Properties

Label 325.6.b.g.274.4
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 326x^{10} + 38809x^{8} + 2034064x^{6} + 43897824x^{4} + 281822976x^{2} + 377913600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.4
Root \(-5.93318i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.g.274.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.93318i q^{2} +7.05430i q^{3} -3.20258 q^{4} +41.8544 q^{6} -185.746i q^{7} -170.860i q^{8} +193.237 q^{9} -353.912 q^{11} -22.5920i q^{12} -169.000i q^{13} -1102.06 q^{14} -1116.23 q^{16} +634.652i q^{17} -1146.51i q^{18} -1118.29 q^{19} +1310.31 q^{21} +2099.83i q^{22} -3509.85i q^{23} +1205.30 q^{24} -1002.71 q^{26} +3077.35i q^{27} +594.867i q^{28} +3765.67 q^{29} +2906.63 q^{31} +1155.24i q^{32} -2496.60i q^{33} +3765.50 q^{34} -618.857 q^{36} +283.305i q^{37} +6635.04i q^{38} +1192.18 q^{39} -13563.6 q^{41} -7774.29i q^{42} +5184.47i q^{43} +1133.43 q^{44} -20824.6 q^{46} -6781.50i q^{47} -7874.19i q^{48} -17694.6 q^{49} -4477.03 q^{51} +541.237i q^{52} -7664.43i q^{53} +18258.4 q^{54} -31736.6 q^{56} -7888.78i q^{57} -22342.4i q^{58} -2806.29 q^{59} -13764.7 q^{61} -17245.5i q^{62} -35893.0i q^{63} -28865.0 q^{64} -14812.8 q^{66} +67744.1i q^{67} -2032.53i q^{68} +24759.5 q^{69} -66519.0 q^{71} -33016.5i q^{72} -75902.7i q^{73} +1680.90 q^{74} +3581.43 q^{76} +65737.9i q^{77} -7073.39i q^{78} -101641. q^{79} +25248.0 q^{81} +80475.1i q^{82} +50882.7i q^{83} -4196.37 q^{84} +30760.4 q^{86} +26564.2i q^{87} +60469.5i q^{88} +52439.2 q^{89} -31391.1 q^{91} +11240.6i q^{92} +20504.2i q^{93} -40235.8 q^{94} -8149.42 q^{96} -142557. i q^{97} +104985. i q^{98} -68388.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 268 q^{4} + 636 q^{6} - 1036 q^{9} - 340 q^{11} + 2880 q^{14} + 7012 q^{16} - 2436 q^{19} - 792 q^{21} - 25236 q^{24} - 16728 q^{29} + 5724 q^{31} + 42968 q^{34} - 4276 q^{36} - 12844 q^{39} + 4496 q^{41}+ \cdots + 64540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 5.93318i − 1.04885i −0.851457 0.524424i \(-0.824281\pi\)
0.851457 0.524424i \(-0.175719\pi\)
\(3\) 7.05430i 0.452534i 0.974065 + 0.226267i \(0.0726521\pi\)
−0.974065 + 0.226267i \(0.927348\pi\)
\(4\) −3.20258 −0.100081
\(5\) 0 0
\(6\) 41.8544 0.474639
\(7\) − 185.746i − 1.43276i −0.697708 0.716382i \(-0.745797\pi\)
0.697708 0.716382i \(-0.254203\pi\)
\(8\) − 170.860i − 0.943878i
\(9\) 193.237 0.795213
\(10\) 0 0
\(11\) −353.912 −0.881889 −0.440945 0.897534i \(-0.645357\pi\)
−0.440945 + 0.897534i \(0.645357\pi\)
\(12\) − 22.5920i − 0.0452899i
\(13\) − 169.000i − 0.277350i
\(14\) −1102.06 −1.50275
\(15\) 0 0
\(16\) −1116.23 −1.09006
\(17\) 634.652i 0.532615i 0.963888 + 0.266308i \(0.0858037\pi\)
−0.963888 + 0.266308i \(0.914196\pi\)
\(18\) − 1146.51i − 0.834057i
\(19\) −1118.29 −0.710677 −0.355338 0.934738i \(-0.615634\pi\)
−0.355338 + 0.934738i \(0.615634\pi\)
\(20\) 0 0
\(21\) 1310.31 0.648374
\(22\) 2099.83i 0.924967i
\(23\) − 3509.85i − 1.38347i −0.722153 0.691734i \(-0.756847\pi\)
0.722153 0.691734i \(-0.243153\pi\)
\(24\) 1205.30 0.427136
\(25\) 0 0
\(26\) −1002.71 −0.290898
\(27\) 3077.35i 0.812394i
\(28\) 594.867i 0.143392i
\(29\) 3765.67 0.831471 0.415735 0.909486i \(-0.363524\pi\)
0.415735 + 0.909486i \(0.363524\pi\)
\(30\) 0 0
\(31\) 2906.63 0.543232 0.271616 0.962406i \(-0.412442\pi\)
0.271616 + 0.962406i \(0.412442\pi\)
\(32\) 1155.24i 0.199433i
\(33\) − 2496.60i − 0.399085i
\(34\) 3765.50 0.558632
\(35\) 0 0
\(36\) −618.857 −0.0795855
\(37\) 283.305i 0.0340213i 0.999855 + 0.0170106i \(0.00541491\pi\)
−0.999855 + 0.0170106i \(0.994585\pi\)
\(38\) 6635.04i 0.745391i
\(39\) 1192.18 0.125510
\(40\) 0 0
\(41\) −13563.6 −1.26013 −0.630064 0.776544i \(-0.716971\pi\)
−0.630064 + 0.776544i \(0.716971\pi\)
\(42\) − 7774.29i − 0.680045i
\(43\) 5184.47i 0.427596i 0.976878 + 0.213798i \(0.0685834\pi\)
−0.976878 + 0.213798i \(0.931417\pi\)
\(44\) 1133.43 0.0882601
\(45\) 0 0
\(46\) −20824.6 −1.45105
\(47\) − 6781.50i − 0.447797i −0.974612 0.223898i \(-0.928122\pi\)
0.974612 0.223898i \(-0.0718784\pi\)
\(48\) − 7874.19i − 0.493291i
\(49\) −17694.6 −1.05281
\(50\) 0 0
\(51\) −4477.03 −0.241026
\(52\) 541.237i 0.0277574i
\(53\) − 7664.43i − 0.374792i −0.982284 0.187396i \(-0.939995\pi\)
0.982284 0.187396i \(-0.0600048\pi\)
\(54\) 18258.4 0.852078
\(55\) 0 0
\(56\) −31736.6 −1.35235
\(57\) − 7888.78i − 0.321605i
\(58\) − 22342.4i − 0.872086i
\(59\) −2806.29 −0.104955 −0.0524773 0.998622i \(-0.516712\pi\)
−0.0524773 + 0.998622i \(0.516712\pi\)
\(60\) 0 0
\(61\) −13764.7 −0.473634 −0.236817 0.971554i \(-0.576104\pi\)
−0.236817 + 0.971554i \(0.576104\pi\)
\(62\) − 17245.5i − 0.569768i
\(63\) − 35893.0i − 1.13935i
\(64\) −28865.0 −0.880889
\(65\) 0 0
\(66\) −14812.8 −0.418579
\(67\) 67744.1i 1.84368i 0.387576 + 0.921838i \(0.373313\pi\)
−0.387576 + 0.921838i \(0.626687\pi\)
\(68\) − 2032.53i − 0.0533045i
\(69\) 24759.5 0.626065
\(70\) 0 0
\(71\) −66519.0 −1.56603 −0.783014 0.622004i \(-0.786319\pi\)
−0.783014 + 0.622004i \(0.786319\pi\)
\(72\) − 33016.5i − 0.750584i
