Properties

Label 325.6.b.g.274.6
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 326x^{10} + 38809x^{8} + 2034064x^{6} + 43897824x^{4} + 281822976x^{2} + 377913600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.6
Root \(-1.34530i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.g.274.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.34530i q^{2} -19.6439i q^{3} +30.1902 q^{4} -26.4269 q^{6} -48.6530i q^{7} -83.6645i q^{8} -142.882 q^{9} +283.440 q^{11} -593.052i q^{12} +169.000i q^{13} -65.4530 q^{14} +853.531 q^{16} -789.522i q^{17} +192.219i q^{18} -83.3795 q^{19} -955.734 q^{21} -381.312i q^{22} -1935.13i q^{23} -1643.49 q^{24} +227.356 q^{26} -1966.71i q^{27} -1468.84i q^{28} -222.752 q^{29} -2789.48 q^{31} -3825.52i q^{32} -5567.86i q^{33} -1062.15 q^{34} -4313.62 q^{36} -8369.56i q^{37} +112.170i q^{38} +3319.81 q^{39} +1218.51 q^{41} +1285.75i q^{42} +5638.89i q^{43} +8557.10 q^{44} -2603.34 q^{46} -17776.2i q^{47} -16766.7i q^{48} +14439.9 q^{49} -15509.3 q^{51} +5102.14i q^{52} +10834.4i q^{53} -2645.82 q^{54} -4070.53 q^{56} +1637.90i q^{57} +299.668i q^{58} +5363.36 q^{59} -18670.7 q^{61} +3752.69i q^{62} +6951.63i q^{63} +22166.5 q^{64} -7490.44 q^{66} -13985.1i q^{67} -23835.8i q^{68} -38013.5 q^{69} +50969.5 q^{71} +11954.1i q^{72} +42394.9i q^{73} -11259.6 q^{74} -2517.24 q^{76} -13790.2i q^{77} -4466.15i q^{78} -106279. q^{79} -73354.1 q^{81} -1639.26i q^{82} +75513.6i q^{83} -28853.8 q^{84} +7586.01 q^{86} +4375.71i q^{87} -23713.8i q^{88} -77017.8 q^{89} +8222.36 q^{91} -58422.0i q^{92} +54796.2i q^{93} -23914.4 q^{94} -75148.0 q^{96} -126702. i q^{97} -19426.0i q^{98} -40498.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 268 q^{4} + 636 q^{6} - 1036 q^{9} - 340 q^{11} + 2880 q^{14} + 7012 q^{16} - 2436 q^{19} - 792 q^{21} - 25236 q^{24} - 16728 q^{29} + 5724 q^{31} + 42968 q^{34} - 4276 q^{36} - 12844 q^{39} + 4496 q^{41}+ \cdots + 64540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.34530i − 0.237818i −0.992905 0.118909i \(-0.962060\pi\)
0.992905 0.118909i \(-0.0379396\pi\)
\(3\) − 19.6439i − 1.26015i −0.776532 0.630077i \(-0.783023\pi\)
0.776532 0.630077i \(-0.216977\pi\)
\(4\) 30.1902 0.943443
\(5\) 0 0
\(6\) −26.4269 −0.299687
\(7\) − 48.6530i − 0.375288i −0.982237 0.187644i \(-0.939915\pi\)
0.982237 0.187644i \(-0.0600851\pi\)
\(8\) − 83.6645i − 0.462185i
\(9\) −142.882 −0.587990
\(10\) 0 0
\(11\) 283.440 0.706284 0.353142 0.935570i \(-0.385113\pi\)
0.353142 + 0.935570i \(0.385113\pi\)
\(12\) − 593.052i − 1.18888i
\(13\) 169.000i 0.277350i
\(14\) −65.4530 −0.0892502
\(15\) 0 0
\(16\) 853.531 0.833527
\(17\) − 789.522i − 0.662586i −0.943528 0.331293i \(-0.892515\pi\)
0.943528 0.331293i \(-0.107485\pi\)
\(18\) 192.219i 0.139835i
\(19\) −83.3795 −0.0529877 −0.0264939 0.999649i \(-0.508434\pi\)
−0.0264939 + 0.999649i \(0.508434\pi\)
\(20\) 0 0
\(21\) −955.734 −0.472921
\(22\) − 381.312i − 0.167967i
\(23\) − 1935.13i − 0.762767i −0.924417 0.381383i \(-0.875448\pi\)
0.924417 0.381383i \(-0.124552\pi\)
\(24\) −1643.49 −0.582425
\(25\) 0 0
\(26\) 227.356 0.0659588
\(27\) − 1966.71i − 0.519196i
\(28\) − 1468.84i − 0.354063i
\(29\) −222.752 −0.0491843 −0.0245922 0.999698i \(-0.507829\pi\)
−0.0245922 + 0.999698i \(0.507829\pi\)
\(30\) 0 0
\(31\) −2789.48 −0.521338 −0.260669 0.965428i \(-0.583943\pi\)
−0.260669 + 0.965428i \(0.583943\pi\)
\(32\) − 3825.52i − 0.660413i
\(33\) − 5567.86i − 0.890027i
\(34\) −1062.15 −0.157575
\(35\) 0 0
\(36\) −4313.62 −0.554735
\(37\) − 8369.56i − 1.00507i −0.864555 0.502537i \(-0.832400\pi\)
0.864555 0.502537i \(-0.167600\pi\)
\(38\) 112.170i 0.0126014i
\(39\) 3319.81 0.349504
\(40\) 0 0
\(41\) 1218.51 0.113206 0.0566029 0.998397i \(-0.481973\pi\)
0.0566029 + 0.998397i \(0.481973\pi\)
\(42\) 1285.75i 0.112469i
\(43\) 5638.89i 0.465075i 0.972587 + 0.232537i \(0.0747028\pi\)
−0.972587 + 0.232537i \(0.925297\pi\)
\(44\) 8557.10 0.666338
\(45\) 0 0
\(46\) −2603.34 −0.181399
\(47\) − 17776.2i − 1.17380i −0.809658 0.586902i \(-0.800348\pi\)
0.809658 0.586902i \(-0.199652\pi\)
\(48\) − 16766.7i − 1.05037i
\(49\) 14439.9 0.859159
\(50\) 0 0
\(51\) −15509.3 −0.834961
\(52\) 5102.14i 0.261664i
\(53\) 10834.4i 0.529803i 0.964275 + 0.264902i \(0.0853395\pi\)
−0.964275 + 0.264902i \(0.914661\pi\)
\(54\) −2645.82 −0.123474
\(55\) 0 0
\(56\) −4070.53 −0.173453
\(57\) 1637.90i 0.0667727i
\(58\) 299.668i 0.0116969i
\(59\) 5363.36 0.200589 0.100295 0.994958i \(-0.468021\pi\)
0.100295 + 0.994958i \(0.468021\pi\)
\(60\) 0 0
\(61\) −18670.7 −0.642445 −0.321222 0.947004i \(-0.604094\pi\)
−0.321222 + 0.947004i \(0.604094\pi\)
\(62\) 3752.69i 0.123983i
\(63\) 6951.63i 0.220666i
\(64\) 22166.5 0.676469
\(65\) 0 0
\(66\) −7490.44 −0.211664
\(67\) − 13985.1i − 0.380607i −0.981725 0.190304i \(-0.939053\pi\)
0.981725 0.190304i \(-0.0609473\pi\)
\(68\) − 23835.8i − 0.625112i
\(69\) −38013.5 −0.961204
\(70\) 0 0
\(71\) 50969.5 1.19995 0.599976 0.800018i \(-0.295177\pi\)
0.599976 + 0.800018i \(0.295177\pi\)
\(72\) 11954.1i 0.271761i
