\) −1.65514e7 −1.14562
\(732\) 4.74907e6i 0.327590i
\(733\) − 1.07477e6i − 0.0738847i −0.999317 0.0369423i \(-0.988238\pi\)
0.999317 0.0369423i \(-0.0117618\pi\)
\(734\) −5.09956e6 −0.349376
\(735\) 0 0
\(736\) 1.66140e7 1.13052
\(737\) 1.39371e7i 0.945157i
\(738\) 3.67064e7i 2.48086i
\(739\) 2.04180e7 1.37531 0.687657 0.726036i \(-0.258639\pi\)
0.687657 + 0.726036i \(0.258639\pi\)
\(740\) 0 0
\(741\) −177118. −0.0118500
\(742\) − 1.42129e6i − 0.0947703i
\(743\) 2.55138e7i 1.69552i 0.530377 + 0.847762i \(0.322050\pi\)
−0.530377 + 0.847762i \(0.677950\pi\)
\(744\) −2.57617e7 −1.70625
\(745\) 0 0
\(746\) −1.07758e7 −0.708926
\(747\) − 5.32627e7i − 3.49238i
\(748\) − 2.71267e7i − 1.77273i
\(749\) −25797.6 −0.00168025
\(750\) 0 0
\(751\) 2.09344e7 1.35444 0.677220 0.735780i \(-0.263184\pi\)
0.677220 + 0.735780i \(0.263184\pi\)
\(752\) − 1.87896e6i − 0.121163i
\(753\) − 2.16520e7i − 1.39159i
\(754\) 200657. 0.0128536
\(755\) 0 0
\(756\) −2.89422e6 −0.184173
\(757\) − 6.00641e6i − 0.380956i −0.981691 0.190478i \(-0.938996\pi\)
0.981691 0.190478i \(-0.0610039\pi\)
\(758\) − 2.72317e6i − 0.172148i
\(759\) −4.91328e7 −3.09576
\(760\) 0 0
\(761\) −4.48972e6 −0.281033 −0.140517 0.990078i \(-0.544876\pi\)
−0.140517 + 0.990078i \(0.544876\pi\)
\(762\) − 8.29291e6i − 0.517392i
\(763\) − 544085.i − 0.0338342i
\(764\) −3.00749e6 −0.186411
\(765\) 0 0
\(766\) −1.29684e7 −0.798570
\(767\) 3.02283e6i 0.185535i
\(768\) − 2.74911e7i − 1.68186i
\(769\) −2.20361e7 −1.34375 −0.671877 0.740663i \(-0.734512\pi\)
−0.671877 + 0.740663i \(0.734512\pi\)
\(770\) 0 0
\(771\) −3.13239e7 −1.89776
\(772\) 1.27815e6i 0.0771859i
\(773\) 9.09786e6i 0.547634i 0.961782 + 0.273817i \(0.0882863\pi\)
−0.961782 + 0.273817i \(0.911714\pi\)
\(774\) 1.60302e7 0.961806
\(775\) 0 0
\(776\) −2.65646e7 −1.58361
\(777\) 1.41208e6i 0.0839088i
\(778\) 9.42950e6i 0.558521i
\(779\) 641341. 0.0378656
\(780\) 0 0
\(781\) 1.97907e7 1.16100
\(782\) 1.86848e7i 1.09263i
\(783\) − 4.26360e6i − 0.248526i
\(784\) 2.37598e6 0.138055
\(785\) 0 0
\(786\) 1.83594e6 0.105999
\(787\) 1.65992e7i 0.955325i 0.878544 + 0.477662i \(0.158516\pi\)
−0.878544 + 0.477662i \(0.841484\pi\)
\(788\) − 5.90374e6i − 0.338697i
\(789\) 9.41298e6 0.538313
\(790\) 0 0
\(791\) −2.29971e6 −0.130687
\(792\) 6.49867e7i 3.68139i
\(793\) − 1.24925e6i − 0.0705449i
\(794\) 3.97841e6 0.223954
\(795\) 0 0
\(796\) 1.54911e6 0.0866564
\(797\) 2.41936e7i 1.34913i 0.738213 + 0.674567i \(0.235670\pi\)
−0.738213 + 0.674567i \(0.764330\pi\)
\(798\) − 38897.0i − 0.00216226i
\(799\) 2.76024e7 1.52961
\(800\) 0 0
