Properties

Label 325.6.b.h.274.1
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 378 x^{16} + 59175 x^{14} + 4956036 x^{12} + 239061247 x^{10} + 6629044458 x^{8} + \cdots + 134659641600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.1
Root \(-9.17271i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.h.274.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.1727i q^{2} -23.0461i q^{3} -71.4841 q^{4} -234.441 q^{6} -51.0548i q^{7} +401.660i q^{8} -288.123 q^{9} +O(q^{10})\) \(q-10.1727i q^{2} -23.0461i q^{3} -71.4841 q^{4} -234.441 q^{6} -51.0548i q^{7} +401.660i q^{8} -288.123 q^{9} -512.445 q^{11} +1647.43i q^{12} -169.000i q^{13} -519.366 q^{14} +1798.48 q^{16} +978.964i q^{17} +2930.99i q^{18} -1353.56 q^{19} -1176.61 q^{21} +5212.95i q^{22} -11.3026i q^{23} +9256.71 q^{24} -1719.19 q^{26} +1039.91i q^{27} +3649.61i q^{28} +8050.51 q^{29} +759.478 q^{31} -5442.33i q^{32} +11809.9i q^{33} +9958.72 q^{34} +20596.2 q^{36} -12780.7i q^{37} +13769.3i q^{38} -3894.79 q^{39} -18129.3 q^{41} +11969.4i q^{42} -19533.0i q^{43} +36631.6 q^{44} -114.978 q^{46} +22049.0i q^{47} -41448.1i q^{48} +14200.4 q^{49} +22561.3 q^{51} +12080.8i q^{52} -13861.1i q^{53} +10578.7 q^{54} +20506.7 q^{56} +31194.2i q^{57} -81895.5i q^{58} +18164.6 q^{59} +7623.02 q^{61} -7725.95i q^{62} +14710.1i q^{63} +2188.19 q^{64} +120138. q^{66} +3764.44i q^{67} -69980.4i q^{68} -260.481 q^{69} -75797.0 q^{71} -115728. i q^{72} +86605.1i q^{73} -130015. q^{74} +96757.7 q^{76} +26162.8i q^{77} +39620.6i q^{78} -61535.6 q^{79} -46048.0 q^{81} +184425. i q^{82} +46849.0i q^{83} +84109.2 q^{84} -198704. q^{86} -185533. i q^{87} -205829. i q^{88} -1237.02 q^{89} -8628.26 q^{91} +807.955i q^{92} -17503.0i q^{93} +224298. q^{94} -125425. q^{96} +57565.4i q^{97} -144457. i q^{98} +147647. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 182 q^{4} - 166 q^{6} - 1124 q^{9} - 2844 q^{11} + 684 q^{14} - 2122 q^{16} + 816 q^{19} - 7824 q^{21} + 16938 q^{24} - 1690 q^{26} + 17474 q^{29} + 1496 q^{31} + 35578 q^{34} + 1024 q^{36} + 3718 q^{39} - 57352 q^{41} + 61198 q^{44} - 24112 q^{46} + 81814 q^{49} - 62012 q^{51} + 205522 q^{54} - 46004 q^{56} + 176284 q^{59} + 56330 q^{61} + 201690 q^{64} + 85154 q^{66} + 363494 q^{69} - 141124 q^{71} + 271352 q^{74} + 92746 q^{76} + 328146 q^{79} - 139870 q^{81} + 691312 q^{84} - 589840 q^{86} + 505396 q^{89} + 4056 q^{91} + 1003212 q^{94} - 638362 q^{96} + 1515552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 10.1727i − 1.79830i −0.437642 0.899149i \(-0.644186\pi\)
0.437642 0.899149i \(-0.355814\pi\)
\(3\) − 23.0461i − 1.47841i −0.673481 0.739204i \(-0.735202\pi\)
0.673481 0.739204i \(-0.264798\pi\)
\(4\) −71.4841 −2.23388
\(5\) 0 0
\(6\) −234.441 −2.65862
\(7\) − 51.0548i − 0.393814i −0.980422 0.196907i \(-0.936910\pi\)
0.980422 0.196907i \(-0.0630898\pi\)
\(8\) 401.660i 2.21888i
\(9\) −288.123 −1.18569
\(10\) 0 0
\(11\) −512.445 −1.27692 −0.638462 0.769653i \(-0.720429\pi\)
−0.638462 + 0.769653i \(0.720429\pi\)
\(12\) 1647.43i 3.30258i
\(13\) − 169.000i − 0.277350i
\(14\) −519.366 −0.708196
\(15\) 0 0
\(16\) 1798.48 1.75633
\(17\) 978.964i 0.821570i 0.911732 + 0.410785i \(0.134745\pi\)
−0.911732 + 0.410785i \(0.865255\pi\)
\(18\) 2930.99i 2.13223i
\(19\) −1353.56 −0.860186 −0.430093 0.902785i \(-0.641519\pi\)
−0.430093 + 0.902785i \(0.641519\pi\)
\(20\) 0 0
\(21\) −1176.61 −0.582218
\(22\) 5212.95i 2.29629i
\(23\) − 11.3026i − 0.00445511i −0.999998 0.00222755i \(-0.999291\pi\)
0.999998 0.00222755i \(-0.000709053\pi\)
\(24\) 9256.71 3.28041
\(25\) 0 0
\(26\) −1719.19 −0.498758
\(27\) 1039.91i 0.274528i
\(28\) 3649.61i 0.879733i
\(29\) 8050.51 1.77758 0.888788 0.458318i \(-0.151548\pi\)
0.888788 + 0.458318i \(0.151548\pi\)
\(30\) 0 0
\(31\) 759.478 0.141942 0.0709710 0.997478i \(-0.477390\pi\)
0.0709710 + 0.997478i \(0.477390\pi\)
\(32\) − 5442.33i − 0.939529i
\(33\) 11809.9i 1.88782i
\(34\) 9958.72 1.47743
\(35\) 0 0
\(36\) 20596.2 2.64869
\(37\) − 12780.7i − 1.53480i −0.641170 0.767399i \(-0.721551\pi\)
0.641170 0.767399i \(-0.278449\pi\)
\(38\) 13769.3i 1.54687i
\(39\) −3894.79 −0.410037
\(40\) 0 0
\(41\) −18129.3 −1.68431 −0.842156 0.539234i \(-0.818714\pi\)
−0.842156 + 0.539234i \(0.818714\pi\)
\(42\) 11969.4i 1.04700i
\(43\) − 19533.0i − 1.61101i −0.592589 0.805505i \(-0.701894\pi\)
0.592589 0.805505i \(-0.298106\pi\)
\(44\) 36631.6 2.85249
\(45\) 0 0
\(46\) −114.978 −0.00801161
\(47\) 22049.0i 1.45594i 0.685608 + 0.727971i \(0.259536\pi\)
−0.685608 + 0.727971i \(0.740464\pi\)
\(48\) − 41448.1i − 2.59658i
\(49\) 14200.4 0.844910
\(50\) 0 0
\(51\) 22561.3 1.21462
\(52\) 12080.8i 0.619566i
\(53\) − 13861.1i − 0.677811i −0.940821 0.338905i \(-0.889943\pi\)
0.940821 0.338905i \(-0.110057\pi\)
\(54\) 10578.7 0.493683
\(55\) 0 0
\(56\) 20506.7 0.873827
\(57\) 31194.2i 1.27171i
\(58\) − 81895.5i − 3.19661i
\(59\) 18164.6 0.679352 0.339676 0.940542i \(-0.389683\pi\)
0.339676 + 0.940542i \(0.389683\pi\)
\(60\) 0 0
\(61\) 7623.02 0.262303 0.131151 0.991362i \(-0.458133\pi\)
0.131151 + 0.991362i \(0.458133\pi\)