\(73\) 42394.9i 0.931122i 0.885016 + 0.465561i \(0.154147\pi\)
−0.885016 + 0.465561i \(0.845853\pi\)
\(74\) −11259.6 −0.239025
\(75\) 0 0
\(76\) −2517.24 −0.0499909
\(77\) − 13790.2i − 0.265060i
\(78\) − 4466.15i − 0.0831183i
\(79\) −106279. −1.91593 −0.957964 0.286888i \(-0.907379\pi\)
−0.957964 + 0.286888i \(0.907379\pi\)
\(80\) 0 0
\(81\) −73354.1 −1.24226
\(82\) − 1639.26i − 0.0269224i
\(83\) 75513.6i 1.20318i 0.798806 + 0.601589i \(0.205465\pi\)
−0.798806 + 0.601589i \(0.794535\pi\)
\(84\) −28853.8 −0.446174
\(85\) 0 0
\(86\) 7586.01 0.110603
\(87\) 4375.71i 0.0619799i
\(88\) − 23713.8i − 0.326434i
\(89\) −77017.8 −1.03066 −0.515331 0.856991i \(-0.672331\pi\)
−0.515331 + 0.856991i \(0.672331\pi\)
\(90\) 0 0
\(91\) 8222.36 0.104086
\(92\) − 58422.0i − 0.719627i
\(93\) 54796.2i 0.656966i
\(94\) −23914.4 −0.279151
\(95\) 0 0
\(96\) −75148.0 −0.832222
\(97\) − 126702.i − 1.36727i −0.729822 0.683637i \(-0.760397\pi\)
0.729822 0.683637i \(-0.239603\pi\)
\(98\) − 19426.0i − 0.204323i
\(99\) −40498.4 −0.415288
\(100\) 0 0
\(101\) −177513. −1.73151 −0.865757 0.500464i \(-0.833163\pi\)
−0.865757 + 0.500464i \(0.833163\pi\)
\(102\) 20864.6i 0.198569i
\(103\) 149599.i 1.38943i 0.719286 + 0.694714i \(0.244469\pi\)
−0.719286 + 0.694714i \(0.755531\pi\)
\(104\) 14139.3 0.128187
\(105\) 0 0
\(106\) 14575.5 0.125997
\(107\) 111466.i 0.941199i 0.882347 + 0.470600i \(0.155962\pi\)
−0.882347 + 0.470600i \(0.844038\pi\)
\(108\) − 59375.3i − 0.489832i
\(109\) 85200.4 0.686872 0.343436 0.939176i \(-0.388409\pi\)
0.343436 + 0.939176i \(0.388409\pi\)
\(110\) 0 0
\(111\) −164411. −1.26655
\(112\) − 41526.9i − 0.312813i
\(113\) − 204137.i − 1.50392i −0.659208 0.751961i \(-0.729108\pi\)
0.659208 0.751961i \(-0.270892\pi\)
\(114\) 2203.46 0.0158797
\(115\) 0 0
\(116\) −6724.92 −0.0464026
\(117\) − 24147.0i − 0.163079i
\(118\) − 7215.34i − 0.0477037i
\(119\) −38412.7 −0.248661
\(120\) 0 0
\(121\) −80712.8 −0.501163
\(122\) 25117.7i 0.152785i
\(123\) − 23936.2i − 0.142657i
\(124\) −84214.9 −0.491852
\(125\) 0 0
\(126\) 9352.03 0.0524783
\(127\) − 272404.i − 1.49866i −0.662196 0.749331i \(-0.730375\pi\)
0.662196 0.749331i \(-0.269625\pi\)
\(128\) − 152237.i − 0.821289i
\(129\) 110770. 0.586066
\(130\) 0 0
\(131\) 42029.3 0.213980 0.106990 0.994260i \(-0.465879\pi\)
0.106990 + 0.994260i \(0.465879\pi\)
\(132\) − 168095.i − 0.839689i
\(133\) 4056.66i 0.0198857i
\(134\) −18814.1 −0.0905152
\(135\) 0 0
\(136\) −66055.0 −0.306237
\(137\) 56817.3i 0.258630i 0.991604 + 0.129315i \(0.0412779\pi\)
−0.991604 + 0.129315i \(0.958722\pi\)
\(138\) 51139.6i 0.228591i
\(139\) 136297. 0.598342 0.299171 0.954200i \(-0.403290\pi\)
0.299171 + 0.954200i \(0.403290\pi\)
\(140\) 0 0
\(141\) −349194. −1.47917
\(142\) − 68569.3i − 0.285370i
\(143\) 47901.3i 0.195888i
\(144\) −121954. −0.490106
\(145\) 0 0
\(146\) 57033.9 0.221437
\(147\) − 283655.i − 1.08267i
\(148\) − 252678.i − 0.948230i
\(149\) 398843. 1.47176 0.735879 0.677113i \(-0.236769\pi\)
0.735879 + 0.677113i \(0.236769\pi\)
\(150\) 0 0
\(151\) −16131.0 −0.0575730 −0.0287865 0.999586i \(-0.509164\pi\)
−0.0287865 + 0.999586i \(0.509164\pi\)
\(152\) 6975.90i 0.0244901i
\(153\) 112808.i 0.389594i
\(154\) −18552.0 −0.0630360
\(155\) 0 0
\(156\) 100226. 0.329737
\(157\) − 9495.80i − 0.0307456i −0.999882 0.0153728i \(-0.995107\pi\)
0.999882 0.0153728i \(-0.00489350\pi\)
\(158\) 142977.i 0.455642i
\(159\) 212829. 0.667634
\(160\) 0 0
\(161\) −94150.2 −0.286257
\(162\) 98683.3i 0.295431i
\(163\) 439257.i 1.29494i 0.762091 + 0.647469i \(0.224173\pi\)
−0.762091 + 0.647469i \(0.775827\pi\)
\(164\) 36787.0 0.106803
\(165\) 0 0
\(166\) 101588. 0.286137
\(167\) 233417.i 0.647651i 0.946117 + 0.323825i \(0.104969\pi\)
−0.946117 + 0.323825i \(0.895031\pi\)
\(168\) 79961.0i 0.218577i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 11913.4 0.0311563
\(172\) 170239.i 0.438771i
\(173\) 121696.i 0.309144i 0.987982 + 0.154572i \(0.0493999\pi\)
−0.987982 + 0.154572i \(0.950600\pi\)
\(174\) 5886.65 0.0147399
\(175\) 0 0
\(176\) 241925. 0.588706
\(177\) − 105357.i − 0.252773i
\(178\) 103612.i 0.245110i
\(179\) 280901. 0.655271 0.327636 0.944804i \(-0.393748\pi\)
0.327636 + 0.944804i \(0.393748\pi\)
\(180\) 0 0
\(181\) 324458. 0.736142 0.368071 0.929798i \(-0.380018\pi\)
0.368071 + 0.929798i \(0.380018\pi\)
\(182\) − 11061.6i − 0.0247536i
\(183\) 366765.i 0.809580i
\(184\) −161902. −0.352540
\(185\) 0 0
\(186\) 73717.4 0.156238
\(187\) − 223782.i − 0.467974i
\(188\) − 536668.i − 1.10742i
\(189\) −95686.5 −0.194848
\(190\) 0 0
\(191\) 803448. 1.59358 0.796791 0.604256i \(-0.206529\pi\)
0.796791 + 0.604256i \(0.206529\pi\)
\(192\) − 435436.i − 0.852456i
\(193\) − 62706.7i − 0.121177i −0.998163 0.0605886i \(-0.980702\pi\)
0.998163 0.0605886i \(-0.0192978\pi\)
\(194\) −170453. −0.325162
\(195\) 0 0
\(196\) 435942. 0.810567
\(197\) 367605.i 0.674864i 0.941350 + 0.337432i \(0.109558\pi\)
−0.941350 + 0.337432i \(0.890442\pi\)
\(198\) 54482.5i 0.0987629i
\(199\) −860523. −1.54039 −0.770193 0.637810i \(-0.779840\pi\)
−0.770193 + 0.637810i \(0.779840\pi\)