\(801\) −2.93986e7 −1.61900
\(802\) − 3.11707e6i − 0.171124i
\(803\) − 6.46329e6i − 0.353724i
\(804\) 1.50059e7 0.818697
\(805\) 0 0
\(806\) 2.73963e6 0.148544
\(807\) − 3.35647e7i − 1.81426i
\(808\) − 1.90989e7i − 1.02916i
\(809\) 1.25176e7 0.672433 0.336216 0.941785i \(-0.390853\pi\)
0.336216 + 0.941785i \(0.390853\pi\)
\(810\) 0 0
\(811\) −1.21034e7 −0.646183 −0.323091 0.946368i \(-0.604722\pi\)
−0.323091 + 0.946368i \(0.604722\pi\)
\(812\) − 93053.3i − 0.00495270i
\(813\) − 3.11822e7i − 1.65455i
\(814\) 7.89166e6 0.417453
\(815\) 0 0
\(816\) −8.82576e6 −0.464010
\(817\) − 280083.i − 0.0146802i
\(818\) − 1.83423e6i − 0.0958450i
\(819\) 1.23661e6 0.0644205
\(820\) 0 0
\(821\) 9.24362e6 0.478613 0.239306 0.970944i \(-0.423080\pi\)
0.239306 + 0.970944i \(0.423080\pi\)
\(822\) 7.58615e6i 0.391599i
\(823\) 2.93437e7i 1.51013i 0.655648 + 0.755067i \(0.272396\pi\)
−0.655648 + 0.755067i \(0.727604\pi\)
\(824\) 1.79851e7 0.922774
\(825\) 0 0
\(826\) −663846. −0.0338545
\(827\) − 1.74083e6i − 0.0885099i −0.999020 0.0442550i \(-0.985909\pi\)
0.999020 0.0442550i \(-0.0140914\pi\)
\(828\) 3.82136e7i 1.93706i
\(829\) −2.00227e7 −1.01190 −0.505948 0.862564i \(-0.668857\pi\)
−0.505948 + 0.862564i \(0.668857\pi\)
\(830\) 0 0
\(831\) 6.45447e7 3.24234
\(832\) 2.46444e6i 0.123427i
\(833\) 3.49039e7i 1.74286i
\(834\) 2.71301e7 1.35063
\(835\) 0 0
\(836\) 459038. 0.0227160
\(837\) − 5.82123e7i − 2.87211i
\(838\) 1.30332e7i 0.641121i
\(839\) −1.34556e7 −0.659931 −0.329966 0.943993i \(-0.607037\pi\)
−0.329966 + 0.943993i \(0.607037\pi\)
\(840\) 0 0
\(841\) −2.03741e7 −0.993317
\(842\) − 1.19804e7i − 0.582360i
\(843\) − 6.25897e7i − 3.03343i
\(844\) 1.04437e7 0.504661
\(845\) 0 0
\(846\) −2.67333e7 −1.28418
\(847\) − 2.25681e6i − 0.108090i
\(848\) − 5.45720e6i − 0.260604i
\(849\) −1.15666e7 −0.550727
\(850\) 0 0
\(851\) 1.14785e7 0.543326
\(852\) − 2.13084e7i − 1.00566i
\(853\) − 2.46799e7i − 1.16137i −0.814129 0.580685i \(-0.802785\pi\)
0.814129 0.580685i \(-0.197215\pi\)
\(854\) 274348. 0.0128723
\(855\) 0 0
\(856\) 383973. 0.0179109
\(857\) 1.53970e6i 0.0716118i 0.999359 + 0.0358059i \(0.0113998\pi\)
−0.999359 + 0.0358059i \(0.988600\pi\)
\(858\) − 9.56723e6i − 0.443678i
\(859\) −2.43418e7 −1.12556 −0.562781 0.826606i \(-0.690268\pi\)
−0.562781 + 0.826606i \(0.690268\pi\)
\(860\) 0 0
\(861\) −6.19875e6 −0.284968
\(862\) − 4.92858e6i − 0.225920i
\(863\) 2.27132e7i 1.03813i 0.854735 + 0.519064i \(0.173720\pi\)
−0.854735 + 0.519064i \(0.826280\pi\)
\(864\) 6.87403e7 3.13276
\(865\) 0 0
\(866\) 359681. 0.0162976