\(73\) − 75902.7i − 1.66706i −0.552478 0.833528i \(-0.686318\pi\)
0.552478 0.833528i \(-0.313682\pi\)
\(74\) 1680.90 0.0356831
\(75\) 0 0
\(76\) 3581.43 0.0711250
\(77\) 65737.9i 1.26354i
\(78\) − 7073.39i − 0.131641i
\(79\) −101641. −1.83233 −0.916163 0.400806i \(-0.868730\pi\)
−0.916163 + 0.400806i \(0.868730\pi\)
\(80\) 0 0
\(81\) 25248.0 0.427578
\(82\) 80475.1i 1.32168i
\(83\) 50882.7i 0.810727i 0.914156 + 0.405363i \(0.132855\pi\)
−0.914156 + 0.405363i \(0.867145\pi\)
\(84\) −4196.37 −0.0648897
\(85\) 0 0
\(86\) 30760.4 0.448483
\(87\) 26564.2i 0.376269i
\(88\) 60469.5i 0.832396i
\(89\) 52439.2 0.701748 0.350874 0.936423i \(-0.385885\pi\)
0.350874 + 0.936423i \(0.385885\pi\)
\(90\) 0 0
\(91\) −31391.1 −0.397377
\(92\) 11240.6i 0.138458i
\(93\) 20504.2i 0.245831i
\(94\) −40235.8 −0.469671
\(95\) 0 0
\(96\) −8149.42 −0.0902503
\(97\) − 142557.i − 1.53837i −0.639028 0.769183i \(-0.720663\pi\)
0.639028 0.769183i \(-0.279337\pi\)
\(98\) 104985.i 1.10424i
\(99\) −68388.9 −0.701290
\(100\) 0 0
\(101\) 4751.74 0.0463499 0.0231750 0.999731i \(-0.492623\pi\)
0.0231750 + 0.999731i \(0.492623\pi\)
\(102\) 26563.0i 0.252800i
\(103\) 59290.6i 0.550672i 0.961348 + 0.275336i \(0.0887890\pi\)
−0.961348 + 0.275336i \(0.911211\pi\)
\(104\) −28875.4 −0.261785
\(105\) 0 0
\(106\) −45474.4 −0.393100
\(107\) 157927.i 1.33351i 0.745276 + 0.666756i \(0.232318\pi\)
−0.745276 + 0.666756i \(0.767682\pi\)
\(108\) − 9855.46i − 0.0813050i
\(109\) −58878.4 −0.474668 −0.237334 0.971428i \(-0.576274\pi\)
−0.237334 + 0.971428i \(0.576274\pi\)
\(110\) 0 0
\(111\) −1998.52 −0.0153958
\(112\) 207335.i 1.56180i
\(113\) − 179734.i − 1.32414i −0.749443 0.662069i \(-0.769678\pi\)
0.749443 0.662069i \(-0.230322\pi\)
\(114\) −46805.5 −0.337315
\(115\) 0 0
\(116\) −12059.9 −0.0832142
\(117\) − 32657.0i − 0.220553i
\(118\) 16650.2i 0.110081i
\(119\) 117884. 0.763112
\(120\) 0 0
\(121\) −35797.0 −0.222271
\(122\) 81668.5i 0.496770i
\(123\) − 95681.5i − 0.570250i
\(124\) −9308.72 −0.0543671
\(125\) 0 0
\(126\) −212959. −1.19501
\(127\) − 123741.i − 0.680774i −0.940286 0.340387i \(-0.889442\pi\)
0.940286 0.340387i \(-0.110558\pi\)
\(128\) 208229.i 1.12335i
\(129\) −36572.8 −0.193501
\(130\) 0 0
\(131\) −43205.0 −0.219966 −0.109983 0.993933i \(-0.535080\pi\)
−0.109983 + 0.993933i \(0.535080\pi\)
\(132\) 7995.58i 0.0399407i
\(133\) 207719.i 1.01823i
\(134\) 401938. 1.93373
\(135\) 0 0
\(136\) 108437. 0.502724
\(137\) − 188517.i − 0.858120i −0.903276 0.429060i \(-0.858845\pi\)
0.903276 0.429060i \(-0.141155\pi\)
\(138\) − 146903.i − 0.656647i
\(139\) −344148. −1.51081 −0.755403 0.655260i \(-0.772559\pi\)
−0.755403 + 0.655260i \(0.772559\pi\)
\(140\) 0 0
\(141\) 47838.7 0.202643
\(142\) 394669.i 1.64253i
\(143\) 59811.2i 0.244592i
\(144\) −215696. −0.866834
\(145\) 0 0
\(146\) −450344. −1.74849
\(147\) − 124823.i − 0.476433i
\(148\) − 907.309i − 0.00340487i
\(149\) 177809. 0.656126 0.328063 0.944656i \(-0.393604\pi\)
0.328063 + 0.944656i \(0.393604\pi\)
\(150\) 0 0
\(151\) 554784. 1.98008 0.990038 0.140803i \(-0.0449685\pi\)
0.990038 + 0.140803i \(0.0449685\pi\)
\(152\) 191072.i 0.670792i
\(153\) 122638.i 0.423543i
\(154\) 390034. 1.32526
\(155\) 0 0
\(156\) −3818.05 −0.0125612
\(157\) 255896.i 0.828542i 0.910154 + 0.414271i \(0.135963\pi\)
−0.910154 + 0.414271i \(0.864037\pi\)
\(158\) 603056.i 1.92183i
\(159\) 54067.2 0.169606
\(160\) 0 0
\(161\) −651941. −1.98218
\(162\) − 149801.i − 0.448464i
\(163\) 262686.i 0.774404i 0.921995 + 0.387202i \(0.126558\pi\)
−0.921995 + 0.387202i \(0.873442\pi\)
\(164\) 43438.5 0.126114
\(165\) 0 0
\(166\) 301896. 0.850329
\(167\) 287069.i 0.796517i 0.917273 + 0.398259i \(0.130385\pi\)
−0.917273 + 0.398259i \(0.869615\pi\)
\(168\) − 223880.i − 0.611986i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −216096. −0.565140
\(172\) − 16603.7i − 0.0427941i
\(173\) − 719663.i − 1.82816i −0.405534 0.914080i \(-0.632915\pi\)
0.405534 0.914080i \(-0.367085\pi\)
\(174\) 157610. 0.394648
\(175\) 0 0
\(176\) 395046. 0.961316
\(177\) − 19796.4i − 0.0474955i
\(178\) − 311131.i − 0.736026i
\(179\) −779772. −1.81901 −0.909505 0.415693i \(-0.863539\pi\)
−0.909505 + 0.415693i \(0.863539\pi\)
\(180\) 0 0
\(181\) 336065. 0.762478 0.381239 0.924477i \(-0.375498\pi\)
0.381239 + 0.924477i \(0.375498\pi\)
\(182\) 186249.i 0.416788i
\(183\) − 97100.5i − 0.214335i
\(184\) −599693. −1.30582
\(185\) 0 0
\(186\) 121655. 0.257839
\(187\) − 224611.i − 0.469708i
\(188\) 21718.3i 0.0448158i
\(189\) 571605. 1.16397
\(190\) 0 0
\(191\) 409479. 0.812173 0.406086 0.913835i \(-0.366893\pi\)
0.406086 + 0.913835i \(0.366893\pi\)
\(192\) − 203622.i − 0.398632i
\(193\) − 339565.i − 0.656189i −0.944645 0.328095i \(-0.893593\pi\)
0.944645 0.328095i \(-0.106407\pi\)
\(194\) −845817. −1.61351
\(195\) 0 0
\(196\) 56668.4 0.105366
\(197\) − 871469.i − 1.59988i −0.600082 0.799938i \(-0.704865\pi\)
0.600082 0.799938i \(-0.295135\pi\)
\(198\) 405764.i 0.735546i
\(199\) −270952. −0.485019 −0.242510 0.970149i \(-0.577971\pi\)
−0.242510 + 0.970149i \(0.577971\pi\)
\(200\) 0 0