\(62\) − 7725.95i − 0.255254i
\(63\) 14710.1i 0.466942i
\(64\) 2188.19 0.0667783
\(65\) 0 0
\(66\) 120138. 3.39486
\(67\) 3764.44i 0.102450i 0.998687 + 0.0512252i \(0.0163126\pi\)
−0.998687 + 0.0512252i \(0.983687\pi\)
\(68\) − 69980.4i − 1.83529i
\(69\) −260.481 −0.00658647
\(70\) 0 0
\(71\) −75797.0 −1.78446 −0.892229 0.451583i \(-0.850859\pi\)
−0.892229 + 0.451583i \(0.850859\pi\)
\(72\) − 115728.i − 2.63091i
\(73\) 86605.1i 1.90211i 0.309015 + 0.951057i \(0.400001\pi\)
−0.309015 + 0.951057i \(0.599999\pi\)
\(74\) −130015. −2.76003
\(75\) 0 0
\(76\) 96757.7 1.92155
\(77\) 26162.8i 0.502871i
\(78\) 39620.6i 0.737368i
\(79\) −61535.6 −1.10932 −0.554662 0.832076i \(-0.687153\pi\)
−0.554662 + 0.832076i \(0.687153\pi\)
\(80\) 0 0
\(81\) −46048.0 −0.779827
\(82\) 184425.i 3.02890i
\(83\) 46849.0i 0.746458i 0.927739 + 0.373229i \(0.121749\pi\)
−0.927739 + 0.373229i \(0.878251\pi\)
\(84\) 84109.2 1.30060
\(85\) 0 0
\(86\) −198704. −2.89708
\(87\) − 185533.i − 2.62798i
\(88\) − 205829.i − 2.83334i
\(89\) −1237.02 −0.0165540 −0.00827698 0.999966i \(-0.502635\pi\)
−0.00827698 + 0.999966i \(0.502635\pi\)
\(90\) 0 0
\(91\) −8628.26 −0.109224
\(92\) 807.955i 0.00995217i
\(93\) − 17503.0i − 0.209848i
\(94\) 224298. 2.61822
\(95\) 0 0
\(96\) −125425. −1.38901
\(97\) 57565.4i 0.621201i 0.950541 + 0.310600i \(0.100530\pi\)
−0.950541 + 0.310600i \(0.899470\pi\)
\(98\) − 144457.i − 1.51940i
\(99\) 147647. 1.51404
\(100\) 0 0
\(101\) −13535.7 −0.132031 −0.0660155 0.997819i \(-0.521029\pi\)
−0.0660155 + 0.997819i \(0.521029\pi\)
\(102\) − 229510.i − 2.18424i
\(103\) 99640.9i 0.925432i 0.886507 + 0.462716i \(0.153125\pi\)
−0.886507 + 0.462716i \(0.846875\pi\)
\(104\) 67880.6 0.615407
\(105\) 0 0
\(106\) −141005. −1.21891
\(107\) − 3447.88i − 0.0291134i −0.999894 0.0145567i \(-0.995366\pi\)
0.999894 0.0145567i \(-0.00463371\pi\)
\(108\) − 74337.0i − 0.613261i
\(109\) −54235.5 −0.437238 −0.218619 0.975810i \(-0.570155\pi\)
−0.218619 + 0.975810i \(0.570155\pi\)
\(110\) 0 0
\(111\) −294546. −2.26906
\(112\) − 91821.3i − 0.691669i
\(113\) 103423.i 0.761937i 0.924588 + 0.380969i \(0.124409\pi\)
−0.924588 + 0.380969i \(0.875591\pi\)
\(114\) 317330. 2.28691
\(115\) 0 0
\(116\) −575483. −3.97089
\(117\) 48692.8i 0.328852i
\(118\) − 184783.i − 1.22168i
\(119\) 49980.8 0.323546
\(120\) 0 0
\(121\) 101549. 0.630537
\(122\) − 77546.8i − 0.471698i
\(123\) 417811.i 2.49010i
\(124\) −54290.6 −0.317081
\(125\) 0 0
\(126\) 149641. 0.839702
\(127\) − 86597.6i − 0.476427i −0.971213 0.238214i \(-0.923438\pi\)
0.971213 0.238214i \(-0.0765618\pi\)
\(128\) − 196415.i − 1.05962i
\(129\) −450160. −2.38173
\(130\) 0 0
\(131\) 212824. 1.08354 0.541768 0.840528i \(-0.317755\pi\)
0.541768 + 0.840528i \(0.317755\pi\)
\(132\) − 844217.i − 4.21715i
\(133\) 69105.6i 0.338754i
\(134\) 38294.6 0.184236
\(135\) 0 0
\(136\) −393211. −1.82297
\(137\) − 392531.i − 1.78678i −0.449277 0.893392i \(-0.648319\pi\)
0.449277 0.893392i \(-0.351681\pi\)
\(138\) 2649.79i 0.0118444i
\(139\) −64771.0 −0.284344 −0.142172 0.989842i \(-0.545409\pi\)
−0.142172 + 0.989842i \(0.545409\pi\)
\(140\) 0 0
\(141\) 508143. 2.15248
\(142\) 771061.i 3.20899i
\(143\) 86603.2i 0.354155i
\(144\) −518185. −2.08247
\(145\) 0 0
\(146\) 881009. 3.42057
\(147\) − 327264.i − 1.24912i
\(148\) 913619.i 3.42855i
\(149\) 277263. 1.02312 0.511560 0.859248i \(-0.329068\pi\)
0.511560 + 0.859248i \(0.329068\pi\)
\(150\) 0 0
\(151\) −56639.1 −0.202150 −0.101075 0.994879i \(-0.532228\pi\)
−0.101075 + 0.994879i \(0.532228\pi\)
\(152\) − 543670.i − 1.90865i
\(153\) − 282062.i − 0.974128i
\(154\) 266146. 0.904313
\(155\) 0 0
\(156\) 278416. 0.915972
\(157\) − 229864.i − 0.744257i −0.928181 0.372128i \(-0.878628\pi\)
0.928181 0.372128i \(-0.121372\pi\)
\(158\) 625984.i 1.99490i
\(159\) −319445. −1.00208
\(160\) 0 0
\(161\) −577.051 −0.00175449
\(162\) 468433.i 1.40236i
\(163\) − 400206.i − 1.17982i −0.807470 0.589908i \(-0.799164\pi\)
0.807470 0.589908i \(-0.200836\pi\)
\(164\) 1.29596e6 3.76255
\(165\) 0 0
\(166\) 476582. 1.34235
\(167\) 276559.i 0.767355i 0.923467 + 0.383677i \(0.125343\pi\)
−0.923467 + 0.383677i \(0.874657\pi\)
\(168\) − 472599.i − 1.29187i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 389991. 1.01991
\(172\) 1.39630e6i 3.59880i
\(173\) 323519.i 0.821834i 0.911673 + 0.410917i \(0.134791\pi\)
−0.911673 + 0.410917i \(0.865209\pi\)
\(174\) −1.88737e6 −4.72590
\(175\) 0 0
\(176\) −921624. −2.24270
\(177\) − 418623.i − 1.00436i
\(178\) 12583.9i 0.0297690i
\(179\) 757066. 1.76604 0.883021 0.469333i \(-0.155506\pi\)
0.883021 + 0.469333i \(0.155506\pi\)
\(180\) 0 0
\(181\) 640530. 1.45326 0.726629 0.687030i \(-0.241086\pi\)
0.726629 + 0.687030i \(0.241086\pi\)
\(182\) 87772.8i 0.196418i
\(183\) − 175681.i − 0.387790i
\(184\) 4539.80 0.00988535
\(185\) 0 0
\(186\) −178053. −0.377370
\(187\) − 501665.i − 1.04908i
\(188\) − 1.57615e6i − 3.25239i
\(189\) 53092.4 0.108113
\(190\) 0 0
\(191\) −611932. −1.21372 −0.606862 0.794807i \(-0.707572\pi\)
−0.606862 + 0.794807i \(0.707572\pi\)
\(192\) − 50429.3i − 0.0987256i