\(200\) 0 0
\(201\) −274721. −0.479624
\(202\) 238808.i 0.411785i
\(203\) 10837.6i 0.0184583i
\(204\) −468228. −0.787738
\(205\) 0 0
\(206\) 201256. 0.330431
\(207\) 276495.i 0.448499i
\(208\) 144247.i 0.231179i
\(209\) −23633.1 −0.0374244
\(210\) 0 0
\(211\) −457688. −0.707723 −0.353861 0.935298i \(-0.615132\pi\)
−0.353861 + 0.935298i \(0.615132\pi\)
\(212\) 327092.i 0.499839i
\(213\) − 1.00124e6i − 1.51213i
\(214\) 149955. 0.223834
\(215\) 0 0
\(216\) −164544. −0.239965
\(217\) 135717.i 0.195652i
\(218\) − 114620.i − 0.163350i
\(219\) 832800. 1.17336
\(220\) 0 0
\(221\) 133429. 0.183768
\(222\) 221182.i 0.301208i
\(223\) − 925567.i − 1.24637i −0.782076 0.623183i \(-0.785839\pi\)
0.782076 0.623183i \(-0.214161\pi\)
\(224\) −186123. −0.247845
\(225\) 0 0
\(226\) −274625. −0.357659
\(227\) 1.54248e6i 1.98681i 0.114679 + 0.993403i \(0.463416\pi\)
−0.114679 + 0.993403i \(0.536584\pi\)
\(228\) 49448.3i 0.0629962i
\(229\) −1.09184e6 −1.37584 −0.687922 0.725784i \(-0.741477\pi\)
−0.687922 + 0.725784i \(0.741477\pi\)
\(230\) 0 0
\(231\) −270893. −0.334017
\(232\) 18636.4i 0.0227323i
\(233\) 141596.i 0.170868i 0.996344 + 0.0854341i \(0.0272277\pi\)
−0.996344 + 0.0854341i \(0.972772\pi\)
\(234\) −32485.0 −0.0387831
\(235\) 0 0
\(236\) 161921. 0.189244
\(237\) 2.08773e6i 2.41437i
\(238\) 51676.6i 0.0591359i
\(239\) 791678. 0.896507 0.448253 0.893906i \(-0.352046\pi\)
0.448253 + 0.893906i \(0.352046\pi\)
\(240\) 0 0
\(241\) 1.39653e6 1.54884 0.774421 0.632671i \(-0.218041\pi\)
0.774421 + 0.632671i \(0.218041\pi\)
\(242\) 108583.i 0.119186i
\(243\) 963047.i 1.04624i
\(244\) −563671. −0.606110
\(245\) 0 0
\(246\) −32201.4 −0.0339264
\(247\) − 14091.1i − 0.0146961i
\(248\) 233380.i 0.240955i
\(249\) 1.48338e6 1.51619
\(250\) 0 0
\(251\) 927565. 0.929309 0.464654 0.885492i \(-0.346179\pi\)
0.464654 + 0.885492i \(0.346179\pi\)
\(252\) 209871.i 0.208186i
\(253\) − 548494.i − 0.538730i
\(254\) −366465. −0.356408
\(255\) 0 0
\(256\) 504524. 0.481152
\(257\) − 1.21697e6i − 1.14934i −0.818385 0.574670i \(-0.805130\pi\)
0.818385 0.574670i \(-0.194870\pi\)
\(258\) − 149019.i − 0.139377i
\(259\) −407205. −0.377193
\(260\) 0 0
\(261\) 31827.2 0.0289199
\(262\) − 56542.0i − 0.0508883i
\(263\) − 188972.i − 0.168464i −0.996446 0.0842321i \(-0.973156\pi\)
0.996446 0.0842321i \(-0.0268437\pi\)
\(264\) −465832. −0.411357
\(265\) 0 0
\(266\) 5457.43 0.00472916
\(267\) 1.51293e6i 1.29879i
\(268\) − 422211.i − 0.359081i
\(269\) 1.68629e6 1.42086 0.710432 0.703766i \(-0.248500\pi\)
0.710432 + 0.703766i \(0.248500\pi\)
\(270\) 0 0
\(271\) 1.71354e6 1.41733 0.708664 0.705546i \(-0.249298\pi\)
0.708664 + 0.705546i \(0.249298\pi\)
\(272\) − 673882.i − 0.552283i
\(273\) − 161519.i − 0.131165i
\(274\) 76436.4 0.0615069
\(275\) 0 0
\(276\) −1.14764e6 −0.906841
\(277\) − 1.51635e6i − 1.18741i −0.804682 0.593706i \(-0.797664\pi\)
0.804682 0.593706i \(-0.202336\pi\)
\(278\) − 183360.i − 0.142296i
\(279\) 398566. 0.306542
\(280\) 0 0
\(281\) 2.01362e6 1.52129 0.760644 0.649169i \(-0.224883\pi\)
0.760644 + 0.649169i \(0.224883\pi\)
\(282\) 469771.i 0.351774i
\(283\) 451062.i 0.334788i 0.985890 + 0.167394i \(0.0535352\pi\)
−0.985890 + 0.167394i \(0.946465\pi\)
\(284\) 1.53878e6 1.13209
\(285\) 0 0
\(286\) 64441.7 0.0465856
\(287\) − 59284.1i − 0.0424848i
\(288\) 546597.i 0.388316i
\(289\) 796511. 0.560980
\(290\) 0 0
\(291\) −2.48893e6 −1.72298
\(292\) 1.27991e6i 0.878460i
\(293\) − 1.60140e6i − 1.08976i −0.838514 0.544879i \(-0.816575\pi\)
0.838514 0.544879i \(-0.183425\pi\)
\(294\) −381602. −0.257479
\(295\) 0 0
\(296\) −700235. −0.464531
\(297\) − 557444.i − 0.366700i
\(298\) − 536564.i − 0.350010i
\(299\) 327038. 0.211553
\(300\) 0 0
\(301\) 274349. 0.174537
\(302\) 21701.0i 0.0136919i
\(303\) 3.48704e6i 2.18198i
\(304\) −71167.0 −0.0441667
\(305\) 0 0
\(306\) 151761. 0.0926524
\(307\) − 3.03553e6i − 1.83818i −0.394046 0.919091i \(-0.628925\pi\)
0.394046 0.919091i \(-0.371075\pi\)
\(308\) − 416329.i − 0.250069i
\(309\) 2.93871e6 1.75089
\(310\) 0 0
\(311\) 1.48427e6 0.870184 0.435092 0.900386i \(-0.356716\pi\)
0.435092 + 0.900386i \(0.356716\pi\)
\(312\) − 277751.i − 0.161536i
\(313\) 1.57466e6i 0.908504i 0.890873 + 0.454252i \(0.150094\pi\)
−0.890873 + 0.454252i \(0.849906\pi\)
\(314\) −12774.7 −0.00731184
\(315\) 0 0
\(316\) −3.20858e6 −1.80757
\(317\) − 2.88960e6i − 1.61507i −0.589822 0.807533i \(-0.700802\pi\)
0.589822 0.807533i \(-0.299198\pi\)
\(318\) − 286319.i − 0.158775i
\(319\) −63136.8 −0.0347381
\(320\) 0 0
\(321\) 2.18962e6 1.18606
\(322\) 126660.i 0.0680771i
\(323\) 65830.0i 0.0351089i
\(324\) −2.21457e6 −1.17200
\(325\) 0 0
\(326\) 590932. 0.307960
\(327\) − 1.67367e6i − 0.865565i
\(328\) − 101946.i − 0.0523221i
\(329\) −864868. −0.440514
\(330\) 0 0
\(331\) 2.93760e6 1.47374 0.736872 0.676032i \(-0.236302\pi\)
0.736872 + 0.676032i \(0.236302\pi\)
\(332\) 2.27977e6i 1.13513i
\(333\) 1.19586e6i 0.590974i
\(334\) 314016. 0.154023
\(335\) 0 0
\(336\) −815749. −0.394192
\(337\) 842611.i 0.404159i 0.979369 + 0.202079i \(0.0647699\pi\)
