Properties

Label 325.6.b.a.274.2
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.a.274.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000i q^{2} -6.00000i q^{3} +7.00000 q^{4} +30.0000 q^{6} -244.000i q^{7} +195.000i q^{8} +207.000 q^{9} +794.000 q^{11} -42.0000i q^{12} +169.000i q^{13} +1220.00 q^{14} -751.000 q^{16} -1534.00i q^{17} +1035.00i q^{18} -2706.00 q^{19} -1464.00 q^{21} +3970.00i q^{22} +702.000i q^{23} +1170.00 q^{24} -845.000 q^{26} -2700.00i q^{27} -1708.00i q^{28} +5038.00 q^{29} -3634.00 q^{31} +2485.00i q^{32} -4764.00i q^{33} +7670.00 q^{34} +1449.00 q^{36} -7058.00i q^{37} -13530.0i q^{38} +1014.00 q^{39} -294.000 q^{41} -7320.00i q^{42} -7618.00i q^{43} +5558.00 q^{44} -3510.00 q^{46} -3020.00i q^{47} +4506.00i q^{48} -42729.0 q^{49} -9204.00 q^{51} +1183.00i q^{52} -626.000i q^{53} +13500.0 q^{54} +47580.0 q^{56} +16236.0i q^{57} +25190.0i q^{58} +30066.0 q^{59} -5806.00 q^{61} -18170.0i q^{62} -50508.0i q^{63} -36457.0 q^{64} +23820.0 q^{66} -12436.0i q^{67} -10738.0i q^{68} +4212.00 q^{69} +4734.00 q^{71} +40365.0i q^{72} +14694.0i q^{73} +35290.0 q^{74} -18942.0 q^{76} -193736. i q^{77} +5070.00i q^{78} +39804.0 q^{79} +34101.0 q^{81} -1470.00i q^{82} +41776.0i q^{83} -10248.0 q^{84} +38090.0 q^{86} -30228.0i q^{87} +154830. i q^{88} -7970.00 q^{89} +41236.0 q^{91} +4914.00i q^{92} +21804.0i q^{93} +15100.0 q^{94} +14910.0 q^{96} -78050.0i q^{97} -213645. i q^{98} +164358. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{4} + 60 q^{6} + 414 q^{9} + 1588 q^{11} + 2440 q^{14} - 1502 q^{16} - 5412 q^{19} - 2928 q^{21} + 2340 q^{24} - 1690 q^{26} + 10076 q^{29} - 7268 q^{31} + 15340 q^{34} + 2898 q^{36} + 2028 q^{39}+ \cdots + 328716 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.00000i 0.883883i 0.897044 + 0.441942i \(0.145710\pi\)
−0.897044 + 0.441942i \(0.854290\pi\)
\(3\) − 6.00000i − 0.384900i −0.981307 0.192450i \(-0.938357\pi\)
0.981307 0.192450i \(-0.0616434\pi\)
\(4\) 7.00000 0.218750
\(5\) 0 0
\(6\) 30.0000 0.340207
\(7\) − 244.000i − 1.88211i −0.338255 0.941054i \(-0.609837\pi\)
0.338255 0.941054i \(-0.390163\pi\)
\(8\) 195.000i 1.07723i
\(9\) 207.000 0.851852
\(10\) 0 0
\(11\) 794.000 1.97851 0.989256 0.146192i \(-0.0467017\pi\)
0.989256 + 0.146192i \(0.0467017\pi\)
\(12\) − 42.0000i − 0.0841969i
\(13\) 169.000i 0.277350i
\(14\) 1220.00 1.66356
\(15\) 0 0
\(16\) −751.000 −0.733398
\(17\) − 1534.00i − 1.28737i −0.765291 0.643685i \(-0.777405\pi\)
0.765291 0.643685i \(-0.222595\pi\)
\(18\) 1035.00i 0.752938i
\(19\) −2706.00 −1.71966 −0.859832 0.510576i \(-0.829432\pi\)
−0.859832 + 0.510576i \(0.829432\pi\)
\(20\) 0 0
\(21\) −1464.00 −0.724424
\(22\) 3970.00i 1.74877i
\(23\) 702.000i 0.276705i 0.990383 + 0.138353i \(0.0441807\pi\)
−0.990383 + 0.138353i \(0.955819\pi\)
\(24\) 1170.00 0.414627
\(25\) 0 0
\(26\) −845.000 −0.245145
\(27\) − 2700.00i − 0.712778i
\(28\) − 1708.00i − 0.411711i
\(29\) 5038.00 1.11241 0.556203 0.831047i \(-0.312258\pi\)
0.556203 + 0.831047i \(0.312258\pi\)
\(30\) 0 0
\(31\) −3634.00 −0.679173 −0.339587 0.940575i \(-0.610287\pi\)
−0.339587 + 0.940575i \(0.610287\pi\)
\(32\) 2485.00i 0.428994i
\(33\) − 4764.00i − 0.761530i
\(34\) 7670.00 1.13788
\(35\) 0 0
\(36\) 1449.00 0.186343
\(37\) − 7058.00i − 0.847573i −0.905762 0.423787i \(-0.860701\pi\)
0.905762 0.423787i \(-0.139299\pi\)
\(38\) − 13530.0i − 1.51998i
\(39\) 1014.00 0.106752
\(40\) 0 0
\(41\) −294.000 −0.0273141 −0.0136571 0.999907i \(-0.504347\pi\)
−0.0136571 + 0.999907i \(0.504347\pi\)
\(42\) − 7320.00i − 0.640306i
\(43\) − 7618.00i − 0.628304i −0.949373 0.314152i \(-0.898280\pi\)
0.949373 0.314152i \(-0.101720\pi\)
\(44\) 5558.00 0.432800
\(45\) 0 0
\(46\) −3510.00 −0.244575
\(47\) − 3020.00i − 0.199417i −0.995017 0.0997085i \(-0.968209\pi\)
0.995017 0.0997085i \(-0.0317910\pi\)
\(48\) 4506.00i 0.282285i
\(49\) −42729.0 −2.54233
\(50\) 0 0
\(51\) −9204.00 −0.495509
\(52\) 1183.00i 0.0606703i
\(53\) − 626.000i − 0.0306115i −0.999883 0.0153058i \(-0.995128\pi\)
0.999883 0.0153058i \(-0.00487216\pi\)
\(54\) 13500.0 0.630013
\(55\) 0 0
\(56\) 47580.0 2.02747
\(57\) 16236.0i 0.661899i
\(58\) 25190.0i 0.983237i
\(59\) 30066.0 1.12446 0.562232 0.826979i \(-0.309943\pi\)
0.562232 + 0.826979i \(0.309943\pi\)