\(193\) 134676.i 0.260254i 0.991497 + 0.130127i \(0.0415386\pi\)
−0.991497 + 0.130127i \(0.958461\pi\)
\(194\) 585596. 1.11710
\(195\) 0 0
\(196\) −1.01510e6 −1.88743
\(197\) − 435184.i − 0.798927i −0.916749 0.399463i \(-0.869196\pi\)
0.916749 0.399463i \(-0.130804\pi\)
\(198\) − 1.50197e6i − 2.72269i
\(199\) −179852. −0.321946 −0.160973 0.986959i \(-0.551463\pi\)
−0.160973 + 0.986959i \(0.551463\pi\)
\(200\) 0 0
\(201\) 86755.8 0.151464
\(202\) 137694.i 0.237431i
\(203\) − 411017.i − 0.700035i
\(204\) −1.61277e6 −2.71330
\(205\) 0 0
\(206\) 1.01362e6 1.66420
\(207\) 3256.54i 0.00528238i
\(208\) − 303944.i − 0.487119i
\(209\) 693623. 1.09839
\(210\) 0 0
\(211\) −1.03041e6 −1.59333 −0.796663 0.604424i \(-0.793403\pi\)
−0.796663 + 0.604424i \(0.793403\pi\)
\(212\) 990849.i 1.51415i
\(213\) 1.74683e6i 2.63816i
\(214\) −35074.3 −0.0523546
\(215\) 0 0
\(216\) −417690. −0.609144
\(217\) − 38775.0i − 0.0558988i
\(218\) 551722.i 0.786284i
\(219\) 1.99591e6 2.81210
\(220\) 0 0
\(221\) 165445. 0.227862
\(222\) 2.99633e6i 4.08044i
\(223\) 1.04356e6i 1.40525i 0.711559 + 0.702626i \(0.247989\pi\)
−0.711559 + 0.702626i \(0.752011\pi\)
\(224\) −277857. −0.370000
\(225\) 0 0
\(226\) 1.05209e6 1.37019
\(227\) 1.04811e6i 1.35003i 0.737803 + 0.675016i \(0.235863\pi\)
−0.737803 + 0.675016i \(0.764137\pi\)
\(228\) − 2.22989e6i − 2.84084i
\(229\) −718967. −0.905984 −0.452992 0.891515i \(-0.649643\pi\)
−0.452992 + 0.891515i \(0.649643\pi\)
\(230\) 0 0
\(231\) 602950. 0.743449
\(232\) 3.23357e6i 3.94423i
\(233\) 714611.i 0.862343i 0.902270 + 0.431172i \(0.141900\pi\)
−0.902270 + 0.431172i \(0.858100\pi\)
\(234\) 495338. 0.591373
\(235\) 0 0
\(236\) −1.29848e6 −1.51759
\(237\) 1.41816e6i 1.64003i
\(238\) − 508441.i − 0.581832i
\(239\) −114365. −0.129508 −0.0647541 0.997901i \(-0.520626\pi\)
−0.0647541 + 0.997901i \(0.520626\pi\)
\(240\) 0 0
\(241\) 1.01606e6 1.12688 0.563440 0.826157i \(-0.309478\pi\)
0.563440 + 0.826157i \(0.309478\pi\)
\(242\) − 1.03303e6i − 1.13389i
\(243\) 1.31393e6i 1.42743i
\(244\) −544925. −0.585952
\(245\) 0 0
\(246\) 4.25027e6 4.47794
\(247\) 228751.i 0.238573i
\(248\) 305052.i 0.314952i
\(249\) 1.07969e6 1.10357
\(250\) 0 0
\(251\) −1.13208e6 −1.13421 −0.567105 0.823645i \(-0.691937\pi\)
−0.567105 + 0.823645i \(0.691937\pi\)
\(252\) − 1.05154e6i − 1.04309i
\(253\) 5791.95i 0.00568884i
\(254\) −880933. −0.856758
\(255\) 0 0
\(256\) −1.92805e6 −1.83873
\(257\) 357876.i 0.337987i 0.985617 + 0.168993i \(0.0540516\pi\)
−0.985617 + 0.168993i \(0.945948\pi\)
\(258\) 4.57935e6i 4.28306i
\(259\) −652518. −0.604426
\(260\) 0 0
\(261\) −2.31954e6 −2.10766
\(262\) − 2.16500e6i − 1.94852i
\(263\) − 305594.i − 0.272431i −0.990679 0.136215i \(-0.956506\pi\)
0.990679 0.136215i \(-0.0434939\pi\)
\(264\) −4.74355e6 −4.18884
\(265\) 0 0
\(266\) 702991. 0.609180
\(267\) 28508.5i 0.0244735i
\(268\) − 269098.i − 0.228862i
\(269\) 667878. 0.562751 0.281375 0.959598i \(-0.409209\pi\)
0.281375 + 0.959598i \(0.409209\pi\)
\(270\) 0 0
\(271\) −1.05893e6 −0.875875 −0.437937 0.899005i \(-0.644291\pi\)
−0.437937 + 0.899005i \(0.644291\pi\)
\(272\) 1.76065e6i 1.44295i
\(273\) 198848.i 0.161478i
\(274\) −3.99310e6 −3.21317
\(275\) 0 0
\(276\) 18620.2 0.0147134
\(277\) 1.91406e6i 1.49884i 0.662095 + 0.749420i \(0.269667\pi\)
−0.662095 + 0.749420i \(0.730333\pi\)
\(278\) 658896.i 0.511335i
\(279\) −218823. −0.168299
\(280\) 0 0
\(281\) 1.08128e6 0.816908 0.408454 0.912779i \(-0.366068\pi\)
0.408454 + 0.912779i \(0.366068\pi\)
\(282\) − 5.16919e6i − 3.87079i
\(283\) 859352.i 0.637830i 0.947783 + 0.318915i \(0.103318\pi\)
−0.947783 + 0.318915i \(0.896682\pi\)
\(284\) 5.41828e6 3.98626
\(285\) 0 0
\(286\) 880989. 0.636877
\(287\) 925590.i 0.663306i
\(288\) 1.56806e6i 1.11399i
\(289\) 461486. 0.325023
\(290\) 0 0
\(291\) 1.32666e6 0.918389
\(292\) − 6.19089e6i − 4.24909i
\(293\) − 2.36378e6i − 1.60856i −0.594250 0.804280i \(-0.702551\pi\)
0.594250 0.804280i \(-0.297449\pi\)
\(294\) −3.32916e6 −2.24630
\(295\) 0 0
\(296\) 5.13351e6 3.40553
\(297\) − 532896.i − 0.350551i
\(298\) − 2.82052e6i − 1.83988i
\(299\) −1910.14 −0.00123562
\(300\) 0 0
\(301\) −997255. −0.634439
\(302\) 576173.i 0.363526i
\(303\) 311944.i 0.195196i
\(304\) −2.43435e6 −1.51077
\(305\) 0 0
\(306\) −2.86934e6 −1.75177
\(307\) 1.61376e6i 0.977220i 0.872502 + 0.488610i \(0.162496\pi\)
−0.872502 + 0.488610i \(0.837504\pi\)
\(308\) − 1.87022e6i − 1.12335i
\(309\) 2.29633e6 1.36817
\(310\) 0 0
\(311\) 776229. 0.455081 0.227541 0.973769i \(-0.426932\pi\)
0.227541 + 0.973769i \(0.426932\pi\)
\(312\) − 1.56438e6i − 0.909823i
\(313\) 656850.i 0.378970i 0.981884 + 0.189485i \(0.0606819\pi\)
−0.981884 + 0.189485i \(0.939318\pi\)
\(314\) −2.33835e6 −1.33840
\(315\) 0 0
\(316\) 4.39882e6 2.47810
\(317\) − 1.41713e6i − 0.792069i −0.918236 0.396034i \(-0.870386\pi\)
0.918236 0.396034i \(-0.129614\pi\)
\(318\) 3.24962e6i 1.80204i
\(319\) −4.12544e6 −2.26983
\(320\) 0 0
\(321\) −79460.3 −0.0430415
\(322\) 5870.18i 0.00315509i
\(323\) − 1.32508e6i − 0.706703i
\(324\) 3.29170e6 1.74204
\(325\) 0 0
\(326\) −4.07118e6 −2.12166