−0.979369 + 0.202079i \(0.935230\pi\)
\(338\) 38423.1i 0.0182937i
\(339\) −4.01004e6 −1.89517
\(340\) 0 0
\(341\) −790650. −0.368212
\(342\) − 16027.1i − 0.00740951i
\(343\) − 1.52026e6i − 0.697720i
\(344\) 471775. 0.214951
\(345\) 0 0
\(346\) 163718. 0.0735200
\(347\) 719797.i 0.320912i 0.987043 + 0.160456i \(0.0512965\pi\)
−0.987043 + 0.160456i \(0.948703\pi\)
\(348\) 132103.i 0.0584744i
\(349\) 2.28139e6 1.00262 0.501309 0.865269i \(-0.332852\pi\)
0.501309 + 0.865269i \(0.332852\pi\)
\(350\) 0 0
\(351\) 332374. 0.143999
\(352\) − 1.08430e6i − 0.466439i
\(353\) 7769.01i 0.00331840i 0.999999 + 0.00165920i \(0.000528140\pi\)
−0.999999 + 0.00165920i \(0.999472\pi\)
\(354\) −141737. −0.0601140
\(355\) 0 0
\(356\) −2.32518e6 −0.972371
\(357\) 754573.i 0.313351i
\(358\) − 377897.i − 0.155835i
\(359\) −309145. −0.126598 −0.0632989 0.997995i \(-0.520162\pi\)
−0.0632989 + 0.997995i \(0.520162\pi\)
\(360\) 0 0
\(361\) −2.46915e6 −0.997192
\(362\) − 436493.i − 0.175068i
\(363\) 1.58551e6i 0.631543i
\(364\) 248234. 0.0981994
\(365\) 0 0
\(366\) 493409. 0.192533
\(367\) 2.32781e6i 0.902156i 0.892484 + 0.451078i \(0.148960\pi\)
−0.892484 + 0.451078i \(0.851040\pi\)
\(368\) − 1.65170e6i − 0.635786i
\(369\) −174103. −0.0665640
\(370\) 0 0
\(371\) 527126. 0.198829
\(372\) 1.65431e6i 0.619810i
\(373\) − 1.60840e6i − 0.598579i −0.954162 0.299289i \(-0.903250\pi\)
0.954162 0.299289i \(-0.0967496\pi\)
\(374\) −301054. −0.111292
\(375\) 0 0
\(376\) −1.48724e6 −0.542515
\(377\) − 37645.1i − 0.0136413i
\(378\) 128727.i 0.0463383i
\(379\) 473484. 0.169320 0.0846599 0.996410i \(-0.473020\pi\)
0.0846599 + 0.996410i \(0.473020\pi\)
\(380\) 0 0
\(381\) −5.35106e6 −1.88855
\(382\) − 1.08088e6i − 0.378982i
\(383\) 363362.i 0.126574i 0.997995 + 0.0632868i \(0.0201583\pi\)
−0.997995 + 0.0632868i \(0.979842\pi\)
\(384\) −2.99053e6 −1.03495
\(385\) 0 0
\(386\) −84359.4 −0.0288181
\(387\) − 805695.i − 0.273460i
\(388\) − 3.82517e6i − 1.28994i
\(389\) 901091. 0.301922 0.150961 0.988540i \(-0.451763\pi\)
0.150961 + 0.988540i \(0.451763\pi\)
\(390\) 0 0
\(391\) −1.52783e6 −0.505398
\(392\) − 1.20811e6i − 0.397091i
\(393\) − 825618.i − 0.269648i
\(394\) 494539. 0.160495
\(395\) 0 0
\(396\) −1.22265e6 −0.391801
\(397\) 3.36685e6i 1.07213i 0.844177 + 0.536064i \(0.180090\pi\)
−0.844177 + 0.536064i \(0.819910\pi\)
\(398\) 1.15766e6i 0.366331i
\(399\) 79688.6 0.0250590
\(400\) 0 0
\(401\) 1.49612e6 0.464629 0.232315 0.972641i \(-0.425370\pi\)
0.232315 + 0.972641i \(0.425370\pi\)
\(402\) 369582.i 0.114063i
\(403\) − 471422.i − 0.144593i
\(404\) −5.35914e6 −1.63358
\(405\) 0 0
\(406\) 14579.8 0.00438971
\(407\) − 2.37227e6i − 0.709868i
\(408\) 1.29758e6i 0.385907i
\(409\) −1.78884e6 −0.528765 −0.264382 0.964418i \(-0.585168\pi\)
−0.264382 + 0.964418i \(0.585168\pi\)
\(410\) 0 0
\(411\) 1.11611e6 0.325914
\(412\) 4.51642e6i 1.31085i
\(413\) − 260944.i − 0.0752787i
\(414\) 371969. 0.106661
\(415\) 0 0
\(416\) 646513. 0.183166
\(417\) − 2.67740e6i − 0.754003i
\(418\) 31793.6i 0.00890018i
\(419\) −3.06163e6 −0.851956 −0.425978 0.904733i \(-0.640070\pi\)
−0.425978 + 0.904733i \(0.640070\pi\)
\(420\) 0 0
\(421\) −6.32711e6 −1.73980 −0.869901 0.493226i \(-0.835817\pi\)
−0.869901 + 0.493226i \(0.835817\pi\)
\(422\) 615728.i 0.168309i
\(423\) 2.53990e6i 0.690185i
\(424\) 906453. 0.244867
\(425\) 0 0
\(426\) −1.34697e6 −0.359611
\(427\) 908386.i 0.241102i
\(428\) 3.36517e6i 0.887967i
\(429\) 940968. 0.246849
\(430\) 0 0
\(431\) −2.68796e6 −0.696995 −0.348498 0.937310i \(-0.613308\pi\)
−0.348498 + 0.937310i \(0.613308\pi\)
\(432\) − 1.67865e6i − 0.432764i
\(433\) 1.62239e6i 0.415850i 0.978145 + 0.207925i \(0.0666709\pi\)
−0.978145 + 0.207925i \(0.933329\pi\)
\(434\) 182580. 0.0465295
\(435\) 0 0
\(436\) 2.57222e6 0.648024
\(437\) 161351.i 0.0404172i
\(438\) − 1.12037e6i − 0.279045i
\(439\) −6.21478e6 −1.53909 −0.769546 0.638592i \(-0.779517\pi\)
−0.769546 + 0.638592i \(0.779517\pi\)
\(440\) 0 0
\(441\) −2.06319e6 −0.505177
\(442\) − 179503.i − 0.0437034i
\(443\) − 517107.i − 0.125191i −0.998039 0.0625953i \(-0.980062\pi\)
0.998039 0.0625953i \(-0.0199377\pi\)
\(444\) −4.96358e6 −1.19492
\(445\) 0 0
\(446\) −1.24517e6 −0.296408
\(447\) − 7.83482e6i − 1.85464i
\(448\) − 1.07847e6i − 0.253871i
\(449\) 7.08559e6 1.65867 0.829336 0.558750i \(-0.188719\pi\)
0.829336 + 0.558750i \(0.188719\pi\)
\(450\) 0 0
\(451\) 345374. 0.0799555
\(452\) − 6.16292e6i − 1.41886i
\(453\) 316875.i 0.0725509i
\(454\) 2.07510e6 0.472498
\(455\) 0 0
\(456\) 137034. 0.0308614
\(457\) 929335.i 0.208153i 0.994569 + 0.104076i \(0.0331886\pi\)
−0.994569 + 0.104076i \(0.966811\pi\)
\(458\) 1.46885e6i 0.327200i
\(459\) −1.55276e6 −0.344012
\(460\) 0 0
\(461\) 7.91310e6 1.73418 0.867091 0.498150i \(-0.165987\pi\)
0.867091 + 0.498150i \(0.165987\pi\)
\(462\) 364433.i 0.0794351i
\(463\) − 1.60654e6i − 0.348289i −0.984720 0.174144i \(-0.944284\pi\)
0.984720 0.174144i \(-0.0557159\pi\)
\(464\) −190126. −0.0409964
\(465\) 0 0
\(466\) 190489. 0.0406355
\(467\) − 2.57909e6i − 0.547236i −0.961838 0.273618i \(-0.911780\pi\)