\(60\) 0 0
\(61\) −5806.00 −0.199780 −0.0998901 0.994998i \(-0.531849\pi\)
−0.0998901 + 0.994998i \(0.531849\pi\)
\(62\) − 18170.0i − 0.600310i
\(63\) − 50508.0i − 1.60328i
\(64\) −36457.0 −1.11258
\(65\) 0 0
\(66\) 23820.0 0.673104
\(67\) − 12436.0i − 0.338449i −0.985577 0.169225i \(-0.945874\pi\)
0.985577 0.169225i \(-0.0541264\pi\)
\(68\) − 10738.0i − 0.281612i
\(69\) 4212.00 0.106504
\(70\) 0 0
\(71\) 4734.00 0.111451 0.0557253 0.998446i \(-0.482253\pi\)
0.0557253 + 0.998446i \(0.482253\pi\)
\(72\) 40365.0i 0.917643i
\(73\) 14694.0i 0.322725i 0.986895 + 0.161363i \(0.0515889\pi\)
−0.986895 + 0.161363i \(0.948411\pi\)
\(74\) 35290.0 0.749156
\(75\) 0 0
\(76\) −18942.0 −0.376177
\(77\) − 193736.i − 3.72378i
\(78\) 5070.00i 0.0943564i
\(79\) 39804.0 0.717561 0.358781 0.933422i \(-0.383193\pi\)
0.358781 + 0.933422i \(0.383193\pi\)
\(80\) 0 0
\(81\) 34101.0 0.577503
\(82\) − 1470.00i − 0.0241425i
\(83\) 41776.0i 0.665628i 0.942992 + 0.332814i \(0.107998\pi\)
−0.942992 + 0.332814i \(0.892002\pi\)
\(84\) −10248.0 −0.158468
\(85\) 0 0
\(86\) 38090.0 0.555348
\(87\) − 30228.0i − 0.428165i
\(88\) 154830.i 2.13132i
\(89\) −7970.00 −0.106656 −0.0533278 0.998577i \(-0.516983\pi\)
−0.0533278 + 0.998577i \(0.516983\pi\)
\(90\) 0 0
\(91\) 41236.0 0.522003
\(92\) 4914.00i 0.0605293i
\(93\) 21804.0i 0.261414i
\(94\) 15100.0 0.176261
\(95\) 0 0
\(96\) 14910.0 0.165120
\(97\) − 78050.0i − 0.842255i −0.907001 0.421127i \(-0.861634\pi\)
0.907001 0.421127i \(-0.138366\pi\)
\(98\) − 213645.i − 2.24713i
\(99\) 164358. 1.68540
\(100\) 0 0
\(101\) −23010.0 −0.224447 −0.112223 0.993683i \(-0.535797\pi\)
−0.112223 + 0.993683i \(0.535797\pi\)
\(102\) − 46020.0i − 0.437972i
\(103\) − 121706.i − 1.13037i −0.824966 0.565183i \(-0.808806\pi\)
0.824966 0.565183i \(-0.191194\pi\)
\(104\) −32955.0 −0.298771
\(105\) 0 0
\(106\) 3130.00 0.0270570
\(107\) − 70142.0i − 0.592269i −0.955146 0.296134i \(-0.904302\pi\)
0.955146 0.296134i \(-0.0956976\pi\)
\(108\) − 18900.0i − 0.155920i
\(109\) 195878. 1.57914 0.789568 0.613663i \(-0.210305\pi\)
0.789568 + 0.613663i \(0.210305\pi\)
\(110\) 0 0
\(111\) −42348.0 −0.326231
\(112\) 183244.i 1.38034i
\(113\) 100238.i 0.738476i 0.929335 + 0.369238i \(0.120381\pi\)
−0.929335 + 0.369238i \(0.879619\pi\)
\(114\) −81180.0 −0.585042
\(115\) 0 0
\(116\) 35266.0 0.243339
\(117\) 34983.0i 0.236261i
\(118\) 150330.i 0.993895i
\(119\) −374296. −2.42297
\(120\) 0 0
\(121\) 469385. 2.91451
\(122\) − 29030.0i − 0.176582i
\(123\) 1764.00i 0.0105132i
\(124\) −25438.0 −0.148569
\(125\) 0 0
\(126\) 252540. 1.41711
\(127\) 39286.0i 0.216137i 0.994143 + 0.108068i \(0.0344665\pi\)
−0.994143 + 0.108068i \(0.965533\pi\)
\(128\) − 102765.i − 0.554396i
\(129\) −45708.0 −0.241834
\(130\) 0 0
\(131\) 211460. 1.07659 0.538295 0.842757i \(-0.319069\pi\)
0.538295 + 0.842757i \(0.319069\pi\)
\(132\) − 33348.0i − 0.166585i
\(133\) 660264.i 3.23660i
\(134\) 62180.0 0.299150
\(135\) 0 0
\(136\) 299130. 1.38680
\(137\) 26302.0i 0.119726i 0.998207 + 0.0598628i \(0.0190663\pi\)
−0.998207 + 0.0598628i \(0.980934\pi\)
\(138\) 21060.0i 0.0941371i
\(139\) −1344.00 −0.00590014 −0.00295007 0.999996i \(-0.500939\pi\)
−0.00295007 + 0.999996i \(0.500939\pi\)
\(140\) 0 0
\(141\) −18120.0 −0.0767557
\(142\) 23670.0i 0.0985093i
\(143\) 134186.i 0.548741i
\(144\) −155457. −0.624747
\(145\) 0 0
\(146\) −73470.0 −0.285251
\(147\) 256374.i 0.978545i
\(148\) − 49406.0i − 0.185407i
\(149\) 49086.0 0.181131 0.0905653 0.995891i \(-0.471133\pi\)
0.0905653 + 0.995891i \(0.471133\pi\)
\(150\) 0 0
\(151\) −357998. −1.27773 −0.638864 0.769320i \(-0.720595\pi\)
−0.638864 + 0.769320i \(0.720595\pi\)
\(152\) − 527670.i − 1.85248i
\(153\) − 317538.i − 1.09665i
\(154\) 968680. 3.29138
\(155\) 0 0
\(156\) 7098.00 0.0233520
\(157\) 45450.0i 0.147158i 0.997289 + 0.0735791i \(0.0234422\pi\)
−0.997289 + 0.0735791i \(0.976558\pi\)
\(158\) 199020.i 0.634241i
\(159\) −3756.00 −0.0117824
\(160\) 0 0
\(161\) 171288. 0.520790
\(162\) 170505.i 0.510446i
\(163\) − 5892.00i − 0.0173698i −0.999962 0.00868488i \(-0.997235\pi\)
0.999962 0.00868488i \(-0.00276452\pi\)
\(164\) −2058.00 −0.00597497
\(165\) 0 0
\(166\) −208880. −0.588338
\(167\) 212772.i 0.590369i 0.955440 + 0.295184i \(0.0953811\pi\)
−0.955440 + 0.295184i \(0.904619\pi\)