\(327\) 1.24992e6i 0.646416i
\(328\) − 7.28184e6i − 3.73729i
\(329\) 1.12571e6 0.573371
\(330\) 0 0
\(331\) −2.12709e6 −1.06713 −0.533564 0.845760i \(-0.679148\pi\)
−0.533564 + 0.845760i \(0.679148\pi\)
\(332\) − 3.34896e6i − 1.66750i
\(333\) 3.68242e6i 1.81980i
\(334\) 2.81335e6 1.37993
\(335\) 0 0
\(336\) −2.11612e6 −1.02257
\(337\) − 483390.i − 0.231859i −0.993257 0.115929i \(-0.963015\pi\)
0.993257 0.115929i \(-0.0369846\pi\)
\(338\) 290543.i 0.138331i
\(339\) 2.38349e6 1.12645
\(340\) 0 0
\(341\) −389190. −0.181249
\(342\) − 3.96726e6i − 1.83411i
\(343\) − 1.58308e6i − 0.726552i
\(344\) 7.84564e6 3.57464
\(345\) 0 0
\(346\) 3.29106e6 1.47790
\(347\) − 1.95372e6i − 0.871041i −0.900179 0.435521i \(-0.856564\pi\)
0.900179 0.435521i \(-0.143436\pi\)
\(348\) 1.32626e7i 5.87060i
\(349\) −471784. −0.207338 −0.103669 0.994612i \(-0.533058\pi\)
−0.103669 + 0.994612i \(0.533058\pi\)
\(350\) 0 0
\(351\) 175745. 0.0761403
\(352\) 2.78890e6i 1.19971i
\(353\) 4.45914e6i 1.90465i 0.305090 + 0.952324i \(0.401314\pi\)
−0.305090 + 0.952324i \(0.598686\pi\)
\(354\) −4.25853e6 −1.80614
\(355\) 0 0
\(356\) 88427.3 0.0369795
\(357\) − 1.15186e6i − 0.478333i
\(358\) − 7.70141e6i − 3.17587i
\(359\) 22798.5 0.00933619 0.00466810 0.999989i \(-0.498514\pi\)
0.00466810 + 0.999989i \(0.498514\pi\)
\(360\) 0 0
\(361\) −643984. −0.260080
\(362\) − 6.51593e6i − 2.61339i
\(363\) − 2.34030e6i − 0.932192i
\(364\) 616784. 0.243994
\(365\) 0 0
\(366\) −1.78715e6 −0.697363
\(367\) − 1.45349e6i − 0.563307i −0.959516 0.281654i \(-0.909117\pi\)
0.959516 0.281654i \(-0.0908829\pi\)
\(368\) − 20327.5i − 0.00782465i
\(369\) 5.22348e6 1.99707
\(370\) 0 0
\(371\) −707676. −0.266932
\(372\) 1.25119e6i 0.468775i
\(373\) 1.98547e6i 0.738910i 0.929249 + 0.369455i \(0.120456\pi\)
−0.929249 + 0.369455i \(0.879544\pi\)
\(374\) −5.10329e6 −1.88656
\(375\) 0 0
\(376\) −8.85620e6 −3.23056
\(377\) − 1.36054e6i − 0.493011i
\(378\) − 540094.i − 0.194419i
\(379\) −1.09576e6 −0.391847 −0.195924 0.980619i \(-0.562770\pi\)
−0.195924 + 0.980619i \(0.562770\pi\)
\(380\) 0 0
\(381\) −1.99574e6 −0.704354
\(382\) 6.22501e6i 2.18264i
\(383\) 2.86567e6i 0.998225i 0.866537 + 0.499113i \(0.166341\pi\)
−0.866537 + 0.499113i \(0.833659\pi\)
\(384\) −4.52659e6 −1.56655
\(385\) 0 0
\(386\) 1.37002e6 0.468015
\(387\) 5.62791e6i 1.91016i
\(388\) − 4.11501e6i − 1.38769i
\(389\) −1.42325e6 −0.476878 −0.238439 0.971158i \(-0.576636\pi\)
−0.238439 + 0.971158i \(0.576636\pi\)
\(390\) 0 0
\(391\) 11064.8 0.00366018
\(392\) 5.70374e6i 1.87476i
\(393\) − 4.90477e6i − 1.60191i
\(394\) −4.42700e6 −1.43671
\(395\) 0 0
\(396\) −1.05544e7 −3.38218
\(397\) 6.03873e6i 1.92296i 0.274882 + 0.961478i \(0.411361\pi\)
−0.274882 + 0.961478i \(0.588639\pi\)
\(398\) 1.82958e6i 0.578955i
\(399\) 1.59261e6 0.500816
\(400\) 0 0
\(401\) 5.69168e6 1.76758 0.883791 0.467881i \(-0.154983\pi\)
0.883791 + 0.467881i \(0.154983\pi\)
\(402\) − 882541.i − 0.272377i
\(403\) − 128352.i − 0.0393676i
\(404\) 967584. 0.294941
\(405\) 0 0
\(406\) −4.18116e6 −1.25887
\(407\) 6.54942e6i 1.95982i
\(408\) 9.06198e6i 2.69509i
\(409\) 972884. 0.287576 0.143788 0.989609i \(-0.454072\pi\)
0.143788 + 0.989609i \(0.454072\pi\)
\(410\) 0 0
\(411\) −9.04630e6 −2.64160
\(412\) − 7.12274e6i − 2.06730i
\(413\) − 927388.i − 0.267539i
\(414\) 33127.8 0.00949930
\(415\) 0 0
\(416\) −919755. −0.260579
\(417\) 1.49272e6i 0.420376i
\(418\) − 7.05603e6i − 1.97524i
\(419\) −3.58406e6 −0.997334 −0.498667 0.866794i \(-0.666177\pi\)
−0.498667 + 0.866794i \(0.666177\pi\)
\(420\) 0 0
\(421\) 1.21460e6 0.333986 0.166993 0.985958i \(-0.446594\pi\)
0.166993 + 0.985958i \(0.446594\pi\)
\(422\) 1.04821e7i 2.86528i
\(423\) − 6.35282e6i − 1.72630i
\(424\) 5.56746e6 1.50398
\(425\) 0 0
\(426\) 1.77700e7 4.74419
\(427\) − 389192.i − 0.103299i
\(428\) 246469.i 0.0650358i
\(429\) 1.99587e6 0.523586
\(430\) 0 0
\(431\) 3.18545e6 0.825996 0.412998 0.910732i \(-0.364482\pi\)
0.412998 + 0.910732i \(0.364482\pi\)
\(432\) 1.87026e6i 0.482162i
\(433\) − 5.64608e6i − 1.44720i −0.690221 0.723598i \(-0.742487\pi\)
0.690221 0.723598i \(-0.257513\pi\)
\(434\) −394447. −0.100523
\(435\) 0 0
\(436\) 3.87698e6 0.976735
\(437\) 15298.7i 0.00383222i
\(438\) − 2.03038e7i − 5.05700i
\(439\) −7.65369e6 −1.89544 −0.947719 0.319108i \(-0.896617\pi\)
−0.947719 + 0.319108i \(0.896617\pi\)
\(440\) 0 0
\(441\) −4.09146e6 −1.00180
\(442\) − 1.68302e6i − 0.409765i
\(443\) − 5.65650e6i − 1.36943i −0.728813 0.684713i \(-0.759927\pi\)
0.728813 0.684713i \(-0.240073\pi\)
\(444\) 2.10554e7 5.06880
\(445\) 0 0
\(446\) 1.06158e7 2.52706
\(447\) − 6.38984e6i − 1.51259i
\(448\) − 111718.i − 0.0262983i
\(449\) 1.93752e6 0.453556 0.226778 0.973947i \(-0.427181\pi\)
0.226778 + 0.973947i \(0.427181\pi\)
\(450\) 0 0
\(451\) 9.29029e6 2.15074
\(452\) − 7.39307e6i − 1.70208i
\(453\) 1.30531e6i 0.298860i
\(454\) 1.06622e7 2.42776
\(455\) 0 0
\(456\) −1.25295e7 −2.82176
\(457\) 3.22536e6i 0.722417i 0.932485 + 0.361208i \(0.117636\pi\)
−0.932485 + 0.361208i \(0.882364\pi\)
\(458\) 7.31385e6i 1.62923i
\(459\) −1.01803e6 −0.225544