0.961838 0.273618i \(-0.0882204\pi\)
\(468\) − 729002.i − 0.153856i
\(469\) −680415. −0.142837
\(470\) 0 0
\(471\) −186534. −0.0387442
\(472\) − 448723.i − 0.0927093i
\(473\) 1.59829e6i 0.328475i
\(474\) 2.80862e6 0.574179
\(475\) 0 0
\(476\) −1.15968e6 −0.234597
\(477\) − 1.54803e6i − 0.311519i
\(478\) − 1.06504e6i − 0.213205i
\(479\) −1.57546e6 −0.313739 −0.156869 0.987619i \(-0.550140\pi\)
−0.156869 + 0.987619i \(0.550140\pi\)
\(480\) 0 0
\(481\) 1.41446e6 0.278758
\(482\) − 1.87875e6i − 0.368342i
\(483\) 1.84947e6i 0.360728i
\(484\) −2.43673e6 −0.472819
\(485\) 0 0
\(486\) 1.29559e6 0.248815
\(487\) 3.52518e6i 0.673534i 0.941588 + 0.336767i \(0.109333\pi\)
−0.941588 + 0.336767i \(0.890667\pi\)
\(488\) 1.56207e6i 0.296929i
\(489\) 8.62870e6 1.63182
\(490\) 0 0
\(491\) −3.53510e6 −0.661756 −0.330878 0.943674i \(-0.607345\pi\)
−0.330878 + 0.943674i \(0.607345\pi\)
\(492\) − 722639.i − 0.134589i
\(493\) 175868.i 0.0325888i
\(494\) −18956.8 −0.00349501
\(495\) 0 0
\(496\) −2.38091e6 −0.434549
\(497\) − 2.47982e6i − 0.450328i
\(498\) − 1.99559e6i − 0.360577i
\(499\) −311968. −0.0560866 −0.0280433 0.999607i \(-0.508928\pi\)
−0.0280433 + 0.999607i \(0.508928\pi\)
\(500\) 0 0
\(501\) 4.58521e6 0.816140
\(502\) − 1.24785e6i − 0.221006i
\(503\) 6.52751e6i 1.15034i 0.818032 + 0.575172i \(0.195065\pi\)
−0.818032 + 0.575172i \(0.804935\pi\)
\(504\) 581604. 0.101989
\(505\) 0 0
\(506\) −737890. −0.128120
\(507\) 561049.i 0.0969350i
\(508\) − 8.22391e6i − 1.41390i
\(509\) 6.28149e6 1.07465 0.537327 0.843374i \(-0.319434\pi\)
0.537327 + 0.843374i \(0.319434\pi\)
\(510\) 0 0
\(511\) 2.06264e6 0.349439
\(512\) − 5.55033e6i − 0.935716i
\(513\) 163983.i 0.0275110i
\(514\) −1.63720e6 −0.273334
\(515\) 0 0
\(516\) 3.34416e6 0.552920
\(517\) − 5.03850e6i − 0.829038i
\(518\) 547813.i 0.0897031i
\(519\) 2.39058e6 0.389569
\(520\) 0 0
\(521\) −7.39635e6 −1.19378 −0.596888 0.802324i \(-0.703596\pi\)
−0.596888 + 0.802324i \(0.703596\pi\)
\(522\) − 42817.1i − 0.00687767i
\(523\) 6.26869e6i 1.00213i 0.865411 + 0.501063i \(0.167057\pi\)
−0.865411 + 0.501063i \(0.832943\pi\)
\(524\) 1.26887e6 0.201878
\(525\) 0 0
\(526\) −254224. −0.0400638
\(527\) 2.20236e6i 0.345431i
\(528\) − 4.75234e6i − 0.741861i
\(529\) 2.69160e6 0.418187
\(530\) 0 0
\(531\) −766327. −0.117944
\(532\) 122471.i 0.0187610i
\(533\) 205928.i 0.0313977i
\(534\) 2.03534e6 0.308876
\(535\) 0 0
\(536\) −1.17005e6 −0.175911
\(537\) − 5.51799e6i − 0.825743i
\(538\) − 2.26857e6i − 0.337907i
\(539\) 4.09284e6 0.606810
\(540\) 0 0
\(541\) −2.81963e6 −0.414189 −0.207095 0.978321i \(-0.566401\pi\)
−0.207095 + 0.978321i \(0.566401\pi\)
\(542\) − 2.30522e6i − 0.337066i
\(543\) − 6.37360e6i − 0.927653i
\(544\) −3.02033e6 −0.437580
\(545\) 0 0
\(546\) −217292. −0.0311933
\(547\) 9.17262e6i 1.31077i 0.755297 + 0.655383i \(0.227493\pi\)
−0.755297 + 0.655383i \(0.772507\pi\)
\(548\) 1.71532e6i 0.244003i
\(549\) 2.66770e6 0.377751
\(550\) 0 0
\(551\) 18572.9 0.00260616
\(552\) 3.18038e6i 0.444254i
\(553\) 5.17079e6i 0.719025i
\(554\) −2.03995e6 −0.282388
\(555\) 0 0
\(556\) 4.11483e6 0.564501
\(557\) 4.27403e6i 0.583713i 0.956462 + 0.291856i \(0.0942730\pi\)
−0.956462 + 0.291856i \(0.905727\pi\)
\(558\) − 536191.i − 0.0729010i
\(559\) −952973. −0.128989
\(560\) 0 0
\(561\) −4.39595e6 −0.589719
\(562\) − 2.70892e6i − 0.361789i
\(563\) 9.29935e6i 1.23646i 0.785995 + 0.618232i \(0.212151\pi\)
−0.785995 + 0.618232i \(0.787849\pi\)
\(564\) −1.05422e7 −1.39552
\(565\) 0 0
\(566\) 606813. 0.0796185
\(567\) 3.56890e6i 0.466205i
\(568\) − 4.26433e6i − 0.554601i
\(569\) 4.10069e6 0.530977 0.265489 0.964114i \(-0.414467\pi\)
0.265489 + 0.964114i \(0.414467\pi\)
\(570\) 0 0
\(571\) −1.03048e7 −1.32267 −0.661334 0.750092i \(-0.730009\pi\)
−0.661334 + 0.750092i \(0.730009\pi\)
\(572\) 1.44615e6i 0.184809i
\(573\) − 1.57828e7i − 2.00816i
\(574\) −79755.0 −0.0101036
\(575\) 0 0
\(576\) −3.16719e6 −0.397757
\(577\) − 2.17391e6i − 0.271833i −0.990720 0.135916i \(-0.956602\pi\)
0.990720 0.135916i \(-0.0433978\pi\)
\(578\) − 1.07155e6i − 0.133411i
\(579\) −1.23180e6 −0.152702
\(580\) 0 0
\(581\) 3.67396e6 0.451538
\(582\) 3.34835e6i 0.409755i
\(583\) 3.07090e6i 0.374191i
\(584\) 3.54695e6 0.430351
\(585\) 0 0
\(586\) −2.15436e6 −0.259164
\(587\) 1.56597e7i 1.87581i 0.346892 + 0.937905i \(0.387237\pi\)
−0.346892 + 0.937905i \(0.612763\pi\)
\(588\) − 8.56360e6i − 1.02144i
\(589\) 232585. 0.0276245
\(590\) 0 0
\(591\) 7.22119e6 0.850433
\(592\) − 7.14368e6i − 0.837757i
\(593\) − 5.51737e6i − 0.644310i −0.946687 0.322155i \(-0.895593\pi\)
0.946687 0.322155i \(-0.104407\pi\)
\(594\) −749930. −0.0872077
\(595\) 0 0
\(596\) 1.20411e7 1.38852
\(597\) 1.69040e7i 1.94113i
\(598\) − 439964.i − 0.0503112i
\(599\) 8.76025e6 0.997584 0.498792 0.866722i \(-0.333777\pi\)
0.498792 + 0.866722i \(0.333777\pi\)
\(600\) 0 0
\(601\) 1.21014e7 1.36662 0.683310 0.730128i \(-0.260540\pi\)
0.683310 + 0.730128i \(0.260540\pi\)
\(602\) − 369082.i − 0.0415080i
\(603\) 1.99821e6i 0.223794i
\(604\) −486997. −0.0543168