\(867\) − 8.76474e7i − 3.95996i
\(868\) − 1.27049e6i − 0.0572361i
\(869\) −1.05945e7 −0.475917
\(870\) 0 0
\(871\) −3.94733e6 −0.176302
\(872\) 8.09821e6i 0.360660i
\(873\) − 9.75003e7i − 4.32982i
\(874\) −316184. −0.0140011
\(875\) 0 0
\(876\) −6.95897e6 −0.306397
\(877\) − 1.86650e7i − 0.819464i −0.912206 0.409732i \(-0.865622\pi\)
0.912206 0.409732i \(-0.134378\pi\)
\(878\) 526817.i 0.0230634i
\(879\) −7.23886e7 −3.16008
\(880\) 0 0
\(881\) 2.91491e7 1.26528 0.632639 0.774447i \(-0.281972\pi\)
0.632639 + 0.774447i \(0.281972\pi\)
\(882\) − 3.38049e7i − 1.46322i
\(883\) 837238.i 0.0361366i 0.999837 + 0.0180683i \(0.00575163\pi\)
−0.999837 + 0.0180683i \(0.994248\pi\)
\(884\) 7.68295e6 0.330672
\(885\) 0 0
\(886\) 1.48267e7 0.634543
\(887\) 2.00532e7i 0.855806i 0.903825 + 0.427903i \(0.140748\pi\)
−0.903825 + 0.427903i \(0.859252\pi\)
\(888\) − 2.10176e7i − 0.894437i
\(889\) 1.01164e6 0.0429309
\(890\) 0 0
\(891\) −1.11612e8 −4.70997
\(892\) 2.92480e7i 1.23079i
\(893\) 467088.i 0.0196006i
\(894\) 4.80600e7 2.01113
\(895\) 0 0
\(896\) 1.66951e6 0.0694733
\(897\) − 1.39156e7i − 0.577459i
\(898\) − 1.35186e6i − 0.0559425i
\(899\) 1.87161e6 0.0772353
\(900\) 0 0
\(901\) 8.01680e7 3.28995
\(902\) 3.46428e7i 1.41774i
\(903\) 2.70708e6i 0.110480i
\(904\) 3.42290e7 1.39307
\(905\) 0 0
\(906\) 3.35208e7 1.35673
\(907\) − 2.26638e7i − 0.914775i −0.889267 0.457388i \(-0.848785\pi\)
0.889267 0.457388i \(-0.151215\pi\)
\(908\) − 1.56306e7i − 0.629162i
\(909\) 7.00989e7 2.81386
\(910\) 0 0
\(911\) −1.78322e7 −0.711885 −0.355942 0.934508i \(-0.615840\pi\)
−0.355942 + 0.934508i \(0.615840\pi\)
\(912\) − 149350.i − 0.00594589i
\(913\) − 5.02682e7i − 1.99580i
\(914\) −1.71385e7 −0.678589
\(915\) 0 0
\(916\) 1.23436e7 0.486077
\(917\) 223962.i 0.00879533i
\(918\) 7.73083e7i 3.02775i
\(919\) 1.61471e7 0.630677 0.315338 0.948979i \(-0.397882\pi\)
0.315338 + 0.948979i \(0.397882\pi\)
\(920\) 0 0
\(921\) 4.70178e7 1.82647
\(922\) − 1.58792e7i − 0.615178i
\(923\) 5.60521e6i 0.216565i
\(924\) −4.43674e6 −0.170956
\(925\) 0 0
\(926\) −1.24338e7 −0.476514
\(927\) 6.60109e7i 2.52299i
\(928\) 2.21010e6i 0.0842445i
\(929\) 4.41295e7 1.67761 0.838803 0.544435i \(-0.183256\pi\)
0.838803 + 0.544435i \(0.183256\pi\)
\(930\) 0 0
\(931\) −590644. −0.0223332
\(932\) − 6.12708e6i − 0.231054i
\(933\) 9.32536e7i 3.50721i
\(934\) 5.26022e6 0.197305
\(935\) 0 0
\(936\) −1.84058e7 −0.686698
\(937\) 2.76747e7i 1.02976i 0.857263 + 0.514878i \(0.172163\pi\)
−0.857263 + 0.514878i \(0.827837\pi\)
\(938\) − 866876.i − 0.0321699i
\(939\) 4.70214e7 1.74033