\(168\) − 285480.i − 0.780373i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −560142. −1.46490
\(172\) − 53326.0i − 0.137442i
\(173\) − 503178.i − 1.27822i −0.769114 0.639111i \(-0.779302\pi\)
0.769114 0.639111i \(-0.220698\pi\)
\(174\) 151140. 0.378448
\(175\) 0 0
\(176\) −596294. −1.45104
\(177\) − 180396.i − 0.432806i
\(178\) − 39850.0i − 0.0942710i
\(179\) −581724. −1.35701 −0.678507 0.734594i \(-0.737373\pi\)
−0.678507 + 0.734594i \(0.737373\pi\)
\(180\) 0 0
\(181\) 202202. 0.458764 0.229382 0.973337i \(-0.426330\pi\)
0.229382 + 0.973337i \(0.426330\pi\)
\(182\) 206180.i 0.461390i
\(183\) 34836.0i 0.0768954i
\(184\) −136890. −0.298076
\(185\) 0 0
\(186\) −109020. −0.231059
\(187\) − 1.21800e6i − 2.54708i
\(188\) − 21140.0i − 0.0436225i
\(189\) −658800. −1.34153
\(190\) 0 0
\(191\) −340608. −0.675572 −0.337786 0.941223i \(-0.609678\pi\)
−0.337786 + 0.941223i \(0.609678\pi\)
\(192\) 218742.i 0.428232i
\(193\) − 275614.i − 0.532608i −0.963889 0.266304i \(-0.914197\pi\)
0.963889 0.266304i \(-0.0858026\pi\)
\(194\) 390250. 0.744455
\(195\) 0 0
\(196\) −299103. −0.556135
\(197\) 538218.i 0.988081i 0.869439 + 0.494041i \(0.164481\pi\)
−0.869439 + 0.494041i \(0.835519\pi\)
\(198\) 821790.i 1.48970i
\(199\) 853840. 1.52842 0.764212 0.644965i \(-0.223128\pi\)
0.764212 + 0.644965i \(0.223128\pi\)
\(200\) 0 0
\(201\) −74616.0 −0.130269
\(202\) − 115050.i − 0.198385i
\(203\) − 1.22927e6i − 2.09367i
\(204\) −64428.0 −0.108392
\(205\) 0 0
\(206\) 608530. 0.999111
\(207\) 145314.i 0.235712i
\(208\) − 126919.i − 0.203408i
\(209\) −2.14856e6 −3.40238
\(210\) 0 0
\(211\) −1.00112e6 −1.54804 −0.774019 0.633162i \(-0.781757\pi\)
−0.774019 + 0.633162i \(0.781757\pi\)
\(212\) − 4382.00i − 0.00669627i
\(213\) − 28404.0i − 0.0428974i
\(214\) 350710. 0.523496
\(215\) 0 0
\(216\) 526500. 0.767828
\(217\) 886696.i 1.27828i
\(218\) 979390.i 1.39577i
\(219\) 88164.0 0.124217
\(220\) 0 0
\(221\) 259246. 0.357052
\(222\) − 211740.i − 0.288350i
\(223\) − 21364.0i − 0.0287687i −0.999897 0.0143844i \(-0.995421\pi\)
0.999897 0.0143844i \(-0.00457884\pi\)
\(224\) 606340. 0.807414
\(225\) 0 0
\(226\) −501190. −0.652727
\(227\) − 880748.i − 1.13445i −0.823561 0.567227i \(-0.808016\pi\)
0.823561 0.567227i \(-0.191984\pi\)
\(228\) 113652.i 0.144790i
\(229\) 13030.0 0.0164193 0.00820967 0.999966i \(-0.497387\pi\)
0.00820967 + 0.999966i \(0.497387\pi\)
\(230\) 0 0
\(231\) −1.16242e6 −1.43328
\(232\) 982410.i 1.19832i
\(233\) 1.20700e6i 1.45652i 0.685300 + 0.728260i \(0.259671\pi\)
−0.685300 + 0.728260i \(0.740329\pi\)
\(234\) −174915. −0.208827
\(235\) 0 0
\(236\) 210462. 0.245977
\(237\) − 238824.i − 0.276189i
\(238\) − 1.87148e6i − 2.14162i
\(239\) 187038. 0.211804 0.105902 0.994377i \(-0.466227\pi\)
0.105902 + 0.994377i \(0.466227\pi\)
\(240\) 0 0
\(241\) 271690. 0.301322 0.150661 0.988585i \(-0.451860\pi\)
0.150661 + 0.988585i \(0.451860\pi\)
\(242\) 2.34692e6i 2.57609i
\(243\) − 860706.i − 0.935059i
\(244\) −40642.0 −0.0437019
\(245\) 0 0
\(246\) −8820.00 −0.00929246
\(247\) − 457314.i − 0.476949i
\(248\) − 708630.i − 0.731628i
\(249\) 250656. 0.256200
\(250\) 0 0
\(251\) 102648. 0.102841 0.0514205 0.998677i \(-0.483625\pi\)
0.0514205 + 0.998677i \(0.483625\pi\)
\(252\) − 353556.i − 0.350717i
\(253\) 557388.i 0.547465i
\(254\) −196430. −0.191040
\(255\) 0 0
\(256\) −652799. −0.622558
\(257\) − 221182.i − 0.208890i −0.994531 0.104445i \(-0.966693\pi\)
0.994531 0.104445i \(-0.0333066\pi\)
\(258\) − 228540.i − 0.213753i
\(259\) −1.72215e6 −1.59523
\(260\) 0 0
\(261\) 1.04287e6 0.947605
\(262\) 1.05730e6i 0.951579i
\(263\) − 1.40317e6i − 1.25090i −0.780265 0.625449i \(-0.784916\pi\)
0.780265 0.625449i \(-0.215084\pi\)
\(264\) 928980. 0.820345
\(265\) 0 0
\(266\) −3.30132e6 −2.86077
\(267\) 47820.0i 0.0410517i
\(268\) − 87052.0i − 0.0740358i
\(269\) 582954. 0.491195 0.245597 0.969372i \(-0.421016\pi\)
0.245597 + 0.969372i \(0.421016\pi\)
\(270\) 0 0
\(271\) −1.04690e6 −0.865930 −0.432965 0.901411i \(-0.642533\pi\)
−0.432965 + 0.901411i \(0.642533\pi\)
\(272\) 1.15203e6i 0.944154i
\(273\) − 247416.i − 0.200919i
\(274\) −131510. −0.105824
\(275\) 0 0
\(276\) 29484.0 0.0232977
\(277\) 1.10461e6i 0.864987i 0.901637 + 0.432493i \(0.142366\pi\)