\(460\) 0 0
\(461\) −4.53894e6 −0.994723 −0.497362 0.867543i \(-0.665698\pi\)
−0.497362 + 0.867543i \(0.665698\pi\)
\(462\) − 6.13364e6i − 1.33694i
\(463\) − 4.40536e6i − 0.955056i −0.878617 0.477528i \(-0.841533\pi\)
0.878617 0.477528i \(-0.158467\pi\)
\(464\) 1.44787e7 3.12202
\(465\) 0 0
\(466\) 7.26954e6 1.55075
\(467\) − 7.89872e6i − 1.67596i −0.545698 0.837982i \(-0.683735\pi\)
0.545698 0.837982i \(-0.316265\pi\)
\(468\) − 3.48076e6i − 0.734614i
\(469\) 192193. 0.0403464
\(470\) 0 0
\(471\) −5.29748e6 −1.10032
\(472\) 7.29599e6i 1.50740i
\(473\) 1.00096e7i 2.05714i
\(474\) 1.44265e7 2.94927
\(475\) 0 0
\(476\) −3.57283e6 −0.722762
\(477\) 3.99370e6i 0.803674i
\(478\) 1.16340e6i 0.232895i
\(479\) −1.62018e6 −0.322644 −0.161322 0.986902i \(-0.551576\pi\)
−0.161322 + 0.986902i \(0.551576\pi\)
\(480\) 0 0
\(481\) −2.15994e6 −0.425676
\(482\) − 1.03361e7i − 2.02647i
\(483\) 13298.8i 0.00259385i
\(484\) −7.25911e6 −1.40854
\(485\) 0 0
\(486\) 1.33662e7 2.56695
\(487\) 4.09572e6i 0.782543i 0.920275 + 0.391272i \(0.127965\pi\)
−0.920275 + 0.391272i \(0.872035\pi\)
\(488\) 3.06187e6i 0.582018i
\(489\) −9.22319e6 −1.74425
\(490\) 0 0
\(491\) −7.09337e6 −1.32785 −0.663925 0.747799i \(-0.731111\pi\)
−0.663925 + 0.747799i \(0.731111\pi\)
\(492\) − 2.98668e7i − 5.56258i
\(493\) 7.88116e6i 1.46040i
\(494\) 2.32702e6 0.429025
\(495\) 0 0
\(496\) 1.36591e6 0.249297
\(497\) 3.86980e6i 0.702745i
\(498\) − 1.09834e7i − 1.98455i
\(499\) 1.60514e6 0.288577 0.144289 0.989536i \(-0.453911\pi\)
0.144289 + 0.989536i \(0.453911\pi\)
\(500\) 0 0
\(501\) 6.37360e6 1.13446
\(502\) 1.15164e7i 2.03965i
\(503\) − 5.32213e6i − 0.937920i −0.883219 0.468960i \(-0.844629\pi\)
0.883219 0.468960i \(-0.155371\pi\)
\(504\) −5.90845e6 −1.03609
\(505\) 0 0
\(506\) 58919.9 0.0102302
\(507\) 658220.i 0.113724i
\(508\) 6.19035e6i 1.06428i
\(509\) −2.38983e6 −0.408857 −0.204429 0.978881i \(-0.565534\pi\)
−0.204429 + 0.978881i \(0.565534\pi\)
\(510\) 0 0
\(511\) 4.42161e6 0.749080
\(512\) 1.33282e7i 2.24697i
\(513\) − 1.40758e6i − 0.236145i
\(514\) 3.64057e6 0.607801
\(515\) 0 0
\(516\) 3.21793e7 5.32050
\(517\) − 1.12989e7i − 1.85913i
\(518\) 6.63787e6i 1.08694i
\(519\) 7.45584e6 1.21501
\(520\) 0 0
\(521\) −970922. −0.156708 −0.0783538 0.996926i \(-0.524966\pi\)
−0.0783538 + 0.996926i \(0.524966\pi\)
\(522\) 2.35960e7i 3.79020i
\(523\) − 7.93187e6i − 1.26801i −0.773330 0.634003i \(-0.781410\pi\)
0.773330 0.634003i \(-0.218590\pi\)
\(524\) −1.52136e7 −2.42049
\(525\) 0 0
\(526\) −3.10872e6 −0.489912
\(527\) 743501.i 0.116615i
\(528\) 2.12398e7i 3.31563i
\(529\) 6.43622e6 0.999980
\(530\) 0 0
\(531\) −5.23363e6 −0.805502
\(532\) − 4.93995e6i − 0.756734i
\(533\) 3.06386e6i 0.467144i
\(534\) 290009. 0.0440107
\(535\) 0 0
\(536\) −1.51203e6 −0.227325
\(537\) − 1.74474e7i − 2.61093i
\(538\) − 6.79413e6i − 1.01199i
\(539\) −7.27692e6 −1.07889
\(540\) 0 0
\(541\) −6.96364e6 −1.02292 −0.511462 0.859306i \(-0.670896\pi\)
−0.511462 + 0.859306i \(0.670896\pi\)
\(542\) 1.07721e7i 1.57508i
\(543\) − 1.47617e7i − 2.14851i
\(544\) 5.32785e6 0.771889
\(545\) 0 0
\(546\) 2.02282e6 0.290386
\(547\) 1.01847e7i 1.45539i 0.685903 + 0.727693i \(0.259407\pi\)
−0.685903 + 0.727693i \(0.740593\pi\)
\(548\) 2.80597e7i 3.99146i
\(549\) −2.19637e6 −0.311010
\(550\) 0 0
\(551\) −1.08968e7 −1.52905
\(552\) − 104625.i − 0.0146146i
\(553\) 3.14169e6i 0.436868i
\(554\) 1.94711e7 2.69536
\(555\) 0 0
\(556\) 4.63009e6 0.635189
\(557\) 1.17433e7i 1.60381i 0.597454 + 0.801903i \(0.296179\pi\)
−0.597454 + 0.801903i \(0.703821\pi\)
\(558\) 2.22602e6i 0.302652i
\(559\) −3.30108e6 −0.446814
\(560\) 0 0
\(561\) −1.15614e7 −1.55097
\(562\) − 1.09996e7i − 1.46904i
\(563\) 1.14861e7i 1.52722i 0.645677 + 0.763611i \(0.276575\pi\)
−0.645677 + 0.763611i \(0.723425\pi\)
\(564\) −3.63241e7 −4.80837
\(565\) 0 0
\(566\) 8.74194e6 1.14701
\(567\) 2.35097e6i 0.307107i
\(568\) − 3.04447e7i − 3.95950i
\(569\) −1.51914e7 −1.96706 −0.983532 0.180734i \(-0.942153\pi\)
−0.983532 + 0.180734i \(0.942153\pi\)
\(570\) 0 0
\(571\) −7.26504e6 −0.932498 −0.466249 0.884654i \(-0.654395\pi\)
−0.466249 + 0.884654i \(0.654395\pi\)
\(572\) − 6.19075e6i − 0.791140i
\(573\) 1.41027e7i 1.79438i
\(574\) 9.41576e6 1.19282
\(575\) 0 0
\(576\) −630468. −0.0791784
\(577\) 5.66789e6i 0.708731i 0.935107 + 0.354366i \(0.115303\pi\)
−0.935107 + 0.354366i \(0.884697\pi\)
\(578\) − 4.69457e6i − 0.584489i
\(579\) 3.10377e6 0.384762
\(580\) 0 0
\(581\) 2.39187e6 0.293966
\(582\) − 1.34957e7i − 1.65154i
\(583\) 7.10305e6i 0.865513i
\(584\) −3.47859e7 −4.22056
\(585\) 0 0
\(586\) −2.40460e7 −2.89267
\(587\) 1.09050e6i 0.130627i 0.997865 + 0.0653133i \(0.0208047\pi\)
−0.997865 + 0.0653133i \(0.979195\pi\)
\(588\) 2.33942e7i 2.79039i
\(589\) −1.02800e6 −0.122096
\(590\) 0 0
\(591\) −1.00293e7 −1.18114
\(592\) − 2.29859e7i − 2.69562i
\(593\) − 4.95413e6i − 0.578536i −0.957248 0.289268i \(-0.906588\pi\)
0.957248 0.289268i \(-0.0934119\pi\)
\(594\) −5.42100e6 −0.630396
\(595\) 0 0
\(596\) −1.98199e7 −2.28553
\(597\) 4.14489e6i 0.475968i
\(598\) 19431.3i 0.00222202i