\(605\) 0 0
\(606\) 4.69111e6 0.518913
\(607\) 1.29407e7i 1.42556i 0.701388 + 0.712779i \(0.252564\pi\)
−0.701388 + 0.712779i \(0.747436\pi\)
\(608\) 318970.i 0.0349938i
\(609\) 212892. 0.0232603
\(610\) 0 0
\(611\) 3.00418e6 0.325554
\(612\) 3.40570e6i 0.367560i
\(613\) 2.31350e6i 0.248667i 0.992240 + 0.124333i \(0.0396792\pi\)
−0.992240 + 0.124333i \(0.960321\pi\)
\(614\) −4.08370e6 −0.437152
\(615\) 0 0
\(616\) −1.15375e6 −0.122507
\(617\) − 8.53024e6i − 0.902086i −0.892502 0.451043i \(-0.851052\pi\)
0.892502 0.451043i \(-0.148948\pi\)
\(618\) − 3.95344e6i − 0.416394i
\(619\) −8.89321e6 −0.932893 −0.466447 0.884549i \(-0.654466\pi\)
−0.466447 + 0.884549i \(0.654466\pi\)
\(620\) 0 0
\(621\) −3.80585e6 −0.396025
\(622\) − 1.99679e6i − 0.206945i
\(623\) 3.74715e6i 0.386795i
\(624\) 2.83357e6 0.291321
\(625\) 0 0
\(626\) 2.11840e6 0.216059
\(627\) 464245.i 0.0471605i
\(628\) − 286680.i − 0.0290067i
\(629\) −6.60796e6 −0.665948
\(630\) 0 0
\(631\) 1.01842e7 1.01824 0.509122 0.860695i \(-0.329970\pi\)
0.509122 + 0.860695i \(0.329970\pi\)
\(632\) 8.89177e6i 0.885514i
\(633\) 8.99076e6i 0.891840i
\(634\) −3.88739e6 −0.384091
\(635\) 0 0
\(636\) 6.42535e6 0.629874
\(637\) 2.44034e6i 0.238288i
\(638\) 84938.0i 0.00826133i
\(639\) −7.28260e6 −0.705561
\(640\) 0 0
\(641\) −1.30240e7 −1.25198 −0.625991 0.779830i \(-0.715306\pi\)
−0.625991 + 0.779830i \(0.715306\pi\)
\(642\) − 2.94569e6i − 0.282065i
\(643\) − 4.52103e6i − 0.431231i −0.976478 0.215616i \(-0.930824\pi\)
0.976478 0.215616i \(-0.0691758\pi\)
\(644\) −2.84241e6 −0.270067
\(645\) 0 0
\(646\) 88561.1 0.00834952
\(647\) − 2.72009e6i − 0.255459i −0.991809 0.127730i \(-0.959231\pi\)
0.991809 0.127730i \(-0.0407690\pi\)
\(648\) 6.13713e6i 0.574153i
\(649\) 1.52019e6 0.141673
\(650\) 0 0
\(651\) 2.66600e6 0.246552
\(652\) 1.32612e7i 1.22170i
\(653\) 1.83786e7i 1.68667i 0.537389 + 0.843334i \(0.319411\pi\)
−0.537389 + 0.843334i \(0.680589\pi\)
\(654\) −2.25158e6 −0.205847
\(655\) 0 0
\(656\) 1.04004e6 0.0943601
\(657\) − 6.05745e6i − 0.547491i
\(658\) 1.16351e6i 0.104762i
\(659\) 1.39753e7 1.25357 0.626786 0.779192i \(-0.284370\pi\)
0.626786 + 0.779192i \(0.284370\pi\)
\(660\) 0 0
\(661\) 9.05787e6 0.806348 0.403174 0.915123i \(-0.367907\pi\)
0.403174 + 0.915123i \(0.367907\pi\)
\(662\) − 3.95195e6i − 0.350483i
\(663\) − 2.62107e6i − 0.231576i
\(664\) 6.31780e6 0.556091
\(665\) 0 0
\(666\) 1.60879e6 0.140544
\(667\) 431055.i 0.0375161i
\(668\) 7.04689e6i 0.611021i
\(669\) −1.81817e7 −1.57061
\(670\) 0 0
\(671\) −5.29202e6 −0.453748
\(672\) 3.65618e6i 0.312323i
\(673\) 1.68758e7i 1.43624i 0.695919 + 0.718121i \(0.254997\pi\)
−0.695919 + 0.718121i \(0.745003\pi\)
\(674\) 1.13356e6 0.0961162
\(675\) 0 0
\(676\) −862261. −0.0725725
\(677\) − 7.96769e6i − 0.668129i −0.942550 0.334065i \(-0.891580\pi\)
0.942550 0.334065i \(-0.108420\pi\)
\(678\) 5.39470e6i 0.450706i
\(679\) −6.16446e6 −0.513122
\(680\) 0 0
\(681\) 3.03003e7 2.50368
\(682\) 1.06366e6i 0.0875674i
\(683\) − 1.29108e7i − 1.05901i −0.848306 0.529507i \(-0.822377\pi\)
0.848306 0.529507i \(-0.177623\pi\)
\(684\) 359667. 0.0293941
\(685\) 0 0
\(686\) −2.04520e6 −0.165930
\(687\) 2.14479e7i 1.73378i
\(688\) 4.81297e6i 0.387652i
\(689\) −1.83101e6 −0.146941
\(690\) 0 0
\(691\) −1.37987e7 −1.09936 −0.549682 0.835374i \(-0.685251\pi\)
−0.549682 + 0.835374i \(0.685251\pi\)
\(692\) 3.67402e6i 0.291660i
\(693\) 1.97037e6i 0.155853i
\(694\) 968344. 0.0763187
\(695\) 0 0
\(696\) 366092. 0.0286462
\(697\) − 962040.i − 0.0750086i
\(698\) − 3.06915e6i − 0.238440i
\(699\) 2.78149e6 0.215320
\(700\) 0 0
\(701\) −1.54955e6 −0.119099 −0.0595497 0.998225i \(-0.518966\pi\)
−0.0595497 + 0.998225i \(0.518966\pi\)
\(702\) − 447143.i − 0.0342455i
\(703\) 697849.i 0.0532566i
\(704\) 6.28288e6 0.477779
\(705\) 0 0
\(706\) 10451.7 0.000789175 0
\(707\) 8.63653e6i 0.649817i
\(708\) − 3.18075e6i − 0.238477i
\(709\) 1.43383e7 1.07123 0.535614 0.844463i \(-0.320080\pi\)
0.535614 + 0.844463i \(0.320080\pi\)
\(710\) 0 0
\(711\) 1.51853e7 1.12655
\(712\) 6.44366e6i 0.476357i
\(713\) 5.39802e6i 0.397659i
\(714\) 1.01513e6 0.0745204
\(715\) 0 0
\(716\) 8.48046e6 0.618211
\(717\) − 1.55516e7i − 1.12974i
\(718\) 415893.i 0.0301072i
\(719\) 1.37368e7 0.990980 0.495490 0.868614i \(-0.334989\pi\)
0.495490 + 0.868614i \(0.334989\pi\)
\(720\) 0 0
\(721\) 7.27845e6 0.521436
\(722\) 3.32175e6i 0.237150i
\(723\) − 2.74332e7i − 1.95178i
\(724\) 9.79543e6 0.694508
\(725\) 0 0
\(726\) 2.13299e6 0.150192
\(727\) 1.61824e6i 0.113555i 0.998387 + 0.0567776i \(0.0180826\pi\)
−0.998387 + 0.0567776i \(0.981917\pi\)
\(728\) − 687920.i − 0.0481071i
\(729\) 1.09293e6 0.0761684
\(730\) 0 0
\(731\) 4.45203e6 0.308152
\(732\) 1.10727e7i 0.763792i
\(733\) − 1.57329e7i − 1.08156i −0.841165 0.540779i \(-0.818130\pi\)
0.841165 0.540779i \(-0.181870\pi\)
\(734\) 3.13160e6 0.214549
\(735\) 0 0
\(736\) −7.40290e6 −0.503741
\(737\) − 3.96392e6i − 0.268817i
\(738\) 234220.i 0.0158301i
\(739\) 1.62586e6 0.109515 0.0547574 0.998500i \(-0.482561\pi\)
0.0547574 + 0.998500i \(0.482561\pi\)