\(201\) −477887. −0.834325
\(202\) − 28192.9i − 0.0486140i
\(203\) − 699458.i − 1.19130i
\(204\) 14338.1 0.0241221
\(205\) 0 0
\(206\) 351781. 0.577570
\(207\) − 678232.i − 1.10015i
\(208\) 188642.i 0.302330i
\(209\) 395778. 0.626738
\(210\) 0 0
\(211\) 181455. 0.280583 0.140292 0.990110i \(-0.455196\pi\)
0.140292 + 0.990110i \(0.455196\pi\)
\(212\) 24546.0i 0.0375095i
\(213\) − 469245.i − 0.708681i
\(214\) 937009. 1.39865
\(215\) 0 0
\(216\) 525796. 0.766801
\(217\) − 539895.i − 0.778323i
\(218\) 349336.i 0.497854i
\(219\) 535440. 0.754398
\(220\) 0 0
\(221\) 107256. 0.147721
\(222\) 11857.6i 0.0161478i
\(223\) − 1.38761e6i − 1.86855i −0.356552 0.934276i \(-0.616048\pi\)
0.356552 0.934276i \(-0.383952\pi\)
\(224\) 214582. 0.285741
\(225\) 0 0
\(226\) −1.06639e6 −1.38882
\(227\) − 690397.i − 0.889271i −0.895711 0.444636i \(-0.853333\pi\)
0.895711 0.444636i \(-0.146667\pi\)
\(228\) 25264.5i 0.0321865i
\(229\) 1.38257e6 1.74221 0.871104 0.491099i \(-0.163405\pi\)
0.871104 + 0.491099i \(0.163405\pi\)
\(230\) 0 0
\(231\) −463735. −0.571794
\(232\) − 643403.i − 0.784807i
\(233\) 71911.6i 0.0867780i 0.999058 + 0.0433890i \(0.0138155\pi\)
−0.999058 + 0.0433890i \(0.986185\pi\)
\(234\) −193760. −0.231326
\(235\) 0 0
\(236\) 8987.36 0.0105039
\(237\) − 717009.i − 0.829189i
\(238\) − 699427.i − 0.800387i
\(239\) 825442. 0.934743 0.467371 0.884061i \(-0.345201\pi\)
0.467371 + 0.884061i \(0.345201\pi\)
\(240\) 0 0
\(241\) −615086. −0.682171 −0.341086 0.940032i \(-0.610795\pi\)
−0.341086 + 0.940032i \(0.610795\pi\)
\(242\) 212390.i 0.233128i
\(243\) 925902.i 1.00589i
\(244\) 44082.7 0.0474016
\(245\) 0 0
\(246\) −567695. −0.598105
\(247\) 188992.i 0.197106i
\(248\) − 496627.i − 0.512745i
\(249\) −358942. −0.366881
\(250\) 0 0
\(251\) 622589. 0.623759 0.311879 0.950122i \(-0.399041\pi\)
0.311879 + 0.950122i \(0.399041\pi\)
\(252\) 114950.i 0.114027i
\(253\) 1.24218e6i 1.22007i
\(254\) −734174. −0.714028
\(255\) 0 0
\(256\) 311779. 0.297335
\(257\) − 1.04334e6i − 0.985359i −0.870211 0.492680i \(-0.836017\pi\)
0.870211 0.492680i \(-0.163983\pi\)
\(258\) 216993.i 0.202953i
\(259\) 52622.9 0.0487444
\(260\) 0 0
\(261\) 727666. 0.661197
\(262\) 256343.i 0.230711i
\(263\) 1.31940e6i 1.17621i 0.808784 + 0.588106i \(0.200126\pi\)
−0.808784 + 0.588106i \(0.799874\pi\)
\(264\) −426570. −0.376687
\(265\) 0 0
\(266\) 1.23243e6 1.06797
\(267\) 369922.i 0.317564i
\(268\) − 216956.i − 0.184516i
\(269\) −369633. −0.311452 −0.155726 0.987800i \(-0.549772\pi\)
−0.155726 + 0.987800i \(0.549772\pi\)
\(270\) 0 0
\(271\) 749291. 0.619765 0.309883 0.950775i \(-0.399710\pi\)
0.309883 + 0.950775i \(0.399710\pi\)
\(272\) − 708415.i − 0.580585i
\(273\) − 221442.i − 0.179826i
\(274\) −1.11850e6 −0.900037
\(275\) 0 0
\(276\) −79294.5 −0.0626571
\(277\) 1.64757e6i 1.29016i 0.764114 + 0.645081i \(0.223176\pi\)
−0.764114 + 0.645081i \(0.776824\pi\)
\(278\) 2.04189e6i 1.58461i
\(279\) 561668. 0.431986
\(280\) 0 0
\(281\) 1.21917e6 0.921080 0.460540 0.887639i \(-0.347656\pi\)
0.460540 + 0.887639i \(0.347656\pi\)
\(282\) − 283836.i − 0.212542i
\(283\) 997517.i 0.740379i 0.928956 + 0.370190i \(0.120707\pi\)
−0.928956 + 0.370190i \(0.879293\pi\)
\(284\) 213033. 0.156729
\(285\) 0 0
\(286\) 354870. 0.256540
\(287\) 2.51938e6i 1.80546i
\(288\) 223235.i 0.158592i
\(289\) 1.01707e6 0.716321
\(290\) 0 0
\(291\) 1.00564e6 0.696162
\(292\) 243085.i 0.166840i
\(293\) − 1.80793e6i − 1.23031i −0.788408 0.615153i \(-0.789094\pi\)
0.788408 0.615153i \(-0.210906\pi\)
\(294\) −740597. −0.499705
\(295\) 0 0
\(296\) 48405.6 0.0321119
\(297\) − 1.08911e6i − 0.716442i
\(298\) − 1.05497e6i − 0.688176i
\(299\) −593165. −0.383705
\(300\) 0 0
\(301\) 962995. 0.612644
\(302\) − 3.29163e6i − 2.07680i
\(303\) 33520.2i 0.0209749i
\(304\) 1.24827e6 0.774683
\(305\) 0 0
\(306\) 727634. 0.444232
\(307\) − 24494.5i − 0.0148328i −0.999972 0.00741638i \(-0.997639\pi\)
0.999972 0.00741638i \(-0.00236073\pi\)
\(308\) − 210531.i − 0.126456i
\(309\) −418254. −0.249197
\(310\) 0 0
\(311\) 1.48212e6 0.868924 0.434462 0.900690i \(-0.356939\pi\)
0.434462 + 0.900690i \(0.356939\pi\)
\(312\) − 203695.i − 0.118466i
\(313\) 348766.i 0.201221i 0.994926 + 0.100611i \(0.0320796\pi\)
−0.994926 + 0.100611i \(0.967920\pi\)
\(314\) 1.51828e6 0.869014
\(315\) 0 0
\(316\) 325515. 0.183380
\(317\) − 406486.i − 0.227194i −0.993527 0.113597i \(-0.963763\pi\)
0.993527 0.113597i \(-0.0362373\pi\)
\(318\) − 320790.i − 0.177891i
\(319\) −1.33272e6 −0.733265
\(320\) 0 0
\(321\) −1.11406e6 −0.603459
\(322\) 3.86808e6i 2.07901i
\(323\) − 709728.i − 0.378517i
\(324\) −80858.9 −0.0427923
\(325\) 0 0
\(326\) 1.55856e6 0.812231
\(327\) − 415346.i − 0.214803i
\(328\) 2.31747e6i 1.18941i
\(329\) −1.25964e6 −0.641587
\(330\) 0 0
\(331\) 1.58614e6 0.795743 0.397871 0.917441i \(-0.369749\pi\)
0.397871 + 0.917441i \(0.369749\pi\)
\(332\) − 162956.i − 0.0811381i
\(333\) 54745.0i 0.0270542i
\(334\) 1.70323e6 0.835425
\(335\) 0 0
\(336\) −1.46260e6 −0.706769
\(337\) 2.43587e6i 1.16837i 0.811621 + 0.584185i \(0.198586\pi\)