\(599\) −6.54475e6 −0.745292 −0.372646 0.927974i \(-0.621549\pi\)
−0.372646 + 0.927974i \(0.621549\pi\)
\(600\) 0 0
\(601\) −2.16617e6 −0.244628 −0.122314 0.992491i \(-0.539031\pi\)
−0.122314 + 0.992491i \(0.539031\pi\)
\(602\) 1.01448e7i 1.14091i
\(603\) − 1.08462e6i − 0.121475i
\(604\) 4.04879e6 0.451578
\(605\) 0 0
\(606\) 3.17332e6 0.351020
\(607\) − 986604.i − 0.108685i −0.998522 0.0543427i \(-0.982694\pi\)
0.998522 0.0543427i \(-0.0173063\pi\)
\(608\) 7.36651e6i 0.808170i
\(609\) −9.47235e6 −1.03494
\(610\) 0 0
\(611\) 3.72628e6 0.403805
\(612\) 2.01630e7i 2.17608i
\(613\) − 1.50041e7i − 1.61272i −0.591425 0.806360i \(-0.701435\pi\)
0.591425 0.806360i \(-0.298565\pi\)
\(614\) 1.64163e7 1.75733
\(615\) 0 0
\(616\) −1.05085e7 −1.11581
\(617\) 1.27376e6i 0.134703i 0.997729 + 0.0673514i \(0.0214548\pi\)
−0.997729 + 0.0673514i \(0.978545\pi\)
\(618\) − 2.33599e7i − 2.46037i
\(619\) 2.59865e6 0.272597 0.136299 0.990668i \(-0.456479\pi\)
0.136299 + 0.990668i \(0.456479\pi\)
\(620\) 0 0
\(621\) 11753.7 0.00122305
\(622\) − 7.89635e6i − 0.818372i
\(623\) 63155.8i 0.00651919i
\(624\) −7.00472e6 −0.720161
\(625\) 0 0
\(626\) 6.68195e6 0.681502
\(627\) − 1.59853e7i − 1.62387i
\(628\) 1.64317e7i 1.66258i
\(629\) 1.25119e7 1.26094
\(630\) 0 0
\(631\) −1.92424e7 −1.92392 −0.961959 0.273194i \(-0.911920\pi\)
−0.961959 + 0.273194i \(0.911920\pi\)
\(632\) − 2.47164e7i − 2.46146i
\(633\) 2.37470e7i 2.35559i
\(634\) −1.44161e7 −1.42438
\(635\) 0 0
\(636\) 2.28352e7 2.23853
\(637\) − 2.39987e6i − 0.234336i
\(638\) 4.19669e7i 4.08184i
\(639\) 2.18389e7 2.11582
\(640\) 0 0
\(641\) 1.83373e7 1.76275 0.881375 0.472417i \(-0.156618\pi\)
0.881375 + 0.472417i \(0.156618\pi\)
\(642\) 808326.i 0.0774015i
\(643\) 1.43215e6i 0.136603i 0.997665 + 0.0683015i \(0.0217580\pi\)
−0.997665 + 0.0683015i \(0.978242\pi\)
\(644\) 41250.0 0.00391931
\(645\) 0 0
\(646\) −1.34797e7 −1.27086
\(647\) 1.04396e7i 0.980440i 0.871599 + 0.490220i \(0.163084\pi\)
−0.871599 + 0.490220i \(0.836916\pi\)
\(648\) − 1.84957e7i − 1.73034i
\(649\) −9.30834e6 −0.867482
\(650\) 0 0
\(651\) −893612. −0.0826412
\(652\) 2.86084e7i 2.63557i
\(653\) 1.32094e7i 1.21227i 0.795360 + 0.606137i \(0.207282\pi\)
−0.795360 + 0.606137i \(0.792718\pi\)
\(654\) 1.27151e7 1.16245
\(655\) 0 0
\(656\) −3.26053e7 −2.95821
\(657\) − 2.49529e7i − 2.25532i
\(658\) − 1.14515e7i − 1.03109i
\(659\) −3.20415e6 −0.287408 −0.143704 0.989621i \(-0.545901\pi\)
−0.143704 + 0.989621i \(0.545901\pi\)
\(660\) 0 0
\(661\) −2.22430e7 −1.98011 −0.990057 0.140667i \(-0.955075\pi\)
−0.990057 + 0.140667i \(0.955075\pi\)
\(662\) 2.16383e7i 1.91901i
\(663\) − 3.81286e6i − 0.336874i
\(664\) −1.88174e7 −1.65630
\(665\) 0 0
\(666\) 3.74602e7 3.27254
\(667\) − 90991.6i − 0.00791930i
\(668\) − 1.97696e7i − 1.71418i
\(669\) 2.40500e7 2.07754
\(670\) 0 0
\(671\) −3.90638e6 −0.334941
\(672\) 6.40353e6i 0.547011i
\(673\) − 1.08386e7i − 0.922434i −0.887287 0.461217i \(-0.847413\pi\)
0.887287 0.461217i \(-0.152587\pi\)
\(674\) −4.91739e6 −0.416951
\(675\) 0 0
\(676\) 2.04166e6 0.171837
\(677\) 1.21301e7i 1.01717i 0.861012 + 0.508585i \(0.169831\pi\)
−0.861012 + 0.508585i \(0.830169\pi\)
\(678\) − 2.42465e7i − 2.02570i
\(679\) 2.93899e6 0.244638
\(680\) 0 0
\(681\) 2.41550e7 1.99590
\(682\) 3.95912e6i 0.325940i
\(683\) − 1.86818e7i − 1.53238i −0.642613 0.766191i \(-0.722149\pi\)
0.642613 0.766191i \(-0.277851\pi\)
\(684\) −2.78781e7 −2.27837
\(685\) 0 0
\(686\) −1.61042e7 −1.30656
\(687\) 1.65694e7i 1.33941i
\(688\) − 3.51298e7i − 2.82947i
\(689\) −2.34253e6 −0.187991
\(690\) 0 0
\(691\) −1.25804e7 −1.00230 −0.501151 0.865360i \(-0.667090\pi\)
−0.501151 + 0.865360i \(0.667090\pi\)
\(692\) − 2.31264e7i − 1.83588i
\(693\) − 7.53810e6i − 0.596250i
\(694\) −1.98746e7 −1.56639
\(695\) 0 0
\(696\) 7.45212e7 5.83118
\(697\) − 1.77480e7i − 1.38378i
\(698\) 4.79933e6i 0.372856i
\(699\) 1.64690e7 1.27490
\(700\) 0 0
\(701\) 8.22912e6 0.632497 0.316249 0.948676i \(-0.397577\pi\)
0.316249 + 0.948676i \(0.397577\pi\)
\(702\) − 1.78780e6i − 0.136923i
\(703\) 1.72994e7i 1.32021i
\(704\) −1.12133e6 −0.0852709
\(705\) 0 0
\(706\) 4.53616e7 3.42512
\(707\) 691060.i 0.0519957i
\(708\) 2.99248e7i 2.24362i
\(709\) −2.08389e7 −1.55690 −0.778449 0.627708i \(-0.783993\pi\)
−0.778449 + 0.627708i \(0.783993\pi\)
\(710\) 0 0
\(711\) 1.77298e7 1.31532
\(712\) − 496862.i − 0.0367313i
\(713\) − 8584.06i 0 0.000632367i
\(714\) −1.17176e7 −0.860186
\(715\) 0 0
\(716\) −5.41182e7 −3.94512
\(717\) 2.63566e6i 0.191466i
\(718\) − 231922.i − 0.0167893i
\(719\) −1.98244e7 −1.43014 −0.715068 0.699055i \(-0.753604\pi\)
−0.715068 + 0.699055i \(0.753604\pi\)
\(720\) 0 0
\(721\) 5.08715e6 0.364448
\(722\) 6.55107e6i 0.467702i
\(723\) − 2.34163e7i − 1.66599i
\(724\) −4.57877e7 −3.24640
\(725\) 0 0
\(726\) −2.38072e7 −1.67636
\(727\) − 9.64612e6i − 0.676888i −0.940987 0.338444i \(-0.890099\pi\)
0.940987 0.338444i \(-0.109901\pi\)
\(728\) − 3.46563e6i − 0.242356i
\(729\) 1.90912e7 1.33050
\(730\) 0 0
\(731\) 1.91221e7 1.32356
\(732\) 1.25584e7i 0.866276i