\(740\) 0 0
\(741\) −276804. −0.0185194
\(742\) − 709142.i − 0.0472850i
\(743\) 1.87162e7i 1.24379i 0.783101 + 0.621894i \(0.213637\pi\)
−0.783101 + 0.621894i \(0.786363\pi\)
\(744\) 4.58449e6 0.303640
\(745\) 0 0
\(746\) −2.16378e6 −0.142353
\(747\) − 1.07895e7i − 0.707457i
\(748\) − 6.75602e6i − 0.441506i
\(749\) 5.42314e6 0.353221
\(750\) 0 0
\(751\) 7.16867e6 0.463809 0.231904 0.972739i \(-0.425504\pi\)
0.231904 + 0.972739i \(0.425504\pi\)
\(752\) − 1.51726e7i − 0.978396i
\(753\) − 1.82210e7i − 1.17107i
\(754\) −50644.0 −0.00324414
\(755\) 0 0
\(756\) −2.88879e6 −0.183828
\(757\) − 2.67712e7i − 1.69796i −0.528422 0.848982i \(-0.677216\pi\)
0.528422 0.848982i \(-0.322784\pi\)
\(758\) − 636979.i − 0.0402673i
\(759\) −1.07746e7 −0.678883
\(760\) 0 0
\(761\) −708017. −0.0443182 −0.0221591 0.999754i \(-0.507054\pi\)
−0.0221591 + 0.999754i \(0.507054\pi\)
\(762\) 7.19879e6i 0.449130i
\(763\) − 4.14526e6i − 0.257775i
\(764\) 2.42562e7 1.50345
\(765\) 0 0
\(766\) 488832. 0.0301014
\(767\) 906409.i 0.0556334i
\(768\) − 9.91081e6i − 0.606326i
\(769\) −1.72011e7 −1.04891 −0.524456 0.851437i \(-0.675731\pi\)
−0.524456 + 0.851437i \(0.675731\pi\)
\(770\) 0 0
\(771\) −2.39061e7 −1.44835
\(772\) − 1.89313e6i − 0.114324i
\(773\) 7.85325e6i 0.472716i 0.971666 + 0.236358i \(0.0759539\pi\)
−0.971666 + 0.236358i \(0.924046\pi\)
\(774\) −1.08390e6 −0.0650336
\(775\) 0 0
\(776\) −1.06005e7 −0.631934
\(777\) 7.99907e6i 0.475321i
\(778\) − 1.21224e6i − 0.0718024i
\(779\) −101599. −0.00599852
\(780\) 0 0
\(781\) 1.44468e7 0.847507
\(782\) 2.05539e6i 0.120193i
\(783\) 438089.i 0.0255363i
\(784\) 1.23249e7 0.716132
\(785\) 0 0
\(786\) −1.11070e6 −0.0641272
\(787\) − 2.05200e7i − 1.18097i −0.807047 0.590487i \(-0.798936\pi\)
0.807047 0.590487i \(-0.201064\pi\)
\(788\) 1.10981e7i 0.636695i
\(789\) −3.71214e6 −0.212291
\(790\) 0 0
\(791\) −9.93187e6 −0.564404
\(792\) 3.38827e6i 0.191940i
\(793\) − 3.15535e6i − 0.178182i
\(794\) 4.52942e6 0.254971
\(795\) 0 0
\(796\) −2.59793e7 −1.45327
\(797\) 2.57349e7i 1.43508i 0.696517 + 0.717540i \(0.254732\pi\)
−0.696517 + 0.717540i \(0.745268\pi\)
\(798\) − 107205.i − 0.00595948i
\(799\) −1.40347e7 −0.777745
\(800\) 0 0
\(801\) 1.10044e7 0.606019
\(802\) − 2.01274e6i − 0.110497i
\(803\) 1.20164e7i 0.657636i
\(804\) −8.29386e6 −0.452498
\(805\) 0 0
\(806\) −634205. −0.0343868
\(807\) − 3.31253e7i − 1.79051i
\(808\) 1.48515e7i 0.800280i
\(809\) 1.45330e7 0.780699 0.390350 0.920667i \(-0.372354\pi\)
0.390350 + 0.920667i \(0.372354\pi\)
\(810\) 0 0
\(811\) 1.60281e6 0.0855717 0.0427858 0.999084i \(-0.486377\pi\)
0.0427858 + 0.999084i \(0.486377\pi\)
\(812\) 327188.i 0.0174143i
\(813\) − 3.36605e7i − 1.78605i
\(814\) −3.19141e6 −0.168819
\(815\) 0 0
\(816\) −1.32377e7 −0.695962
\(817\) − 470168.i − 0.0246432i
\(818\) 2.40652e6i 0.125750i
\(819\) −1.17482e6 −0.0612017
\(820\) 0 0
\(821\) 1.22945e6 0.0636579 0.0318289 0.999493i \(-0.489867\pi\)
0.0318289 + 0.999493i \(0.489867\pi\)
\(822\) − 1.50151e6i − 0.0775082i
\(823\) − 260323.i − 0.0133972i −0.999978 0.00669859i \(-0.997868\pi\)
0.999978 0.00669859i \(-0.00213224\pi\)
\(824\) 1.25161e7 0.642173
\(825\) 0 0
\(826\) −351048. −0.0179026
\(827\) − 1.33246e7i − 0.677471i −0.940882 0.338736i \(-0.890001\pi\)
0.940882 0.338736i \(-0.109999\pi\)
\(828\) 8.34744e6i 0.423134i
\(829\) −3.52026e7 −1.77905 −0.889526 0.456885i \(-0.848965\pi\)
−0.889526 + 0.456885i \(0.848965\pi\)
\(830\) 0 0
\(831\) −2.97871e7 −1.49632
\(832\) 3.74614e6i 0.187619i
\(833\) − 1.14006e7i − 0.569267i
\(834\) −3.60191e6 −0.179315
\(835\) 0 0
\(836\) −713486. −0.0353077
\(837\) 5.48610e6i 0.270676i
\(838\) 4.11881e6i 0.202610i
\(839\) 3.45100e7 1.69255 0.846273 0.532750i \(-0.178841\pi\)
0.846273 + 0.532750i \(0.178841\pi\)
\(840\) 0 0
\(841\) −2.04615e7 −0.997581
\(842\) 8.51186e6i 0.413756i
\(843\) − 3.95553e7i − 1.91706i
\(844\) −1.38177e7 −0.667696
\(845\) 0 0
\(846\) 3.41693e6 0.164138
\(847\) 3.92692e6i 0.188081i
\(848\) 9.24749e6i 0.441605i
\(849\) 8.86059e6 0.421885
\(850\) 0 0
\(851\) −1.61962e7 −0.766637
\(852\) − 3.02275e7i − 1.42660i
\(853\) − 1.67507e7i − 0.788245i −0.919058 0.394122i \(-0.871049\pi\)
0.919058 0.394122i \(-0.128951\pi\)
\(854\) 1.22205e6 0.0573383
\(855\) 0 0
\(856\) 9.32571e6 0.435008
\(857\) 2.15120e6i 0.100053i 0.998748 + 0.0500264i \(0.0159306\pi\)
−0.998748 + 0.0500264i \(0.984069\pi\)
\(858\) − 1.26588e6i − 0.0587051i
\(859\) −1.66088e7 −0.767991 −0.383996 0.923335i \(-0.625452\pi\)
−0.383996 + 0.923335i \(0.625452\pi\)
\(860\) 0 0
\(861\) −1.16457e6 −0.0535374
\(862\) 3.61612e6i 0.165758i
\(863\) − 2.71816e7i − 1.24236i −0.783667 0.621181i \(-0.786653\pi\)
0.783667 0.621181i \(-0.213347\pi\)
\(864\) −7.52369e6 −0.342884
\(865\) 0 0
\(866\) 2.18261e6 0.0988965
\(867\) − 1.56466e7i − 0.706922i
\(868\) 4.09731e6i 0.184586i
\(869\) −3.01237e7 −1.35319
\(870\) 0 0
\(871\) 2.36347e6 0.105562
\(872\) − 7.12825e6i − 0.317462i
\(873\) 1.81035e7i 0.803944i
\(874\) 217065. 0.00961194
\(875\) 0 0
\(876\) 2.51424e7 1.10700