−0.811621 + 0.584185i \(0.801414\pi\)
\(338\) 169457.i 0.0806806i
\(339\) 1.26790e6 0.599217
\(340\) 0 0
\(341\) −1.02869e6 −0.479071
\(342\) 1.28213e6i 0.592745i
\(343\) 164869.i 0.0756664i
\(344\) 885820. 0.403598
\(345\) 0 0
\(346\) −4.26989e6 −1.91746
\(347\) − 1.17786e6i − 0.525132i −0.964914 0.262566i \(-0.915431\pi\)
0.964914 0.262566i \(-0.0845687\pi\)
\(348\) − 85073.9i − 0.0376572i
\(349\) 338854. 0.148919 0.0744594 0.997224i \(-0.476277\pi\)
0.0744594 + 0.997224i \(0.476277\pi\)
\(350\) 0 0
\(351\) 520071. 0.225318
\(352\) − 408854.i − 0.175878i
\(353\) − 3.25607e6i − 1.39077i −0.718635 0.695387i \(-0.755233\pi\)
0.718635 0.695387i \(-0.244767\pi\)
\(354\) −117455. −0.0498156
\(355\) 0 0
\(356\) −167941. −0.0702314
\(357\) 831590.i 0.345334i
\(358\) 4.62652e6i 1.90786i
\(359\) −2.81818e6 −1.15407 −0.577036 0.816719i \(-0.695791\pi\)
−0.577036 + 0.816719i \(0.695791\pi\)
\(360\) 0 0
\(361\) −1.22552e6 −0.494939
\(362\) − 1.99393e6i − 0.799723i
\(363\) − 252522.i − 0.100585i
\(364\) 100533. 0.0397698
\(365\) 0 0
\(366\) −576114. −0.224805
\(367\) 3.09661e6i 1.20011i 0.799958 + 0.600056i \(0.204855\pi\)
−0.799958 + 0.600056i \(0.795145\pi\)
\(368\) 3.91779e6i 1.50807i
\(369\) −2.62098e6 −1.00207
\(370\) 0 0
\(371\) −1.42364e6 −0.536988
\(372\) − 65666.5i − 0.0246029i
\(373\) 4.21455e6i 1.56848i 0.620457 + 0.784240i \(0.286947\pi\)
−0.620457 + 0.784240i \(0.713053\pi\)
\(374\) −1.33266e6 −0.492652
\(375\) 0 0
\(376\) −1.15869e6 −0.422666
\(377\) − 636398.i − 0.230609i
\(378\) − 3.39143e6i − 1.22083i
\(379\) 1.26649e6 0.452903 0.226452 0.974022i \(-0.427288\pi\)
0.226452 + 0.974022i \(0.427288\pi\)
\(380\) 0 0
\(381\) 872903. 0.308073
\(382\) − 2.42951e6i − 0.851845i
\(383\) − 5.66939e6i − 1.97487i −0.158017 0.987436i \(-0.550510\pi\)
0.158017 0.987436i \(-0.449490\pi\)
\(384\) −1.46891e6 −0.508354
\(385\) 0 0
\(386\) −2.01470e6 −0.688242
\(387\) 1.00183e6i 0.340030i
\(388\) 456551.i 0.153961i
\(389\) 5.49114e6 1.83988 0.919938 0.392063i \(-0.128238\pi\)
0.919938 + 0.392063i \(0.128238\pi\)
\(390\) 0 0
\(391\) 2.22753e6 0.736856
\(392\) 3.02330e6i 0.993726i
\(393\) − 304781.i − 0.0995420i
\(394\) −5.17058e6 −1.67803
\(395\) 0 0
\(396\) 219021. 0.0701856
\(397\) − 1.53688e6i − 0.489398i −0.969599 0.244699i \(-0.921311\pi\)
0.969599 0.244699i \(-0.0786892\pi\)
\(398\) 1.60760e6i 0.508711i
\(399\) −1.46531e6 −0.460784
\(400\) 0 0
\(401\) 30028.4 0.00932547 0.00466273 0.999989i \(-0.498516\pi\)
0.00466273 + 0.999989i \(0.498516\pi\)
\(402\) 2.83539e6i 0.875080i
\(403\) − 491220.i − 0.150666i
\(404\) −15217.8 −0.00463873
\(405\) 0 0
\(406\) −4.15001e6 −1.24949
\(407\) − 100265.i − 0.0300030i
\(408\) 764946.i 0.227499i
\(409\) 5.54413e6 1.63880 0.819398 0.573225i \(-0.194308\pi\)
0.819398 + 0.573225i \(0.194308\pi\)
\(410\) 0 0
\(411\) 1.32985e6 0.388328
\(412\) − 189883.i − 0.0551116i
\(413\) 521257.i 0.150375i
\(414\) −4.02407e6 −1.15389
\(415\) 0 0
\(416\) 195236. 0.0553129
\(417\) − 2.42773e6i − 0.683691i
\(418\) − 2.34822e6i − 0.657353i
\(419\) 1.29360e6 0.359968 0.179984 0.983670i \(-0.442395\pi\)
0.179984 + 0.983670i \(0.442395\pi\)
\(420\) 0 0
\(421\) −3.68620e6 −1.01362 −0.506809 0.862058i \(-0.669175\pi\)
−0.506809 + 0.862058i \(0.669175\pi\)
\(422\) − 1.07660e6i − 0.294289i
\(423\) − 1.31044e6i − 0.356094i
\(424\) −1.30955e6 −0.353758
\(425\) 0 0
\(426\) −2.78411e6 −0.743298
\(427\) 2.55674e6i 0.678606i
\(428\) − 505774.i − 0.133459i
\(429\) −421926. −0.110686
\(430\) 0 0
\(431\) 1.22645e6 0.318021 0.159010 0.987277i \(-0.449170\pi\)
0.159010 + 0.987277i \(0.449170\pi\)
\(432\) − 3.43501e6i − 0.885562i
\(433\) − 1.02459e6i − 0.262621i −0.991341 0.131311i \(-0.958081\pi\)
0.991341 0.131311i \(-0.0419185\pi\)
\(434\) −3.20329e6 −0.816342
\(435\) 0 0
\(436\) 188563. 0.0475051
\(437\) 3.92504e6i 0.983198i
\(438\) − 3.17686e6i − 0.791249i
\(439\) 5.04951e6 1.25051 0.625256 0.780420i \(-0.284995\pi\)
0.625256 + 0.780420i \(0.284995\pi\)
\(440\) 0 0
\(441\) −3.41925e6 −0.837210
\(442\) − 636370.i − 0.154937i
\(443\) − 6.30848e6i − 1.52727i −0.645649 0.763634i \(-0.723413\pi\)
0.645649 0.763634i \(-0.276587\pi\)
\(444\) 6400.43 0.00154082
\(445\) 0 0
\(446\) −8.23293e6 −1.95983
\(447\) 1.25432e6i 0.296919i
\(448\) 5.36156e6i 1.26211i
\(449\) −1.16391e6 −0.272461 −0.136231 0.990677i \(-0.543499\pi\)
−0.136231 + 0.990677i \(0.543499\pi\)
\(450\) 0 0
\(451\) 4.80032e6 1.11129
\(452\) 575612.i 0.132521i
\(453\) 3.91361e6i 0.896050i
\(454\) −4.09625e6 −0.932710
\(455\) 0 0
\(456\) −1.34788e6 −0.303556
\(457\) 1.48156e6i 0.331840i 0.986139 + 0.165920i \(0.0530594\pi\)
−0.986139 + 0.165920i \(0.946941\pi\)
\(458\) − 8.20306e6i − 1.82731i
\(459\) −1.95304e6 −0.432693
\(460\) 0 0
\(461\) −5.65392e6 −1.23908 −0.619538 0.784967i \(-0.712680\pi\)
−0.619538 + 0.784967i \(0.712680\pi\)
\(462\) 2.75142e6i 0.599724i
\(463\) − 2.09215e6i − 0.453566i −0.973945 0.226783i \(-0.927179\pi\)
0.973945 0.226783i \(-0.0728208\pi\)
\(464\) −4.20334e6 −0.906357
\(465\) 0 0
\(466\) 426664. 0.0910168