\(733\) 1.74331e7i 1.19844i 0.800585 + 0.599219i \(0.204522\pi\)
−0.800585 + 0.599219i \(0.795478\pi\)
\(734\) −1.47859e7 −1.01299
\(735\) 0 0
\(736\) −61512.5 −0.00418570
\(737\) − 1.92907e6i − 0.130821i
\(738\) − 5.31370e7i − 3.59133i
\(739\) 3.56942e6 0.240429 0.120214 0.992748i \(-0.461642\pi\)
0.120214 + 0.992748i \(0.461642\pi\)
\(740\) 0 0
\(741\) 5.27182e6 0.352708
\(742\) 7.19899e6i 0.480023i
\(743\) 9.04400e6i 0.601019i 0.953779 + 0.300510i \(0.0971567\pi\)
−0.953779 + 0.300510i \(0.902843\pi\)
\(744\) 7.03026e6 0.465628
\(745\) 0 0
\(746\) 2.01976e7 1.32878
\(747\) − 1.34983e7i − 0.885069i
\(748\) 3.58611e7i 2.34352i
\(749\) −176031. −0.0114653
\(750\) 0 0
\(751\) −2.27403e7 −1.47128 −0.735642 0.677371i \(-0.763119\pi\)
−0.735642 + 0.677371i \(0.763119\pi\)
\(752\) 3.96547e7i 2.55712i
\(753\) 2.60901e7i 1.67683i
\(754\) −1.38403e7 −0.886581
\(755\) 0 0
\(756\) −3.79526e6 −0.241511
\(757\) − 1.51736e7i − 0.962385i −0.876615 0.481192i \(-0.840204\pi\)
0.876615 0.481192i \(-0.159796\pi\)
\(758\) 1.11468e7i 0.704659i
\(759\) 133482. 0.00841043
\(760\) 0 0
\(761\) 1.74364e7 1.09143 0.545714 0.837971i \(-0.316258\pi\)
0.545714 + 0.837971i \(0.316258\pi\)
\(762\) 2.03021e7i 1.26664i
\(763\) 2.76898e6i 0.172190i
\(764\) 4.37434e7 2.71131
\(765\) 0 0
\(766\) 2.91516e7 1.79511
\(767\) − 3.06981e6i − 0.188418i
\(768\) 4.44340e7i 2.71839i
\(769\) −1.64867e7 −1.00535 −0.502675 0.864476i \(-0.667651\pi\)
−0.502675 + 0.864476i \(0.667651\pi\)
\(770\) 0 0
\(771\) 8.24764e6 0.499682
\(772\) − 9.62722e6i − 0.581377i
\(773\) − 1.70607e7i − 1.02695i −0.858105 0.513474i \(-0.828358\pi\)
0.858105 0.513474i \(-0.171642\pi\)
\(774\) 5.72512e7 3.43504
\(775\) 0 0
\(776\) −2.31217e7 −1.37837
\(777\) 1.50380e7i 0.893588i
\(778\) 1.44783e7i 0.857569i
\(779\) 2.45391e7 1.44882
\(780\) 0 0
\(781\) 3.88418e7 2.27862
\(782\) − 112559.i − 0.00658210i
\(783\) 8.37180e6i 0.487994i
\(784\) 2.55392e7 1.48394
\(785\) 0 0
\(786\) −4.98949e7 −2.88071
\(787\) 2.38884e6i 0.137483i 0.997634 + 0.0687417i \(0.0218984\pi\)
−0.997634 + 0.0687417i \(0.978102\pi\)
\(788\) 3.11087e7i 1.78471i
\(789\) −7.04276e6 −0.402764
\(790\) 0 0
\(791\) 5.28022e6 0.300062
\(792\) 5.93040e7i 3.35947i
\(793\) − 1.28829e6i − 0.0727496i
\(794\) 6.14303e7 3.45805
\(795\) 0 0
\(796\) 1.28566e7 0.719188
\(797\) 7.46487e6i 0.416272i 0.978100 + 0.208136i \(0.0667396\pi\)
−0.978100 + 0.208136i \(0.933260\pi\)
\(798\) − 1.62012e7i − 0.900617i
\(799\) −2.15852e7 −1.19616
\(800\) 0 0
\(801\) 356414. 0.0196279
\(802\) − 5.78999e7i − 3.17864i
\(803\) − 4.43804e7i − 2.42886i
\(804\) −6.20166e6 −0.338351
\(805\) 0 0
\(806\) −1.30569e6 −0.0707947
\(807\) − 1.53920e7i − 0.831976i
\(808\) − 5.43674e6i − 0.292961i
\(809\) 1.91578e7 1.02914 0.514569 0.857449i \(-0.327952\pi\)
0.514569 + 0.857449i \(0.327952\pi\)
\(810\) 0 0
\(811\) 2.86526e6 0.152972 0.0764859 0.997071i \(-0.475630\pi\)
0.0764859 + 0.997071i \(0.475630\pi\)
\(812\) 2.93812e7i 1.56379i
\(813\) 2.44041e7i 1.29490i
\(814\) 6.66253e7 3.52435
\(815\) 0 0
\(816\) 4.05762e7 2.13327
\(817\) 2.64391e7i 1.38577i
\(818\) − 9.89687e6i − 0.517147i
\(819\) 2.48600e6 0.129507
\(820\) 0 0
\(821\) −1.42195e7 −0.736254 −0.368127 0.929775i \(-0.620001\pi\)
−0.368127 + 0.929775i \(0.620001\pi\)
\(822\) 9.20255e7i 4.75038i
\(823\) − 8.97879e6i − 0.462081i −0.972944 0.231041i \(-0.925787\pi\)
0.972944 0.231041i \(-0.0742130\pi\)
\(824\) −4.00218e7 −2.05342
\(825\) 0 0
\(826\) −9.43406e6 −0.481114
\(827\) 1.46294e7i 0.743813i 0.928270 + 0.371907i \(0.121296\pi\)
−0.928270 + 0.371907i \(0.878704\pi\)
\(828\) − 232790.i − 0.0118002i
\(829\) −6.70195e6 −0.338700 −0.169350 0.985556i \(-0.554167\pi\)
−0.169350 + 0.985556i \(0.554167\pi\)
\(830\) 0 0
\(831\) 4.41115e7 2.21590
\(832\) − 369804.i − 0.0185210i
\(833\) 1.39017e7i 0.694153i
\(834\) 1.51850e7 0.755961
\(835\) 0 0
\(836\) −4.95830e7 −2.45368
\(837\) 789788.i 0.0389670i
\(838\) 3.64597e7i 1.79350i
\(839\) 1.00902e7 0.494876 0.247438 0.968904i \(-0.420411\pi\)
0.247438 + 0.968904i \(0.420411\pi\)
\(840\) 0 0
\(841\) 4.42995e7 2.15978
\(842\) − 1.23558e7i − 0.600607i
\(843\) − 2.49193e7i − 1.20772i
\(844\) 7.36580e7 3.55930
\(845\) 0 0
\(846\) −6.46254e7 −3.10440
\(847\) − 5.18455e6i − 0.248315i
\(848\) − 2.49290e7i − 1.19046i
\(849\) 1.98047e7 0.942973
\(850\) 0 0
\(851\) −144455. −0.00683769
\(852\) − 1.24870e8i − 5.89332i
\(853\) − 8.26689e6i − 0.389018i −0.980901 0.194509i \(-0.937689\pi\)
0.980901 0.194509i \(-0.0623113\pi\)
\(854\) −3.95914e6 −0.185762
\(855\) 0 0
\(856\) 1.38488e6 0.0645992
\(857\) − 1.34533e6i − 0.0625714i −0.999510 0.0312857i \(-0.990040\pi\)
0.999510 0.0312857i \(-0.00996017\pi\)
\(858\) − 2.03034e7i − 0.941564i
\(859\) 2.57272e7 1.18962 0.594812 0.803865i \(-0.297226\pi\)
0.594812 + 0.803865i \(0.297226\pi\)
\(860\) 0 0
\(861\) 2.13313e7 0.980637
\(862\) − 3.24047e7i − 1.48539i
\(863\) 9.60150e6i 0.438846i 0.975630 + 0.219423i \(0.0704175\pi\)
−0.975630 + 0.219423i \(0.929583\pi\)
\(864\) 5.65954e6 0.257927
\(865\) 0 0
\(866\) −5.74360e7 −2.60249
\(867\) − 1.06355e7i − 0.480517i
\(868\) 2.77179e6i 0.124871i