−0.901637 + 0.432493i \(0.857634\pi\)
\(278\) − 6720.00i − 0.00521504i
\(279\) −752238. −0.578555
\(280\) 0 0
\(281\) 908826. 0.686618 0.343309 0.939223i \(-0.388452\pi\)
0.343309 + 0.939223i \(0.388452\pi\)
\(282\) − 90600.0i − 0.0678431i
\(283\) 449254.i 0.333446i 0.986004 + 0.166723i \(0.0533186\pi\)
−0.986004 + 0.166723i \(0.946681\pi\)
\(284\) 33138.0 0.0243798
\(285\) 0 0
\(286\) −670930. −0.485023
\(287\) 71736.0i 0.0514082i
\(288\) 514395.i 0.365440i
\(289\) −933299. −0.657319
\(290\) 0 0
\(291\) −468300. −0.324184
\(292\) 102858.i 0.0705961i
\(293\) 1.96083e6i 1.33435i 0.744901 + 0.667175i \(0.232497\pi\)
−0.744901 + 0.667175i \(0.767503\pi\)
\(294\) −1.28187e6 −0.864919
\(295\) 0 0
\(296\) 1.37631e6 0.913034
\(297\) − 2.14380e6i − 1.41024i
\(298\) 245430.i 0.160098i
\(299\) −118638. −0.0767442
\(300\) 0 0
\(301\) −1.85879e6 −1.18254
\(302\) − 1.78999e6i − 1.12936i
\(303\) 138060.i 0.0863896i
\(304\) 2.03221e6 1.26120
\(305\) 0 0
\(306\) 1.58769e6 0.969309
\(307\) − 1.79385e6i − 1.08627i −0.839644 0.543137i \(-0.817236\pi\)
0.839644 0.543137i \(-0.182764\pi\)
\(308\) − 1.35615e6i − 0.814576i
\(309\) −730236. −0.435078
\(310\) 0 0
\(311\) 2.41233e6 1.41428 0.707141 0.707072i \(-0.249985\pi\)
0.707141 + 0.707072i \(0.249985\pi\)
\(312\) 197730.i 0.114997i
\(313\) 2.15436e6i 1.24296i 0.783430 + 0.621480i \(0.213468\pi\)
−0.783430 + 0.621480i \(0.786532\pi\)
\(314\) −227250. −0.130071
\(315\) 0 0
\(316\) 278628. 0.156967
\(317\) 2.59616e6i 1.45105i 0.688195 + 0.725526i \(0.258403\pi\)
−0.688195 + 0.725526i \(0.741597\pi\)
\(318\) − 18780.0i − 0.0104142i
\(319\) 4.00017e6 2.20091
\(320\) 0 0
\(321\) −420852. −0.227964
\(322\) 856440.i 0.460317i
\(323\) 4.15100e6i 2.21384i
\(324\) 238707. 0.126329
\(325\) 0 0
\(326\) 29460.0 0.0153528
\(327\) − 1.17527e6i − 0.607810i
\(328\) − 57330.0i − 0.0294237i
\(329\) −736880. −0.375325
\(330\) 0 0
\(331\) −917226. −0.460157 −0.230079 0.973172i \(-0.573898\pi\)
−0.230079 + 0.973172i \(0.573898\pi\)
\(332\) 292432.i 0.145606i
\(333\) − 1.46101e6i − 0.722007i
\(334\) −1.06386e6 −0.521817
\(335\) 0 0
\(336\) 1.09946e6 0.531291
\(337\) 2.23894e6i 1.07391i 0.843611 + 0.536954i \(0.180425\pi\)
−0.843611 + 0.536954i \(0.819575\pi\)
\(338\) − 142805.i − 0.0679910i
\(339\) 601428. 0.284239
\(340\) 0 0
\(341\) −2.88540e6 −1.34375
\(342\) − 2.80071e6i − 1.29480i
\(343\) 6.32497e6i 2.90284i
\(344\) 1.48551e6 0.676830
\(345\) 0 0
\(346\) 2.51589e6 1.12980
\(347\) 3.41808e6i 1.52391i 0.647631 + 0.761954i \(0.275760\pi\)
−0.647631 + 0.761954i \(0.724240\pi\)
\(348\) − 211596.i − 0.0936611i
\(349\) −2.35691e6 −1.03581 −0.517905 0.855438i \(-0.673288\pi\)
−0.517905 + 0.855438i \(0.673288\pi\)
\(350\) 0 0
\(351\) 456300. 0.197689
\(352\) 1.97309e6i 0.848770i
\(353\) 3.76395e6i 1.60771i 0.594827 + 0.803854i \(0.297221\pi\)
−0.594827 + 0.803854i \(0.702779\pi\)
\(354\) 901980. 0.382550
\(355\) 0 0
\(356\) −55790.0 −0.0233309
\(357\) 2.24578e6i 0.932601i
\(358\) − 2.90862e6i − 1.19944i
\(359\) −3.28216e6 −1.34407 −0.672037 0.740517i \(-0.734581\pi\)
−0.672037 + 0.740517i \(0.734581\pi\)
\(360\) 0 0
\(361\) 4.84634e6 1.95725
\(362\) 1.01101e6i 0.405494i
\(363\) − 2.81631e6i − 1.12180i
\(364\) 288652. 0.114188
\(365\) 0 0
\(366\) −174180. −0.0679666
\(367\) − 2.42605e6i − 0.940233i −0.882604 0.470116i \(-0.844212\pi\)
0.882604 0.470116i \(-0.155788\pi\)
\(368\) − 527202.i − 0.202935i
\(369\) −60858.0 −0.0232676
\(370\) 0 0
\(371\) −152744. −0.0576142
\(372\) 152628.i 0.0571843i
\(373\) − 2.80635e6i − 1.04441i −0.852820 0.522204i \(-0.825110\pi\)
0.852820 0.522204i \(-0.174890\pi\)
\(374\) 6.08998e6 2.25132
\(375\) 0 0
\(376\) 588900. 0.214819
\(377\) 851422.i 0.308526i
\(378\) − 3.29400e6i − 1.18575i
\(379\) −3.15392e6 −1.12785 −0.563927 0.825825i \(-0.690710\pi\)
−0.563927 + 0.825825i \(0.690710\pi\)
\(380\) 0 0
\(381\) 235716. 0.0831911
\(382\) − 1.70304e6i − 0.597127i
\(383\) 475044.i 0.165477i 0.996571 + 0.0827384i \(0.0263666\pi\)
−0.996571 + 0.0827384i \(0.973633\pi\)
\(384\) −616590. −0.213387
\(385\) 0 0
\(386\) 1.37807e6 0.470764
\(387\) − 1.57693e6i − 0.535222i
\(388\) − 546350.i − 0.184243i
\(389\) −150566. −0.0504490 −0.0252245 0.999682i \(-0.508030\pi\)
−0.0252245 + 0.999682i \(0.508030\pi\)
\(390\) 0 0
\(391\) 1.07687e6 0.356222