\(467\) − 7.48481e6i − 1.58814i −0.607827 0.794069i \(-0.707959\pi\)
0.607827 0.794069i \(-0.292041\pi\)
\(468\) 104587.i 0.0220731i
\(469\) 1.25832e7 2.64155
\(470\) 0 0
\(471\) −1.80517e6 −0.374943
\(472\) 479482.i 0.0990644i
\(473\) − 1.83485e6i − 0.377092i
\(474\) −4.25414e6 −0.869693
\(475\) 0 0
\(476\) −377534. −0.0763728
\(477\) − 1.48105e6i − 0.298040i
\(478\) − 4.89750e6i − 0.980402i
\(479\) −2.54779e6 −0.507371 −0.253685 0.967287i \(-0.581643\pi\)
−0.253685 + 0.967287i \(0.581643\pi\)
\(480\) 0 0
\(481\) 47878.6 0.00943580
\(482\) 3.64941e6i 0.715493i
\(483\) − 4.59899e6i − 0.897004i
\(484\) 114643. 0.0222450
\(485\) 0 0
\(486\) 5.49354e6 1.05502
\(487\) 3.67779e6i 0.702692i 0.936246 + 0.351346i \(0.114276\pi\)
−0.936246 + 0.351346i \(0.885724\pi\)
\(488\) 2.35184e6i 0.447053i
\(489\) −1.85306e6 −0.350444
\(490\) 0 0
\(491\) −7.23294e6 −1.35398 −0.676988 0.735994i \(-0.736715\pi\)
−0.676988 + 0.735994i \(0.736715\pi\)
\(492\) 306428.i 0.0570710i
\(493\) 2.38989e6i 0.442854i
\(494\) 1.12132e6 0.206734
\(495\) 0 0
\(496\) −3.24446e6 −0.592158
\(497\) 1.23556e7i 2.24375i
\(498\) 2.12966e6i 0.384802i
\(499\) −875124. −0.157332 −0.0786662 0.996901i \(-0.525066\pi\)
−0.0786662 + 0.996901i \(0.525066\pi\)
\(500\) 0 0
\(501\) −2.02507e6 −0.360451
\(502\) − 3.69393e6i − 0.654228i
\(503\) 2.95982e6i 0.521609i 0.965392 + 0.260805i \(0.0839878\pi\)
−0.965392 + 0.260805i \(0.916012\pi\)
\(504\) −6.13268e6 −1.07541
\(505\) 0 0
\(506\) 7.37007e6 1.27966
\(507\) − 201478.i − 0.0348103i
\(508\) 396289.i 0.0681323i
\(509\) 1.12208e7 1.91968 0.959842 0.280540i \(-0.0905134\pi\)
0.959842 + 0.280540i \(0.0905134\pi\)
\(510\) 0 0
\(511\) −1.40986e7 −2.38850
\(512\) 4.81348e6i 0.811493i
\(513\) − 3.44138e6i − 0.577350i
\(514\) −6.19034e6 −1.03349
\(515\) 0 0
\(516\) 117128. 0.0193658
\(517\) 2.40006e6i 0.394907i
\(518\) − 312221.i − 0.0511255i
\(519\) 5.07672e6 0.827304
\(520\) 0 0
\(521\) 8.92586e6 1.44064 0.720321 0.693641i \(-0.243995\pi\)
0.720321 + 0.693641i \(0.243995\pi\)
\(522\) − 4.31737e6i − 0.693495i
\(523\) − 6.44897e6i − 1.03095i −0.856906 0.515473i \(-0.827616\pi\)
0.856906 0.515473i \(-0.172384\pi\)
\(524\) 138368. 0.0220144
\(525\) 0 0
\(526\) 7.82821e6 1.23367
\(527\) 1.84470e6i 0.289334i
\(528\) 2.78678e6i 0.435028i
\(529\) −5.88270e6 −0.913982
\(530\) 0 0
\(531\) −542278. −0.0834614
\(532\) − 665237.i − 0.101905i
\(533\) 2.29224e6i 0.349496i
\(534\) 2.19481e6 0.333077
\(535\) 0 0
\(536\) 1.15748e7 1.74020
\(537\) − 5.50075e6i − 0.823163i
\(538\) 2.19310e6i 0.326665i
\(539\) 6.26234e6 0.928463
\(540\) 0 0
\(541\) 6.01652e6 0.883796 0.441898 0.897065i \(-0.354305\pi\)
0.441898 + 0.897065i \(0.354305\pi\)
\(542\) − 4.44567e6i − 0.650039i
\(543\) 2.37071e6i 0.345047i
\(544\) −733177. −0.106221
\(545\) 0 0
\(546\) −1.31386e6 −0.188611
\(547\) 928354.i 0.132662i 0.997798 + 0.0663308i \(0.0211293\pi\)
−0.997798 + 0.0663308i \(0.978871\pi\)
\(548\) 603740.i 0.0858813i
\(549\) −2.65985e6 −0.376640
\(550\) 0 0
\(551\) −4.21113e6 −0.590907
\(552\) − 4.23042e6i − 0.590929i
\(553\) 1.88795e7i 2.62529i
\(554\) 9.77532e6 1.35318
\(555\) 0 0
\(556\) 1.10216e6 0.151203
\(557\) 652347.i 0.0890924i 0.999007 + 0.0445462i \(0.0141842\pi\)
−0.999007 + 0.0445462i \(0.985816\pi\)
\(558\) − 3.33248e6i − 0.453087i
\(559\) 876176. 0.118594
\(560\) 0 0
\(561\) 1.58448e6 0.212558
\(562\) − 7.23353e6i − 0.966072i
\(563\) 992674.i 0.131988i 0.997820 + 0.0659942i \(0.0210219\pi\)
−0.997820 + 0.0659942i \(0.978978\pi\)
\(564\) −153208. −0.0202807
\(565\) 0 0
\(566\) 5.91844e6 0.776545
\(567\) − 4.68972e6i − 0.612618i
\(568\) 1.13654e7i 1.47814i
\(569\) −8.79703e6 −1.13908 −0.569541 0.821963i \(-0.692879\pi\)
−0.569541 + 0.821963i \(0.692879\pi\)
\(570\) 0 0
\(571\) −6.18261e6 −0.793563 −0.396782 0.917913i \(-0.629873\pi\)
−0.396782 + 0.917913i \(0.629873\pi\)
\(572\) − 191550.i − 0.0244790i
\(573\) 2.88859e6i 0.367535i
\(574\) 1.49479e7 1.89366
\(575\) 0 0
\(576\) −5.57778e6 −0.700495
\(577\) 1.42671e7i 1.78401i 0.452030 + 0.892003i \(0.350700\pi\)
−0.452030 + 0.892003i \(0.649300\pi\)
\(578\) − 6.03448e6i − 0.751312i
\(579\) 2.39539e6 0.296948
\(580\) 0 0
\(581\) 9.45125e6 1.16158
\(582\) − 5.96665e6i − 0.730168i
\(583\) 2.71254e6i 0.330525i
\(584\) −1.29687e7 −1.57350
\(585\) 0 0
\(586\) −1.07268e7 −1.29040
\(587\) − 7.84422e6i − 0.939625i −0.882766 0.469812i \(-0.844322\pi\)
0.882766 0.469812i \(-0.155678\pi\)
\(588\) 399756.i 0.0476817i
\(589\) −3.25047e6 −0.386062
\(590\) 0 0
\(591\) 6.14761e6 0.723998
\(592\) − 316233.i − 0.0370854i
\(593\) 1.85555e6i 0.216689i 0.994113 + 0.108344i \(0.0345550\pi\)
−0.994113 + 0.108344i \(0.965445\pi\)
\(594\) −6.46189e6 −0.751438
\(595\) 0 0
\(596\) −569447. −0.0656656
\(597\) − 1.91137e6i − 0.219487i
\(598\) 3.51935e6i 0.402448i
\(599\) 1.54479e7 1.75915 0.879573 0.475764i \(-0.157828\pi\)
0.879573 + 0.475764i \(0.157828\pi\)
\(600\) 0 0
\(601\) 431785. 0.0487619 0.0243810 0.999703i \(-0.492239\pi\)
0.0243810 + 0.999703i \(0.492239\pi\)
\(602\) − 5.71362e6i − 0.642570i
\(603\) 1.30907e7i 1.46612i