\(869\) 3.15336e7 1.41652
\(870\) 0 0
\(871\) 636191. 0.0284146
\(872\) − 2.17843e7i − 0.970178i
\(873\) − 1.65859e7i − 0.736552i
\(874\) 155629. 0.00689148
\(875\) 0 0
\(876\) −1.42676e8 −6.28189
\(877\) − 3.88143e6i − 0.170409i −0.996363 0.0852046i \(-0.972846\pi\)
0.996363 0.0852046i \(-0.0271544\pi\)
\(878\) 7.78588e7i 3.40856i
\(879\) −5.44759e7 −2.37811
\(880\) 0 0
\(881\) −1.47028e7 −0.638204 −0.319102 0.947720i \(-0.603381\pi\)
−0.319102 + 0.947720i \(0.603381\pi\)
\(882\) 4.16213e7i 1.80154i
\(883\) 4.37837e7i 1.88978i 0.327392 + 0.944889i \(0.393830\pi\)
−0.327392 + 0.944889i \(0.606170\pi\)
\(884\) −1.18267e7 −0.509017
\(885\) 0 0
\(886\) −5.75420e7 −2.46264
\(887\) 9.31739e6i 0.397636i 0.980036 + 0.198818i \(0.0637102\pi\)
−0.980036 + 0.198818i \(0.936290\pi\)
\(888\) − 1.18307e8i − 5.03477i
\(889\) −4.42122e6 −0.187624
\(890\) 0 0
\(891\) 2.35971e7 0.995781
\(892\) − 7.45978e7i − 3.13916i
\(893\) − 2.98445e7i − 1.25238i
\(894\) −6.50020e7 −2.72009
\(895\) 0 0
\(896\) −1.00279e7 −0.417292
\(897\) 44021.2i 0.00182676i
\(898\) − 1.97098e7i − 0.815628i
\(899\) 6.11418e6 0.252313
\(900\) 0 0
\(901\) 1.35695e7 0.556869
\(902\) − 9.45074e7i − 3.86767i
\(903\) 2.29828e7i 0.937960i
\(904\) −4.15407e7 −1.69065
\(905\) 0 0
\(906\) 1.32785e7 0.537440
\(907\) 1.32431e7i 0.534529i 0.963623 + 0.267265i \(0.0861198\pi\)
−0.963623 + 0.267265i \(0.913880\pi\)
\(908\) − 7.49235e7i − 3.01581i
\(909\) 3.89993e6 0.156548
\(910\) 0 0
\(911\) 2.78672e7 1.11249 0.556246 0.831018i \(-0.312241\pi\)
0.556246 + 0.831018i \(0.312241\pi\)
\(912\) 5.61023e7i 2.23354i
\(913\) − 2.40075e7i − 0.953171i
\(914\) 3.28107e7 1.29912
\(915\) 0 0
\(916\) 5.13947e7 2.02386
\(917\) − 1.08657e7i − 0.426712i
\(918\) 1.03562e7i 0.405595i
\(919\) 1.81646e7 0.709474 0.354737 0.934966i \(-0.384570\pi\)
0.354737 + 0.934966i \(0.384570\pi\)
\(920\) 0 0
\(921\) 3.71908e7 1.44473
\(922\) 4.61733e7i 1.78881i
\(923\) 1.28097e7i 0.494920i
\(924\) −4.31013e7 −1.66077
\(925\) 0 0
\(926\) −4.48145e7 −1.71748
\(927\) − 2.87088e7i − 1.09728i
\(928\) − 4.38136e7i − 1.67009i
\(929\) −3.97985e7 −1.51296 −0.756480 0.654017i \(-0.773083\pi\)
−0.756480 + 0.654017i \(0.773083\pi\)
\(930\) 0 0
\(931\) −1.92210e7 −0.726780
\(932\) − 5.10833e7i − 1.92637i
\(933\) − 1.78891e7i − 0.672796i
\(934\) −8.03515e7 −3.01388
\(935\) 0 0
\(936\) −1.95580e7 −0.729683
\(937\) − 3.23323e7i − 1.20306i −0.798850 0.601531i \(-0.794558\pi\)
0.798850 0.601531i \(-0.205442\pi\)
\(938\) − 1.95512e6i − 0.0725550i
\(939\) 1.51378e7 0.560273
\(940\) 0 0
\(941\) −1.24433e7 −0.458102 −0.229051 0.973414i \(-0.573562\pi\)
−0.229051 + 0.973414i \(0.573562\pi\)
\(942\) 5.38898e7i 1.97870i
\(943\) 204908.i 0.00750379i
\(944\) 3.26687e7 1.19317
\(945\) 0 0
\(946\) 1.01825e8 3.69935
\(947\) − 3.32452e7i − 1.20463i −0.798258 0.602316i \(-0.794245\pi\)
0.798258 0.602316i \(-0.205755\pi\)
\(948\) − 1.01376e8i − 3.66364i
\(949\) 1.46363e7 0.527552
\(950\) 0 0
\(951\) −3.26594e7 −1.17100
\(952\) 2.00753e7i 0.717910i
\(953\) 4.55359e7i 1.62413i 0.583566 + 0.812066i \(0.301657\pi\)
−0.583566 + 0.812066i \(0.698343\pi\)
\(954\) 4.06268e7 1.44525
\(955\) 0 0
\(956\) 8.17526e6 0.289306
\(957\) 9.50754e7i 3.35574i
\(958\) 1.64816e7i 0.580210i
\(959\) −2.00406e7 −0.703661
\(960\) 0 0
\(961\) −2.80523e7 −0.979852
\(962\) 2.19725e7i 0.765493i
\(963\) 993414.i 0.0345195i
\(964\) −7.26323e7 −2.51731
\(965\) 0 0
\(966\) 135285. 0.00466451
\(967\) − 1.52863e7i − 0.525697i −0.964837 0.262849i \(-0.915338\pi\)
0.964837 0.262849i \(-0.0846620\pi\)
\(968\) 4.07881e7i 1.39909i
\(969\) −3.05380e7 −1.04480
\(970\) 0 0
\(971\) −1.92581e7 −0.655490 −0.327745 0.944766i \(-0.606289\pi\)
−0.327745 + 0.944766i \(0.606289\pi\)
\(972\) − 9.39248e7i − 3.18871i
\(973\) 3.30687e6i 0.111979i
\(974\) 4.16646e7 1.40725
\(975\) 0 0
\(976\) 1.37099e7 0.460690
\(977\) − 795487.i − 0.0266622i −0.999911 0.0133311i \(-0.995756\pi\)
0.999911 0.0133311i \(-0.00424355\pi\)
\(978\) 9.38248e7i 3.13668i
\(979\) 633905. 0.0211382
\(980\) 0 0
\(981\) 1.56265e7 0.518429
\(982\) 7.21588e7i 2.38787i
\(983\) 7.51037e6i 0.247901i 0.992288 + 0.123950i \(0.0395563\pi\)
−0.992288 + 0.123950i \(0.960444\pi\)
\(984\) −1.67818e8 −5.52524
\(985\) 0 0
\(986\) 8.01728e7 2.62624
\(987\) − 2.59432e7i − 0.847676i
\(988\) − 1.63521e7i − 0.532942i
\(989\) −220774. −0.00717723
\(990\) 0 0
\(991\) 5.90076e7 1.90864 0.954319 0.298788i \(-0.0965824\pi\)
0.954319 + 0.298788i \(0.0965824\pi\)
\(992\) − 4.13333e6i − 0.133359i
\(993\) 4.90212e7i 1.57765i
\(994\) 3.93664e7 1.26375
\(995\) 0 0
\(996\) −7.71805e7 −2.46524
\(997\) − 4.32622e7i − 1.37839i −0.724577 0.689193i \(-0.757965\pi\)
0.724577 0.689193i \(-0.242035\pi\)
\(998\) − 1.63287e7i − 0.518948i
\(999\) 1.32908e7 0.421345
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.h.274.1 18
5.2 odd 4 325.6.a.i.1.9 yes 9
5.3 odd 4 325.6.a.h.1.1 9
5.4 even 2 inner 325.6.b.h.274.18 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.1 9 5.3 odd 4
325.6.a.i.1.9 yes 9 5.2 odd 4
325.6.b.h.274.1 18 1.1 even 1 trivial
325.6.b.h.274.18 18 5.4 even 2 inner