\(392\) − 8.33216e6i − 2.73869i
\(393\) − 1.26876e6i − 0.414379i
\(394\) −2.69109e6 −0.873349
\(395\) 0 0
\(396\) 1.15051e6 0.368681
\(397\) 241686.i 0.0769618i 0.999259 + 0.0384809i \(0.0122519\pi\)
−0.999259 + 0.0384809i \(0.987748\pi\)
\(398\) 4.26920e6i 1.35095i
\(399\) 3.96158e6 1.24577
\(400\) 0 0
\(401\) −3.19679e6 −0.992780 −0.496390 0.868100i \(-0.665341\pi\)
−0.496390 + 0.868100i \(0.665341\pi\)
\(402\) − 373080.i − 0.115143i
\(403\) − 614146.i − 0.188369i
\(404\) −161070. −0.0490977
\(405\) 0 0
\(406\) 6.14636e6 1.85056
\(407\) − 5.60405e6i − 1.67693i
\(408\) − 1.79478e6i − 0.533778i
\(409\) −423282. −0.125119 −0.0625593 0.998041i \(-0.519926\pi\)
−0.0625593 + 0.998041i \(0.519926\pi\)
\(410\) 0 0
\(411\) 157812. 0.0460824
\(412\) − 851942.i − 0.247267i
\(413\) − 7.33610e6i − 2.11636i
\(414\) −726570. −0.208342
\(415\) 0 0
\(416\) −419965. −0.118982
\(417\) 8064.00i 0.00227096i
\(418\) − 1.07428e7i − 3.00731i
\(419\) 1.13159e6 0.314887 0.157444 0.987528i \(-0.449675\pi\)
0.157444 + 0.987528i \(0.449675\pi\)
\(420\) 0 0
\(421\) 3.47699e6 0.956088 0.478044 0.878336i \(-0.341346\pi\)
0.478044 + 0.878336i \(0.341346\pi\)
\(422\) − 5.00562e6i − 1.36829i
\(423\) − 625140.i − 0.169874i
\(424\) 122070. 0.0329757
\(425\) 0 0
\(426\) 142020. 0.0379163
\(427\) 1.41666e6i 0.376008i
\(428\) − 490994.i − 0.129559i
\(429\) 805116. 0.211210
\(430\) 0 0
\(431\) 3.41044e6 0.884335 0.442168 0.896932i \(-0.354210\pi\)
0.442168 + 0.896932i \(0.354210\pi\)
\(432\) 2.02770e6i 0.522750i
\(433\) 3.40722e6i 0.873335i 0.899623 + 0.436667i \(0.143841\pi\)
−0.899623 + 0.436667i \(0.856159\pi\)
\(434\) −4.43348e6 −1.12985
\(435\) 0 0
\(436\) 1.37115e6 0.345436
\(437\) − 1.89961e6i − 0.475840i
\(438\) 440820.i 0.109793i
\(439\) 7.09114e6 1.75612 0.878061 0.478549i \(-0.158837\pi\)
0.878061 + 0.478549i \(0.158837\pi\)
\(440\) 0 0
\(441\) −8.84490e6 −2.16569
\(442\) 1.29623e6i 0.315592i
\(443\) 8.23508e6i 1.99369i 0.0793445 + 0.996847i \(0.474717\pi\)
−0.0793445 + 0.996847i \(0.525283\pi\)
\(444\) −296436. −0.0713631
\(445\) 0 0
\(446\) 106820. 0.0254282
\(447\) − 294516.i − 0.0697172i
\(448\) 8.89551e6i 2.09400i
\(449\) 1.29601e6 0.303383 0.151691 0.988428i \(-0.451528\pi\)
0.151691 + 0.988428i \(0.451528\pi\)
\(450\) 0 0
\(451\) −233436. −0.0540414
\(452\) 701666.i 0.161542i
\(453\) 2.14799e6i 0.491798i
\(454\) 4.40374e6 1.00273
\(455\) 0 0
\(456\) −3.16602e6 −0.713020
\(457\) 1.68196e6i 0.376725i 0.982100 + 0.188363i \(0.0603180\pi\)
−0.982100 + 0.188363i \(0.939682\pi\)
\(458\) 65150.0i 0.0145128i
\(459\) −4.14180e6 −0.917608
\(460\) 0 0
\(461\) −3.20663e6 −0.702743 −0.351372 0.936236i \(-0.614285\pi\)
−0.351372 + 0.936236i \(0.614285\pi\)
\(462\) − 5.81208e6i − 1.26685i
\(463\) 5.26370e6i 1.14114i 0.821249 + 0.570570i \(0.193278\pi\)
−0.821249 + 0.570570i \(0.806722\pi\)
\(464\) −3.78354e6 −0.815837
\(465\) 0 0
\(466\) −6.03499e6 −1.28739
\(467\) − 8.26813e6i − 1.75435i −0.480175 0.877173i \(-0.659427\pi\)
0.480175 0.877173i \(-0.340573\pi\)
\(468\) 244881.i 0.0516821i
\(469\) −3.03438e6 −0.636999
\(470\) 0 0
\(471\) 272700. 0.0566413
\(472\) 5.86287e6i 1.21131i
\(473\) − 6.04869e6i − 1.24311i
\(474\) 1.19412e6 0.244119
\(475\) 0 0
\(476\) −2.62007e6 −0.530024
\(477\) − 129582.i − 0.0260765i
\(478\) 935190.i 0.187210i
\(479\) −3.65468e6 −0.727797 −0.363899 0.931439i \(-0.618555\pi\)
−0.363899 + 0.931439i \(0.618555\pi\)
\(480\) 0 0
\(481\) 1.19280e6 0.235075
\(482\) 1.35845e6i 0.266334i
\(483\) − 1.02773e6i − 0.200452i
\(484\) 3.28570e6 0.637549
\(485\) 0 0
\(486\) 4.30353e6 0.826483
\(487\) 7.13084e6i 1.36244i 0.732077 + 0.681221i \(0.238551\pi\)
−0.732077 + 0.681221i \(0.761449\pi\)
\(488\) − 1.13217e6i − 0.215210i
\(489\) −35352.0 −0.00668562
\(490\) 0 0
\(491\) 5.72551e6 1.07179 0.535896 0.844284i \(-0.319974\pi\)
0.535896 + 0.844284i \(0.319974\pi\)
\(492\) 12348.0i 0.00229977i
\(493\) − 7.72829e6i − 1.43208i
\(494\) 2.28657e6 0.421568
\(495\) 0 0
\(496\) 2.72913e6 0.498105
\(497\) − 1.15510e6i − 0.209762i
\(498\) 1.25328e6i 0.226451i
\(499\) 7.17251e6 1.28950 0.644748 0.764395i \(-0.276962\pi\)
0.644748 + 0.764395i \(0.276962\pi\)
\(500\) 0 0
\(501\) 1.27663e6 0.227233
\(502\) 513240.i 0.0908994i
\(503\) 2.90611e6i 0.512143i 0.966658 + 0.256072i \(0.0824283\pi\)