\(604\) −1.77674e6 −0.198167
\(605\) 0 0
\(606\) 198881. 0.0219995
\(607\) 1.21071e7i 1.33373i 0.745180 + 0.666863i \(0.232363\pi\)
−0.745180 + 0.666863i \(0.767637\pi\)
\(608\) − 1.29190e6i − 0.141733i
\(609\) 4.93419e6 0.539104
\(610\) 0 0
\(611\) −1.14607e6 −0.124197
\(612\) − 392759.i − 0.0423885i
\(613\) − 9.44151e6i − 1.01482i −0.861704 0.507411i \(-0.830602\pi\)
0.861704 0.507411i \(-0.169398\pi\)
\(614\) −145330. −0.0155573
\(615\) 0 0
\(616\) 1.12320e7 1.19263
\(617\) − 9.98389e6i − 1.05581i −0.849303 0.527906i \(-0.822977\pi\)
0.849303 0.527906i \(-0.177023\pi\)
\(618\) 2.48157e6i 0.261370i
\(619\) 6.44689e6 0.676275 0.338138 0.941097i \(-0.390203\pi\)
0.338138 + 0.941097i \(0.390203\pi\)
\(620\) 0 0
\(621\) 1.08010e7 1.12392
\(622\) − 8.79367e6i − 0.911369i
\(623\) − 9.74037e6i − 1.00544i
\(624\) −1.33074e6 −0.136814
\(625\) 0 0
\(626\) 2.06929e6 0.211050
\(627\) 2.79194e6i 0.283620i
\(628\) − 819528.i − 0.0829211i
\(629\) −179800. −0.0181202
\(630\) 0 0
\(631\) 4.35897e6 0.435823 0.217912 0.975969i \(-0.430076\pi\)
0.217912 + 0.975969i \(0.430076\pi\)
\(632\) 1.73665e7i 1.72949i
\(633\) 1.28003e6i 0.126973i
\(634\) −2.41176e6 −0.238292
\(635\) 0 0
\(636\) −173155. −0.0169743
\(637\) 2.99039e6i 0.291997i
\(638\) 7.90725e6i 0.769084i
\(639\) −1.28539e7 −1.24533
\(640\) 0 0
\(641\) 1.63272e7 1.56952 0.784758 0.619803i \(-0.212787\pi\)
0.784758 + 0.619803i \(0.212787\pi\)
\(642\) 6.60994e6i 0.632936i
\(643\) − 1.31929e7i − 1.25838i −0.777250 0.629192i \(-0.783386\pi\)
0.777250 0.629192i \(-0.216614\pi\)
\(644\) 2.08789e6 0.198378
\(645\) 0 0
\(646\) −4.21094e6 −0.397007
\(647\) − 9.42830e6i − 0.885468i −0.896653 0.442734i \(-0.854009\pi\)
0.896653 0.442734i \(-0.145991\pi\)
\(648\) − 4.31388e6i − 0.403581i
\(649\) 993180. 0.0925584
\(650\) 0 0
\(651\) 3.80858e6 0.352217
\(652\) − 841273.i − 0.0775029i
\(653\) − 1.60701e7i − 1.47481i −0.675450 0.737406i \(-0.736050\pi\)
0.675450 0.737406i \(-0.263950\pi\)
\(654\) −2.46432e6 −0.225296
\(655\) 0 0
\(656\) 1.51400e7 1.37362
\(657\) − 1.46672e7i − 1.32566i
\(658\) 7.47365e6i 0.672927i
\(659\) −6.63639e6 −0.595276 −0.297638 0.954679i \(-0.596199\pi\)
−0.297638 + 0.954679i \(0.596199\pi\)
\(660\) 0 0
\(661\) 2.01198e7 1.79110 0.895552 0.444956i \(-0.146781\pi\)
0.895552 + 0.444956i \(0.146781\pi\)
\(662\) − 9.41087e6i − 0.834613i
\(663\) 756618.i 0.0668486i
\(664\) 8.69382e6 0.765227
\(665\) 0 0
\(666\) 324812. 0.0283757
\(667\) − 1.32169e7i − 1.15031i
\(668\) − 919363.i − 0.0797160i
\(669\) 9.78861e6 0.845582
\(670\) 0 0
\(671\) 4.87151e6 0.417693
\(672\) 1.51372e6i 0.129307i
\(673\) 9.52533e6i 0.810667i 0.914169 + 0.405334i \(0.132845\pi\)
−0.914169 + 0.405334i \(0.867155\pi\)
\(674\) 1.44525e7 1.22544
\(675\) 0 0
\(676\) 91469.0 0.00769852
\(677\) − 3.37825e6i − 0.283283i −0.989918 0.141641i \(-0.954762\pi\)
0.989918 0.141641i \(-0.0452380\pi\)
\(678\) − 7.52265e6i − 0.628487i
\(679\) −2.64794e7 −2.20412
\(680\) 0 0
\(681\) 4.87027e6 0.402425
\(682\) 6.10341e6i 0.502472i
\(683\) 8.86253e6i 0.726953i 0.931603 + 0.363476i \(0.118410\pi\)
−0.931603 + 0.363476i \(0.881590\pi\)
\(684\) 692064. 0.0565596
\(685\) 0 0
\(686\) 978195. 0.0793625
\(687\) 9.75310e6i 0.788407i
\(688\) − 5.78704e6i − 0.466107i
\(689\) −1.29529e6 −0.103949
\(690\) 0 0
\(691\) 25025.8 0.00199385 0.000996925 1.00000i \(-0.499683\pi\)
0.000996925 1.00000i \(0.499683\pi\)
\(692\) 2.30478e6i 0.182964i
\(693\) 1.27030e7i 1.00478i
\(694\) −6.98842e6 −0.550783
\(695\) 0 0
\(696\) 4.53876e6 0.355152
\(697\) − 8.60815e6i − 0.671163i
\(698\) − 2.01048e6i − 0.156193i
\(699\) −507286. −0.0392699
\(700\) 0 0
\(701\) −2.15506e7 −1.65640 −0.828198 0.560436i \(-0.810634\pi\)
−0.828198 + 0.560436i \(0.810634\pi\)
\(702\) − 3.08568e6i − 0.236324i
\(703\) − 316819.i − 0.0241781i
\(704\) 1.02157e7 0.776847
\(705\) 0 0
\(706\) −1.93188e7 −1.45871
\(707\) − 882617.i − 0.0664085i
\(708\) 63399.6i 0.00475339i
\(709\) −2.07938e7 −1.55352 −0.776761 0.629796i \(-0.783139\pi\)
−0.776761 + 0.629796i \(0.783139\pi\)
\(710\) 0 0
\(711\) −1.96409e7 −1.45709
\(712\) − 8.95977e6i − 0.662364i
\(713\) − 1.02018e7i − 0.751544i
\(714\) 4.93397e6 0.362202
\(715\) 0 0
\(716\) 2.49728e6 0.182048
\(717\) 5.82292e6i 0.423002i
\(718\) 1.67208e7i 1.21045i
\(719\) 3.65717e6 0.263829 0.131915 0.991261i \(-0.457887\pi\)
0.131915 + 0.991261i \(0.457887\pi\)
\(720\) 0 0
\(721\) 1.10130e7 0.788982
\(722\) 7.27121e6i 0.519115i
\(723\) − 4.33900e6i − 0.308705i
\(724\) −1.07628e6 −0.0763093
\(725\) 0 0
\(726\) −1.49826e6 −0.105498
\(727\) − 8.36880e6i − 0.587256i −0.955920 0.293628i \(-0.905137\pi\)
0.955920 0.293628i \(-0.0948626\pi\)
\(728\) 5.36349e6i 0.375075i
\(729\) −396319. −0.0276202
\(730\) 0 0
\(731\) −3.29034e6 −0.227744
\(732\) 310972.i 0.0214508i
\(733\) − 1.81111e7i − 1.24504i −0.782602 0.622522i \(-0.786108\pi\)
0.782602 0.622522i \(-0.213892\pi\)
\(734\) 1.83727e7 1.25873
\(735\) 0 0
\(736\) 4.05472e6 0.275910
\(737\) − 2.39755e7i − 1.62592i
\(738\) 1.55507e7i 1.05102i
\(739\) −7.31705e6 −0.492861 −0.246431 0.969160i \(-0.579258\pi\)