\(940\) 0 0
\(941\) −9.84362e6 −0.362394 −0.181197 0.983447i \(-0.557997\pi\)
−0.181197 + 0.983447i \(0.557997\pi\)
\(942\) − 2.11356e7i − 0.776044i
\(943\) 5.03882e7i 1.84522i
\(944\) −2.54891e6 −0.0930947
\(945\) 0 0
\(946\) 1.51290e7 0.549645
\(947\) 1.20978e7i 0.438360i 0.975684 + 0.219180i \(0.0703382\pi\)
−0.975684 + 0.219180i \(0.929662\pi\)
\(948\) 1.14070e7i 0.412240i
\(949\) 1.83056e6 0.0659810
\(950\) 0 0
\(951\) 4.30541e7 1.54370
\(952\) 4.17353e6i 0.149249i
\(953\) 2.22761e7i 0.794524i 0.917705 + 0.397262i \(0.130040\pi\)
−0.917705 + 0.397262i \(0.869960\pi\)
\(954\) −7.76437e7 −2.76207
\(955\) 0 0
\(956\) 3.11070e6 0.110081
\(957\) − 6.53596e6i − 0.230690i
\(958\) − 8.45627e6i − 0.297690i
\(959\) −925420. −0.0324932
\(960\) 0 0
\(961\) −3.07551e6 −0.107426
\(962\) 2.23511e6i 0.0778685i
\(963\) 1.40930e6i 0.0489708i
\(964\) −8.03309e6 −0.278413
\(965\) 0 0
\(966\) 3.05602e6 0.105369
\(967\) − 1.59432e7i − 0.548288i −0.961689 0.274144i \(-0.911605\pi\)
0.961689 0.274144i \(-0.0883945\pi\)
\(968\) 3.35905e7i 1.15220i
\(969\) 2.19399e6 0.0750629
\(970\) 0 0
\(971\) 1.41319e6 0.0481008 0.0240504 0.999711i \(-0.492344\pi\)
0.0240504 + 0.999711i \(0.492344\pi\)
\(972\) 5.94038e7i 2.01673i
\(973\) 3.30955e6i 0.112069i
\(974\) 1.11326e7 0.376010
\(975\) 0 0
\(976\) 1.05339e6 0.0353969
\(977\) − 3.55699e7i − 1.19219i −0.802913 0.596096i \(-0.796718\pi\)
0.802913 0.596096i \(-0.203282\pi\)
\(978\) − 4.60923e7i − 1.54092i
\(979\) −2.77458e7 −0.925211
\(980\) 0 0
\(981\) −2.97229e7 −0.986095
\(982\) − 8.79548e6i − 0.291059i
\(983\) − 4.80377e7i − 1.58562i −0.609471 0.792808i \(-0.708618\pi\)
0.609471 0.792808i \(-0.291382\pi\)
\(984\) 9.22627e7 3.03765
\(985\) 0 0
\(986\) −2.48557e6 −0.0814206
\(987\) − 4.51455e6i − 0.147510i
\(988\) 130011.i 0.00423728i
\(989\) 2.20052e7 0.715377
\(990\) 0 0
\(991\) −4.57999e7 −1.48143 −0.740714 0.671821i \(-0.765512\pi\)
−0.740714 + 0.671821i \(0.765512\pi\)
\(992\) 3.01752e7i 0.973577i
\(993\) 9.52409e7i 3.06514i
\(994\) −1.23096e6 −0.0395166
\(995\) 0 0
\(996\) −5.41233e7 −1.72877
\(997\) − 1.03492e7i − 0.329738i −0.986315 0.164869i \(-0.947280\pi\)
0.986315 0.164869i \(-0.0527202\pi\)
\(998\) 3.22498e7i 1.02494i
\(999\) 4.74922e7 1.50560
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.h.274.12 18
5.2 odd 4 325.6.a.i.1.4 yes 9
5.3 odd 4 325.6.a.h.1.6 9
5.4 even 2 inner 325.6.b.h.274.7 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.6 9 5.3 odd 4
325.6.a.i.1.4 yes 9 5.2 odd 4
325.6.b.h.274.7 18 5.4 even 2 inner
325.6.b.h.274.12 18 1.1 even 1 trivial