−0.966658 + 0.256072i \(0.917572\pi\)
\(504\) 9.84906e6 1.72710
\(505\) 0 0
\(506\) −2.78694e6 −0.483895
\(507\) 171366.i 0.0296077i
\(508\) 275002.i 0.0472799i
\(509\) 8.37125e6 1.43217 0.716087 0.698011i \(-0.245931\pi\)
0.716087 + 0.698011i \(0.245931\pi\)
\(510\) 0 0
\(511\) 3.58534e6 0.607404
\(512\) − 6.55248e6i − 1.10466i
\(513\) 7.30620e6i 1.22574i
\(514\) 1.10591e6 0.184634
\(515\) 0 0
\(516\) −319956. −0.0529013
\(517\) − 2.39788e6i − 0.394549i
\(518\) − 8.61076e6i − 1.40999i
\(519\) −3.01907e6 −0.491988
\(520\) 0 0
\(521\) 5.37332e6 0.867258 0.433629 0.901092i \(-0.357233\pi\)
0.433629 + 0.901092i \(0.357233\pi\)
\(522\) 5.21433e6i 0.837572i
\(523\) − 5.26875e6i − 0.842274i −0.906997 0.421137i \(-0.861631\pi\)
0.906997 0.421137i \(-0.138369\pi\)
\(524\) 1.48022e6 0.235504
\(525\) 0 0
\(526\) 7.01587e6 1.10565
\(527\) 5.57456e6i 0.874347i
\(528\) 3.57776e6i 0.558505i
\(529\) 5.94354e6 0.923434
\(530\) 0 0
\(531\) 6.22366e6 0.957877
\(532\) 4.62185e6i 0.708005i
\(533\) − 49686.0i − 0.00757558i
\(534\) −239100. −0.0362849
\(535\) 0 0
\(536\) 2.42502e6 0.364589
\(537\) 3.49034e6i 0.522315i
\(538\) 2.91477e6i 0.434159i
\(539\) −3.39268e7 −5.03004
\(540\) 0 0
\(541\) −6.07956e6 −0.893056 −0.446528 0.894770i \(-0.647340\pi\)
−0.446528 + 0.894770i \(0.647340\pi\)
\(542\) − 5.23451e6i − 0.765381i
\(543\) − 1.21321e6i − 0.176578i
\(544\) 3.81199e6 0.552274
\(545\) 0 0
\(546\) 1.23708e6 0.177589
\(547\) − 7.88715e6i − 1.12707i −0.826091 0.563536i \(-0.809441\pi\)
0.826091 0.563536i \(-0.190559\pi\)
\(548\) 184114.i 0.0261900i
\(549\) −1.20184e6 −0.170183
\(550\) 0 0
\(551\) −1.36328e7 −1.91296
\(552\) 821340.i 0.114730i
\(553\) − 9.71218e6i − 1.35053i
\(554\) −5.52305e6 −0.764548
\(555\) 0 0
\(556\) −9408.00 −0.00129066
\(557\) − 5.88545e6i − 0.803788i −0.915686 0.401894i \(-0.868352\pi\)
0.915686 0.401894i \(-0.131648\pi\)
\(558\) − 3.76119e6i − 0.511375i
\(559\) 1.28744e6 0.174260
\(560\) 0 0
\(561\) −7.30798e6 −0.980370
\(562\) 4.54413e6i 0.606890i
\(563\) 3.91526e6i 0.520583i 0.965530 + 0.260291i \(0.0838186\pi\)
−0.965530 + 0.260291i \(0.916181\pi\)
\(564\) −126840. −0.0167903
\(565\) 0 0
\(566\) −2.24627e6 −0.294728
\(567\) − 8.32064e6i − 1.08692i
\(568\) 923130.i 0.120058i
\(569\) −9.78180e6 −1.26660 −0.633298 0.773908i \(-0.718299\pi\)
−0.633298 + 0.773908i \(0.718299\pi\)
\(570\) 0 0
\(571\) −1.08198e7 −1.38877 −0.694386 0.719603i \(-0.744324\pi\)
−0.694386 + 0.719603i \(0.744324\pi\)
\(572\) 939302.i 0.120037i
\(573\) 2.04365e6i 0.260028i
\(574\) −358680. −0.0454389
\(575\) 0 0
\(576\) −7.54660e6 −0.947753
\(577\) 1.48792e7i 1.86055i 0.366865 + 0.930274i \(0.380431\pi\)
−0.366865 + 0.930274i \(0.619569\pi\)
\(578\) − 4.66650e6i − 0.580993i
\(579\) −1.65368e6 −0.205001
\(580\) 0 0
\(581\) 1.01933e7 1.25278
\(582\) − 2.34150e6i − 0.286541i
\(583\) − 497044.i − 0.0605652i
\(584\) −2.86533e6 −0.347650
\(585\) 0 0
\(586\) −9.80413e6 −1.17941
\(587\) 1.22649e7i 1.46916i 0.678525 + 0.734578i \(0.262620\pi\)
−0.678525 + 0.734578i \(0.737380\pi\)
\(588\) 1.79462e6i 0.214057i
\(589\) 9.83360e6 1.16795
\(590\) 0 0
\(591\) 3.22931e6 0.380313
\(592\) 5.30056e6i 0.621609i
\(593\) 1.54878e7i 1.80864i 0.426856 + 0.904320i \(0.359621\pi\)
−0.426856 + 0.904320i \(0.640379\pi\)
\(594\) 1.07190e7 1.24649
\(595\) 0 0
\(596\) 343602. 0.0396223
\(597\) − 5.12304e6i − 0.588291i
\(598\) − 593190.i − 0.0678330i
\(599\) −9.75710e6 −1.11110 −0.555551 0.831483i \(-0.687493\pi\)
−0.555551 + 0.831483i \(0.687493\pi\)
\(600\) 0 0
\(601\) −7.57967e6 −0.855981 −0.427990 0.903783i \(-0.640778\pi\)
−0.427990 + 0.903783i \(0.640778\pi\)
\(602\) − 9.29396e6i − 1.04522i
\(603\) − 2.57425e6i − 0.288309i
\(604\) −2.50599e6 −0.279503
\(605\) 0 0
\(606\) −690300. −0.0763583
\(607\) 1.36231e7i 1.50073i 0.661022 + 0.750367i \(0.270123\pi\)
−0.661022 + 0.750367i \(0.729877\pi\)
\(608\) − 6.72441e6i − 0.737726i
\(609\) −7.37563e6 −0.805853
\(610\) 0 0
\(611\) 510380. 0.0553083
\(612\) − 2.22277e6i − 0.239892i
\(613\) 1.20366e7i 1.29376i 0.762592 + 0.646880i \(0.223927\pi\)
−0.762592 + 0.646880i \(0.776073\pi\)
\(614\) 8.96924e6 0.960140
\(615\) 0 0
\(616\) 3.77785e7 4.01137
\(617\) 8.55509e6i 0.904715i 0.891837 + 0.452358i \(0.149417\pi\)