−0.246431 + 0.969160i \(0.579258\pi\)
\(740\) 0 0
\(741\) −1.33320e6 −0.0891972
\(742\) 8.44670e6i 0.563219i
\(743\) − 1.04179e7i − 0.692322i −0.938175 0.346161i \(-0.887485\pi\)
0.938175 0.346161i \(-0.112515\pi\)
\(744\) 3.50336e6 0.232034
\(745\) 0 0
\(746\) 2.50057e7 1.64510
\(747\) 9.83240e6i 0.644701i
\(748\) 719336.i 0.0470087i
\(749\) 2.93343e7 1.91061
\(750\) 0 0
\(751\) −1.16729e6 −0.0755229 −0.0377615 0.999287i \(-0.512023\pi\)
−0.0377615 + 0.999287i \(0.512023\pi\)
\(752\) 7.56969e6i 0.488128i
\(753\) 4.39193e6i 0.282272i
\(754\) −3.77586e6 −0.241873
\(755\) 0 0
\(756\) −1.83061e6 −0.116491
\(757\) 4.75104e6i 0.301334i 0.988585 + 0.150667i \(0.0481422\pi\)
−0.988585 + 0.150667i \(0.951858\pi\)
\(758\) − 7.51433e6i − 0.475026i
\(759\) −8.76271e6 −0.552120
\(760\) 0 0
\(761\) −5.92209e6 −0.370692 −0.185346 0.982673i \(-0.559341\pi\)
−0.185346 + 0.982673i \(0.559341\pi\)
\(762\) − 5.17909e6i − 0.323121i
\(763\) 1.09364e7i 0.680087i
\(764\) −1.31139e6 −0.0812828
\(765\) 0 0
\(766\) −3.36375e7 −2.07134
\(767\) 474262.i 0.0291092i
\(768\) 2.19938e6i 0.134554i
\(769\) 5.07027e6 0.309183 0.154591 0.987979i \(-0.450594\pi\)
0.154591 + 0.987979i \(0.450594\pi\)
\(770\) 0 0
\(771\) 7.36006e6 0.445908
\(772\) 1.08748e6i 0.0656719i
\(773\) − 2.31839e7i − 1.39552i −0.716330 0.697761i \(-0.754180\pi\)
0.716330 0.697761i \(-0.245820\pi\)
\(774\) 5.94404e6 0.356639
\(775\) 0 0
\(776\) −2.43573e7 −1.45203
\(777\) 371217.i 0.0220585i
\(778\) − 3.25799e7i − 1.92975i
\(779\) 1.51681e7 0.895543
\(780\) 0 0
\(781\) 2.35419e7 1.38106
\(782\) − 1.32163e7i − 0.772849i
\(783\) 1.15883e7i 0.675482i
\(784\) 1.97512e7 1.14763
\(785\) 0 0
\(786\) −1.80832e6 −0.104404
\(787\) − 6.07650e6i − 0.349717i −0.984594 0.174858i \(-0.944053\pi\)
0.984594 0.174858i \(-0.0559468\pi\)
\(788\) 2.79095e6i 0.160117i
\(789\) −9.30742e6 −0.532276
\(790\) 0 0
\(791\) −3.33848e7 −1.89718
\(792\) 1.16849e7i 0.661932i
\(793\) 2.32624e6i 0.131362i
\(794\) −9.11855e6 −0.513304
\(795\) 0 0
\(796\) 867745. 0.0485411
\(797\) 2.78805e7i 1.55473i 0.629052 + 0.777363i \(0.283443\pi\)
−0.629052 + 0.777363i \(0.716557\pi\)
\(798\) 8.69394e6i 0.483292i
\(799\) 4.30389e6 0.238503
\(800\) 0 0
\(801\) 1.01332e7 0.558039
\(802\) − 178164.i − 0.00978099i
\(803\) 2.68629e7i 1.47016i
\(804\) 1.53047e6 0.0834999
\(805\) 0 0
\(806\) −2.91450e6 −0.158025
\(807\) − 2.60750e6i − 0.140942i
\(808\) − 811883.i − 0.0437487i
\(809\) −6.10438e6 −0.327922 −0.163961 0.986467i \(-0.552427\pi\)
−0.163961 + 0.986467i \(0.552427\pi\)
\(810\) 0 0
\(811\) −2.23956e7 −1.19567 −0.597835 0.801619i \(-0.703972\pi\)
−0.597835 + 0.801619i \(0.703972\pi\)
\(812\) 2.24007e6i 0.119226i
\(813\) 5.28572e6i 0.280465i
\(814\) −594892. −0.0314686
\(815\) 0 0
\(816\) 4.99737e6 0.262734
\(817\) − 5.79777e6i − 0.303882i
\(818\) − 3.28943e7i − 1.71885i
\(819\) −6.06591e6 −0.316000
\(820\) 0 0
\(821\) −2.42967e7 −1.25803 −0.629014 0.777394i \(-0.716541\pi\)
−0.629014 + 0.777394i \(0.716541\pi\)
\(822\) − 7.89025e6i − 0.407297i
\(823\) − 3.64578e7i − 1.87625i −0.346293 0.938127i \(-0.612560\pi\)
0.346293 0.938127i \(-0.387440\pi\)
\(824\) 1.01304e7 0.519767
\(825\) 0 0
\(826\) 3.09271e6 0.157721
\(827\) − 2.81247e7i − 1.42996i −0.699143 0.714981i \(-0.746435\pi\)
0.699143 0.714981i \(-0.253565\pi\)
\(828\) 2.17210e6i 0.110104i
\(829\) −2.68734e7 −1.35812 −0.679058 0.734085i \(-0.737611\pi\)
−0.679058 + 0.734085i \(0.737611\pi\)
\(830\) 0 0
\(831\) −1.16224e7 −0.583841
\(832\) 4.87818e6i 0.244315i
\(833\) − 1.12299e7i − 0.560743i
\(834\) −1.44041e7 −0.717087
\(835\) 0 0
\(836\) −1.26751e6 −0.0627244
\(837\) 8.94470e6i 0.441319i
\(838\) − 7.67514e6i − 0.377552i
\(839\) −3.46774e7 −1.70076 −0.850378 0.526172i \(-0.823627\pi\)
−0.850378 + 0.526172i \(0.823627\pi\)
\(840\) 0 0
\(841\) −6.33089e6 −0.308656
\(842\) 2.18709e7i 1.06313i
\(843\) 8.60037e6i 0.416819i
\(844\) −581123. −0.0280810
\(845\) 0 0
\(846\) −7.77505e6 −0.373488
\(847\) 6.64914e6i 0.318462i
\(848\) 8.55524e6i 0.408548i
\(849\) −7.03678e6 −0.335046
\(850\) 0 0
\(851\) 994359. 0.0470673
\(852\) 1.50280e6i 0.0709253i
\(853\) − 1.54571e6i − 0.0727368i −0.999338 0.0363684i \(-0.988421\pi\)
0.999338 0.0363684i \(-0.0115790\pi\)
\(854\) 1.51696e7 0.711754
\(855\) 0 0
\(856\) 2.69834e7 1.25867
\(857\) − 1.27926e7i − 0.594987i −0.954724 0.297493i \(-0.903849\pi\)
0.954724 0.297493i \(-0.0961506\pi\)
\(858\) 2.50336e6i 0.116093i
\(859\) −2.66940e6 −0.123433 −0.0617165 0.998094i \(-0.519657\pi\)
−0.0617165 + 0.998094i \(0.519657\pi\)
\(860\) 0 0
\(861\) −1.77725e7 −0.817033
\(862\) − 7.27673e6i − 0.333555i
\(863\) 3.37798e7i 1.54394i 0.635659 + 0.771970i \(0.280728\pi\)
−0.635659 + 0.771970i \(0.719272\pi\)
\(864\) −3.55508e6 −0.162019
\(865\) 0 0
\(866\) −6.07906e6 −0.275449
\(867\) 7.17474e6i 0.324159i
\(868\) 1.72906e6i 0.0778952i
\(869\) 3.59721e7 1.61591
\(870\) 0 0
\(871\) 1.14488e7 0.511344
\(872\) 1.00600e7i 0.448029i
\(873\) − 2.75473e7i − 1.22333i
\(874\) 2.32880e7 1.03122
\(875\) 0 0
\(876\) −1.71479e6 −0.0755007