\(877\) − 1.52455e6i − 0.0669333i −0.999440 0.0334667i \(-0.989345\pi\)
0.999440 0.0334667i \(-0.0106548\pi\)
\(878\) 8.36075e6i 0.366023i
\(879\) −3.14577e7 −1.37326
\(880\) 0 0
\(881\) 2.77728e7 1.20554 0.602769 0.797916i \(-0.294064\pi\)
0.602769 + 0.797916i \(0.294064\pi\)
\(882\) 2.77562e6i 0.120140i
\(883\) 3.15964e7i 1.36376i 0.731466 + 0.681878i \(0.238836\pi\)
−0.731466 + 0.681878i \(0.761164\pi\)
\(884\) 4.02825e6 0.173375
\(885\) 0 0
\(886\) −695665. −0.0297725
\(887\) − 9.17500e6i − 0.391559i −0.980648 0.195780i \(-0.937276\pi\)
0.980648 0.195780i \(-0.0627237\pi\)
\(888\) 1.37553e7i 0.585381i
\(889\) −1.32533e7 −0.562430
\(890\) 0 0
\(891\) −2.07915e7 −0.877386
\(892\) − 2.79430e7i − 1.17588i
\(893\) 1.48217e6i 0.0621971i
\(894\) −1.05402e7 −0.441067
\(895\) 0 0
\(896\) −7.40681e6 −0.308220
\(897\) − 6.42429e6i − 0.266590i
\(898\) − 9.53226e6i − 0.394462i
\(899\) 621362. 0.0256416
\(900\) 0 0
\(901\) 8.55399e6 0.351040
\(902\) − 464632.i − 0.0190148i
\(903\) − 5.38928e6i − 0.219944i
\(904\) −1.70790e7 −0.695090
\(905\) 0 0
\(906\) 426292. 0.0172539
\(907\) 1.42674e7i 0.575874i 0.957649 + 0.287937i \(0.0929694\pi\)
−0.957649 + 0.287937i \(0.907031\pi\)
\(908\) 4.65678e7i 1.87444i
\(909\) 2.53633e7 1.01811
\(910\) 0 0
\(911\) 3.34037e7 1.33352 0.666759 0.745273i \(-0.267681\pi\)
0.666759 + 0.745273i \(0.267681\pi\)
\(912\) 1.39800e6i 0.0556568i
\(913\) 2.14036e7i 0.849785i
\(914\) 1.25024e6 0.0495024
\(915\) 0 0
\(916\) −3.29628e7 −1.29803
\(917\) − 2.04485e6i − 0.0803042i
\(918\) 2.08893e6i 0.0818121i
\(919\) −4.52117e7 −1.76588 −0.882942 0.469482i \(-0.844441\pi\)
−0.882942 + 0.469482i \(0.844441\pi\)
\(920\) 0 0
\(921\) −5.96295e7 −2.31639
\(922\) − 1.06455e7i − 0.412419i
\(923\) 8.61384e6i 0.332807i
\(924\) −8.17831e6 −0.315125
\(925\) 0 0
\(926\) −2.16128e6 −0.0828292
\(927\) − 2.13750e7i − 0.816970i
\(928\) 852142.i 0.0324819i
\(929\) 517735. 0.0196820 0.00984098 0.999952i \(-0.496867\pi\)
0.00984098 + 0.999952i \(0.496867\pi\)
\(930\) 0 0
\(931\) −1.20399e6 −0.0455249
\(932\) 4.27481e6i 0.161204i
\(933\) − 2.91567e7i − 1.09657i
\(934\) −3.46965e6 −0.130142
\(935\) 0 0
\(936\) −2.02025e6 −0.0753728
\(937\) 2.58406e7i 0.961508i 0.876856 + 0.480754i \(0.159637\pi\)
−0.876856 + 0.480754i \(0.840363\pi\)
\(938\) 915363.i 0.0339693i
\(939\) 3.09325e7 1.14486
\(940\) 0 0
\(941\) 4.58537e7 1.68811 0.844053 0.536259i \(-0.180163\pi\)
0.844053 + 0.536259i \(0.180163\pi\)
\(942\) 250945.i 0.00921405i
\(943\) − 2.35798e6i − 0.0863496i
\(944\) 4.57780e6 0.167196
\(945\) 0 0
\(946\) 2.15018e6 0.0781172
\(947\) − 604846.i − 0.0219164i −0.999940 0.0109582i \(-0.996512\pi\)
0.999940 0.0109582i \(-0.00348818\pi\)
\(948\) 6.30289e7i 2.27782i
\(949\) −7.16474e6 −0.258247
\(950\) 0 0
\(951\) −5.67630e7 −2.03523
\(952\) 3.21378e6i 0.114927i
\(953\) 3.20607e7i 1.14351i 0.820424 + 0.571755i \(0.193737\pi\)
−0.820424 + 0.571755i \(0.806263\pi\)
\(954\) −2.08257e6 −0.0740848
\(955\) 0 0
\(956\) 2.39009e7 0.845803
\(957\) 1.24025e6i 0.0437754i
\(958\) 2.11947e6i 0.0746127i
\(959\) 2.76434e6 0.0970609
\(960\) 0 0
\(961\) −2.08480e7 −0.728207
\(962\) − 1.90287e6i − 0.0662935i
\(963\) − 1.59264e7i − 0.553416i
\(964\) 4.21614e7 1.46124
\(965\) 0 0
\(966\) 2.48810e6 0.0857877
\(967\) 3.19660e7i 1.09931i 0.835391 + 0.549657i \(0.185242\pi\)
−0.835391 + 0.549657i \(0.814758\pi\)
\(968\) 6.75280e6i 0.231630i
\(969\) 1.29316e6 0.0442427
\(970\) 0 0
\(971\) −5.47040e7 −1.86196 −0.930982 0.365066i \(-0.881046\pi\)
−0.930982 + 0.365066i \(0.881046\pi\)
\(972\) 2.90746e7i 0.987069i
\(973\) − 6.63126e6i − 0.224551i
\(974\) 4.74243e6 0.160178
\(975\) 0 0
\(976\) −1.59360e7 −0.535495
\(977\) 3.12938e7i 1.04887i 0.851450 + 0.524436i \(0.175724\pi\)
−0.851450 + 0.524436i \(0.824276\pi\)
\(978\) − 1.16082e7i − 0.388077i
\(979\) −2.18299e7 −0.727940
\(980\) 0 0
\(981\) −1.21736e7 −0.403874
\(982\) 4.75577e6i 0.157377i
\(983\) 1.21142e7i 0.399863i 0.979810 + 0.199932i \(0.0640720\pi\)
−0.979810 + 0.199932i \(0.935928\pi\)
\(984\) −2.00261e6 −0.0659339
\(985\) 0 0
\(986\) 236595. 0.00775020
\(987\) 1.69894e7i 0.555116i
\(988\) − 425414.i − 0.0138650i
\(989\) 1.09120e7 0.354744
\(990\) 0 0
\(991\) −2.58041e7 −0.834650 −0.417325 0.908757i \(-0.637032\pi\)
−0.417325 + 0.908757i \(0.637032\pi\)
\(992\) 1.06712e7i 0.344298i
\(993\) − 5.77058e7i − 1.85715i
\(994\) −3.33610e6 −0.107096
\(995\) 0 0
\(996\) 4.47835e7 1.43044
\(997\) − 4.21820e7i − 1.34397i −0.740566 0.671984i \(-0.765442\pi\)
0.740566 0.671984i \(-0.234558\pi\)
\(998\) 419691.i 0.0133384i
\(999\) −1.64605e7 −0.521831
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.g.274.6 12
5.2 odd 4 65.6.a.d.1.4 6
5.3 odd 4 325.6.a.g.1.3 6
5.4 even 2 inner 325.6.b.g.274.7 12
15.2 even 4 585.6.a.m.1.3 6
20.7 even 4 1040.6.a.q.1.6 6
65.12 odd 4 845.6.a.h.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.4 6 5.2 odd 4
325.6.a.g.1.3 6 5.3 odd 4
325.6.b.g.274.6 12 1.1 even 1 trivial
325.6.b.g.274.7 12 5.4 even 2 inner
585.6.a.m.1.3 6 15.2 even 4
845.6.a.h.1.3 6 65.12 odd 4
1040.6.a.q.1.6 6 20.7 even 4