−0.891837 + 0.452358i \(0.850583\pi\)
\(618\) − 3.65118e6i − 0.384558i
\(619\) 1.33018e7 1.39535 0.697675 0.716414i \(-0.254218\pi\)
0.697675 + 0.716414i \(0.254218\pi\)
\(620\) 0 0
\(621\) 1.89540e6 0.197230
\(622\) 1.20617e7i 1.25006i
\(623\) 1.94468e6i 0.200737i
\(624\) −761514. −0.0782918
\(625\) 0 0
\(626\) −1.07718e7 −1.09863
\(627\) 1.28914e7i 1.30958i
\(628\) 318150.i 0.0321909i
\(629\) −1.08270e7 −1.09114
\(630\) 0 0
\(631\) 9.16681e6 0.916526 0.458263 0.888817i \(-0.348472\pi\)
0.458263 + 0.888817i \(0.348472\pi\)
\(632\) 7.76178e6i 0.772981i
\(633\) 6.00674e6i 0.595840i
\(634\) −1.29808e7 −1.28256
\(635\) 0 0
\(636\) −26292.0 −0.00257739
\(637\) − 7.22120e6i − 0.705116i
\(638\) 2.00009e7i 1.94535i
\(639\) 979938. 0.0949394
\(640\) 0 0
\(641\) 9.96437e6 0.957866 0.478933 0.877851i \(-0.341024\pi\)
0.478933 + 0.877851i \(0.341024\pi\)
\(642\) − 2.10426e6i − 0.201494i
\(643\) − 6.64194e6i − 0.633530i −0.948504 0.316765i \(-0.897403\pi\)
0.948504 0.316765i \(-0.102597\pi\)
\(644\) 1.19902e6 0.113923
\(645\) 0 0
\(646\) −2.07550e7 −1.95678
\(647\) 844766.i 0.0793370i 0.999213 + 0.0396685i \(0.0126302\pi\)
−0.999213 + 0.0396685i \(0.987370\pi\)
\(648\) 6.64969e6i 0.622106i
\(649\) 2.38724e7 2.22477
\(650\) 0 0
\(651\) 5.32018e6 0.492010
\(652\) − 41244.0i − 0.00379963i
\(653\) − 5.79681e6i − 0.531993i −0.963974 0.265997i \(-0.914299\pi\)
0.963974 0.265997i \(-0.0857010\pi\)
\(654\) 5.87634e6 0.537233
\(655\) 0 0
\(656\) 220794. 0.0200322
\(657\) 3.04166e6i 0.274914i
\(658\) − 3.68440e6i − 0.331743i
\(659\) 1.12406e7 1.00827 0.504136 0.863624i \(-0.331811\pi\)
0.504136 + 0.863624i \(0.331811\pi\)
\(660\) 0 0
\(661\) −1.54928e7 −1.37920 −0.689599 0.724191i \(-0.742213\pi\)
−0.689599 + 0.724191i \(0.742213\pi\)
\(662\) − 4.58613e6i − 0.406725i
\(663\) − 1.55548e6i − 0.137429i
\(664\) −8.14632e6 −0.717037
\(665\) 0 0
\(666\) 7.30503e6 0.638170
\(667\) 3.53668e6i 0.307809i
\(668\) 1.48940e6i 0.129143i
\(669\) −128184. −0.0110731
\(670\) 0 0
\(671\) −4.60996e6 −0.395268
\(672\) − 3.63804e6i − 0.310774i
\(673\) 723294.i 0.0615570i 0.999526 + 0.0307785i \(0.00979864\pi\)
−0.999526 + 0.0307785i \(0.990201\pi\)
\(674\) −1.11947e7 −0.949210
\(675\) 0 0
\(676\) −199927. −0.0168269
\(677\) − 7.57359e6i − 0.635082i −0.948244 0.317541i \(-0.897143\pi\)
0.948244 0.317541i \(-0.102857\pi\)
\(678\) 3.00714e6i 0.251235i
\(679\) −1.90442e7 −1.58522
\(680\) 0 0
\(681\) −5.28449e6 −0.436652
\(682\) − 1.44270e7i − 1.18772i
\(683\) 1.65552e7i 1.35794i 0.734164 + 0.678972i \(0.237574\pi\)
−0.734164 + 0.678972i \(0.762426\pi\)
\(684\) −3.92099e6 −0.320447
\(685\) 0 0
\(686\) −3.16248e7 −2.56577
\(687\) − 78180.0i − 0.00631981i
\(688\) 5.72112e6i 0.460797i
\(689\) 105794. 0.00849010
\(690\) 0 0
\(691\) −2.04593e7 −1.63003 −0.815016 0.579438i \(-0.803272\pi\)
−0.815016 + 0.579438i \(0.803272\pi\)
\(692\) − 3.52225e6i − 0.279611i
\(693\) − 4.01034e7i − 3.17211i
\(694\) −1.70904e7 −1.34696
\(695\) 0 0
\(696\) 5.89446e6 0.461234
\(697\) 450996.i 0.0351634i
\(698\) − 1.17846e7i − 0.915535i
\(699\) 7.24199e6 0.560615
\(700\) 0 0
\(701\) 1.52050e7 1.16867 0.584334 0.811514i \(-0.301356\pi\)
0.584334 + 0.811514i \(0.301356\pi\)
\(702\) 2.28150e6i 0.174734i
\(703\) 1.90989e7i 1.45754i
\(704\) −2.89469e7 −2.20125
\(705\) 0 0
\(706\) −1.88198e7 −1.42103
\(707\) 5.61444e6i 0.422433i
\(708\) − 1.26277e6i − 0.0946764i
\(709\) 1.80833e7 1.35102 0.675509 0.737351i \(-0.263924\pi\)
0.675509 + 0.737351i \(0.263924\pi\)
\(710\) 0 0
\(711\) 8.23943e6 0.611256
\(712\) − 1.55415e6i − 0.114893i
\(713\) − 2.55107e6i − 0.187931i
\(714\) −1.12289e7 −0.824311
\(715\) 0 0
\(716\) −4.07207e6 −0.296847
\(717\) − 1.12223e6i − 0.0815236i
\(718\) − 1.64108e7i − 1.18801i
\(719\) 2.08096e7 1.50121 0.750604 0.660752i \(-0.229763\pi\)
0.750604 + 0.660752i \(0.229763\pi\)
\(720\) 0 0
\(721\) −2.96963e7 −2.12747
\(722\) 2.42317e7i 1.72998i
\(723\) − 1.63014e6i − 0.115979i
\(724\) 1.41541e6 0.100355
\(725\) 0 0
\(726\) 1.40816e7 0.991537
\(727\) − 2.59006e7i − 1.81750i −0.417344 0.908749i \(-0.637039\pi\)
0.417344 0.908749i \(-0.362961\pi\)
\(728\) 8.04102e6i 0.562319i
\(729\) 3.12231e6 0.217599
\(730\) 0 0
\(731\) −1.16860e7 −0.808859
\(732\) 243852.i 0.0168209i
\(733\) 1.96307e7i 1.34951i 0.738043 + 0.674754i \(0.235750\pi\)