\(877\) 3.97308e7i 1.74433i 0.489214 + 0.872164i \(0.337284\pi\)
−0.489214 + 0.872164i \(0.662716\pi\)
\(878\) − 2.99596e7i − 1.31160i
\(879\) 1.27537e7 0.556755
\(880\) 0 0
\(881\) −1.67058e7 −0.725149 −0.362574 0.931955i \(-0.618102\pi\)
−0.362574 + 0.931955i \(0.618102\pi\)
\(882\) 2.02870e7i 0.878105i
\(883\) 1.67930e7i 0.724816i 0.932020 + 0.362408i \(0.118045\pi\)
−0.932020 + 0.362408i \(0.881955\pi\)
\(884\) −343497. −0.0147840
\(885\) 0 0
\(886\) −3.74293e7 −1.60187
\(887\) 8.61531e6i 0.367673i 0.982957 + 0.183837i \(0.0588517\pi\)
−0.982957 + 0.183837i \(0.941148\pi\)
\(888\) 341468.i 0.0145317i
\(889\) −2.29843e7 −0.975388
\(890\) 0 0
\(891\) −8.93559e6 −0.377076
\(892\) 4.44393e6i 0.187006i
\(893\) 7.58371e6i 0.318239i
\(894\) 7.44208e6 0.311423
\(895\) 0 0
\(896\) 3.86777e7 1.60950
\(897\) − 4.18436e6i − 0.173639i
\(898\) 6.90571e6i 0.285770i
\(899\) 1.09454e7 0.451682
\(900\) 0 0
\(901\) 4.86425e6 0.199620
\(902\) − 2.84811e7i − 1.16558i
\(903\) 6.79326e6i 0.277242i
\(904\) −3.07093e7 −1.24983
\(905\) 0 0
\(906\) 2.32202e7 0.939820
\(907\) 7.34436e6i 0.296439i 0.988954 + 0.148220i \(0.0473543\pi\)
−0.988954 + 0.148220i \(0.952646\pi\)
\(908\) 2.21105e6i 0.0889989i
\(909\) 918211. 0.0368581
\(910\) 0 0
\(911\) 3.63225e7 1.45004 0.725019 0.688729i \(-0.241831\pi\)
0.725019 + 0.688729i \(0.241831\pi\)
\(912\) 8.80567e6i 0.350570i
\(913\) − 1.80080e7i − 0.714971i
\(914\) 8.79036e6 0.348049
\(915\) 0 0
\(916\) −4.42781e6 −0.174361
\(917\) 8.02515e6i 0.315159i
\(918\) 1.15878e7i 0.453829i
\(919\) −2.25278e7 −0.879892 −0.439946 0.898024i \(-0.645002\pi\)
−0.439946 + 0.898024i \(0.645002\pi\)
\(920\) 0 0
\(921\) 172791. 0.00671232
\(922\) 3.35457e7i 1.29960i
\(923\) 1.12417e7i 0.434338i
\(924\) 1.48515e6 0.0572255
\(925\) 0 0
\(926\) −1.24131e7 −0.475721
\(927\) 1.14571e7i 0.437901i
\(928\) 4.35026e6i 0.165823i
\(929\) −3.93312e7 −1.49520 −0.747598 0.664152i \(-0.768793\pi\)
−0.747598 + 0.664152i \(0.768793\pi\)
\(930\) 0 0
\(931\) 1.97878e7 0.748209
\(932\) − 230303.i − 0.00868480i
\(933\) 1.04553e7i 0.393217i
\(934\) −4.44087e7 −1.66571
\(935\) 0 0
\(936\) −5.57978e6 −0.208175
\(937\) − 1.36354e7i − 0.507362i −0.967288 0.253681i \(-0.918359\pi\)
0.967288 0.253681i \(-0.0816414\pi\)
\(938\) − 7.46584e7i − 2.77058i
\(939\) −2.46030e6 −0.0910593
\(940\) 0 0
\(941\) 2.28438e7 0.840995 0.420498 0.907294i \(-0.361856\pi\)
0.420498 + 0.907294i \(0.361856\pi\)
\(942\) 1.07104e7i 0.393258i
\(943\) 4.76061e7i 1.74334i
\(944\) 3.13245e6 0.114407
\(945\) 0 0
\(946\) −1.08865e7 −0.395512
\(947\) − 6.46944e6i − 0.234418i −0.993107 0.117209i \(-0.962605\pi\)
0.993107 0.117209i \(-0.0373948\pi\)
\(948\) 2.29628e6i 0.0829858i
\(949\) −1.28276e7 −0.462358
\(950\) 0 0
\(951\) 2.86748e6 0.102813
\(952\) − 2.01417e7i − 0.720284i
\(953\) − 2.58068e6i − 0.0920452i −0.998940 0.0460226i \(-0.985345\pi\)
0.998940 0.0460226i \(-0.0146546\pi\)
\(954\) −8.78734e6 −0.312598
\(955\) 0 0
\(956\) −2.64355e6 −0.0935497
\(957\) − 9.40139e6i − 0.331827i
\(958\) 1.51165e7i 0.532154i
\(959\) −3.50162e7 −1.22948
\(960\) 0 0
\(961\) −2.01807e7 −0.704899
\(962\) − 284072.i − 0.00989672i
\(963\) 3.05173e7i 1.06043i
\(964\) 1.96986e6 0.0682722
\(965\) 0 0
\(966\) −2.72866e7 −0.940820
\(967\) − 1.88591e6i − 0.0648568i −0.999474 0.0324284i \(-0.989676\pi\)
0.999474 0.0324284i \(-0.0103241\pi\)
\(968\) 6.11627e6i 0.209797i
\(969\) 5.00663e6 0.171292
\(970\) 0 0
\(971\) −2.49003e7 −0.847534 −0.423767 0.905771i \(-0.639292\pi\)
−0.423767 + 0.905771i \(0.639292\pi\)
\(972\) − 2.96528e6i − 0.100670i
\(973\) 6.39242e7i 2.16463i
\(974\) 2.18210e7 0.737016
\(975\) 0 0
\(976\) 1.53645e7 0.516292
\(977\) 1.01689e7i 0.340829i 0.985372 + 0.170415i \(0.0545107\pi\)
−0.985372 + 0.170415i \(0.945489\pi\)
\(978\) 1.09946e7i 0.367562i
\(979\) −1.85589e7 −0.618864
\(980\) 0 0
\(981\) −1.13775e7 −0.377462
\(982\) 4.29143e7i 1.42011i
\(983\) − 4.29289e6i − 0.141699i −0.997487 0.0708494i \(-0.977429\pi\)
0.997487 0.0708494i \(-0.0225710\pi\)
\(984\) −1.63482e7 −0.538246
\(985\) 0 0
\(986\) 1.41796e7 0.464486
\(987\) − 8.88586e6i − 0.290340i
\(988\) − 605262.i − 0.0197265i
\(989\) 1.81967e7 0.591565
\(990\) 0 0
\(991\) −2.64765e7 −0.856398 −0.428199 0.903684i \(-0.640852\pi\)
−0.428199 + 0.903684i \(0.640852\pi\)
\(992\) 3.35786e6i 0.108339i
\(993\) 1.11891e7i 0.360100i
\(994\) 7.33082e7 2.35335
\(995\) 0 0
\(996\) 1.14954e6 0.0367177
\(997\) 4.21089e6i 0.134164i 0.997747 + 0.0670820i \(0.0213689\pi\)
−0.997747 + 0.0670820i \(0.978631\pi\)
\(998\) 5.19227e6i 0.165018i
\(999\) −871829. −0.0276387
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.g.274.4 12
5.2 odd 4 325.6.a.g.1.5 6
5.3 odd 4 65.6.a.d.1.2 6
5.4 even 2 inner 325.6.b.g.274.9 12
15.8 even 4 585.6.a.m.1.5 6
20.3 even 4 1040.6.a.q.1.5 6
65.38 odd 4 845.6.a.h.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.2 6 5.3 odd 4
325.6.a.g.1.5 6 5.2 odd 4
325.6.b.g.274.4 12 1.1 even 1 trivial
325.6.b.g.274.9 12 5.4 even 2 inner
585.6.a.m.1.5 6 15.8 even 4
845.6.a.h.1.5 6 65.38 odd 4
1040.6.a.q.1.5 6 20.3 even 4