−0.738043 + 0.674754i \(0.764250\pi\)
\(734\) 1.21303e7 0.831056
\(735\) 0 0
\(736\) −1.74447e6 −0.118705
\(737\) − 9.87418e6i − 0.669626i
\(738\) − 304290.i − 0.0205659i
\(739\) 1.67436e7 1.12781 0.563906 0.825839i \(-0.309298\pi\)
0.563906 + 0.825839i \(0.309298\pi\)
\(740\) 0 0
\(741\) −2.74388e6 −0.183578
\(742\) − 763720.i − 0.0509242i
\(743\) − 5.57725e6i − 0.370637i −0.982679 0.185318i \(-0.940668\pi\)
0.982679 0.185318i \(-0.0593316\pi\)
\(744\) −4.25178e6 −0.281604
\(745\) 0 0
\(746\) 1.40318e7 0.923135
\(747\) 8.64763e6i 0.567016i
\(748\) − 8.52597e6i − 0.557173i
\(749\) −1.71146e7 −1.11471
\(750\) 0 0
\(751\) 1.24035e7 0.802499 0.401250 0.915969i \(-0.368576\pi\)
0.401250 + 0.915969i \(0.368576\pi\)
\(752\) 2.26802e6i 0.146252i
\(753\) − 615888.i − 0.0395835i
\(754\) −4.25711e6 −0.272701
\(755\) 0 0
\(756\) −4.61160e6 −0.293459
\(757\) 4.37170e6i 0.277275i 0.990343 + 0.138637i \(0.0442723\pi\)
−0.990343 + 0.138637i \(0.955728\pi\)
\(758\) − 1.57696e7i − 0.996892i
\(759\) 3.34433e6 0.210719
\(760\) 0 0
\(761\) −2.10490e7 −1.31756 −0.658780 0.752335i \(-0.728927\pi\)
−0.658780 + 0.752335i \(0.728927\pi\)
\(762\) 1.17858e6i 0.0735312i
\(763\) − 4.77942e7i − 2.97210i
\(764\) −2.38426e6 −0.147781
\(765\) 0 0
\(766\) −2.37522e6 −0.146262
\(767\) 5.08115e6i 0.311870i
\(768\) 3.91679e6i 0.239623i
\(769\) −2.26551e7 −1.38150 −0.690748 0.723096i \(-0.742718\pi\)
−0.690748 + 0.723096i \(0.742718\pi\)
\(770\) 0 0
\(771\) −1.32709e6 −0.0804017
\(772\) − 1.92930e6i − 0.116508i
\(773\) − 1.15053e7i − 0.692545i −0.938134 0.346272i \(-0.887447\pi\)
0.938134 0.346272i \(-0.112553\pi\)
\(774\) 7.88463e6 0.473074
\(775\) 0 0
\(776\) 1.52198e7 0.907305
\(777\) 1.03329e7i 0.614003i
\(778\) − 752830.i − 0.0445911i
\(779\) 795564. 0.0469712
\(780\) 0 0
\(781\) 3.75880e6 0.220506
\(782\) 5.38434e6i 0.314859i
\(783\) − 1.36026e7i − 0.792898i
\(784\) 3.20895e7 1.86454
\(785\) 0 0
\(786\) 6.34380e6 0.366263
\(787\) 967112.i 0.0556596i 0.999613 + 0.0278298i \(0.00885964\pi\)
−0.999613 + 0.0278298i \(0.991140\pi\)
\(788\) 3.76753e6i 0.216143i
\(789\) −8.41904e6 −0.481471
\(790\) 0 0
\(791\) 2.44581e7 1.38989
\(792\) 3.20498e7i 1.81557i
\(793\) − 981214.i − 0.0554091i
\(794\) −1.20843e6 −0.0680253
\(795\) 0 0
\(796\) 5.97688e6 0.334343
\(797\) − 2.85072e7i − 1.58968i −0.606821 0.794838i \(-0.707556\pi\)
0.606821 0.794838i \(-0.292444\pi\)
\(798\) 1.98079e7i 1.10111i
\(799\) −4.63268e6 −0.256723
\(800\) 0 0
\(801\) −1.64979e6 −0.0908547
\(802\) − 1.59840e7i − 0.877502i
\(803\) 1.16670e7i 0.638516i
\(804\) −522312. −0.0284964
\(805\) 0 0
\(806\) 3.07073e6 0.166496
\(807\) − 3.49772e6i − 0.189061i
\(808\) − 4.48695e6i − 0.241781i
\(809\) −1.08912e7 −0.585065 −0.292533 0.956256i \(-0.594498\pi\)
−0.292533 + 0.956256i \(0.594498\pi\)
\(810\) 0 0
\(811\) 1.28535e7 0.686228 0.343114 0.939294i \(-0.388518\pi\)
0.343114 + 0.939294i \(0.388518\pi\)
\(812\) − 8.60490e6i − 0.457990i
\(813\) 6.28141e6i 0.333297i
\(814\) 2.80203e7 1.48221
\(815\) 0 0
\(816\) 6.91220e6 0.363405
\(817\) 2.06143e7i 1.08047i
\(818\) − 2.11641e6i − 0.110590i
\(819\) 8.53585e6 0.444669
\(820\) 0 0
\(821\) −9.60605e6 −0.497378 −0.248689 0.968583i \(-0.580000\pi\)
−0.248689 + 0.968583i \(0.580000\pi\)
\(822\) 789060.i 0.0407315i
\(823\) − 1.42909e7i − 0.735460i −0.929933 0.367730i \(-0.880135\pi\)
0.929933 0.367730i \(-0.119865\pi\)
\(824\) 2.37327e7 1.21767
\(825\) 0 0
\(826\) 3.66805e7 1.87062
\(827\) 2.40317e7i 1.22186i 0.791685 + 0.610930i \(0.209204\pi\)
−0.791685 + 0.610930i \(0.790796\pi\)
\(828\) 1.01720e6i 0.0515620i
\(829\) −1.10830e7 −0.560107 −0.280053 0.959984i \(-0.590352\pi\)
−0.280053 + 0.959984i \(0.590352\pi\)
\(830\) 0 0
\(831\) 6.62766e6 0.332934
\(832\) − 6.16123e6i − 0.308574i
\(833\) 6.55463e7i 3.27292i
\(834\) −40320.0 −0.00200727
\(835\) 0 0
\(836\) −1.50399e7 −0.744270
\(837\) 9.81180e6i 0.484100i
\(838\) 5.65796e6i 0.278323i
\(839\) 6.89303e6 0.338069 0.169034 0.985610i \(-0.445935\pi\)
0.169034 + 0.985610i \(0.445935\pi\)
\(840\) 0 0
\(841\) 4.87030e6 0.237446
\(842\) 1.73849e7i 0.845070i
\(843\) − 5.45296e6i − 0.264279i
\(844\) −7.00787e6 −0.338633
\(845\) 0 0
\(846\) 3.12570e6 0.150149
\(847\) − 1.14530e8i − 5.48543i
\(848\) 470126.i 0.0224504i
\(849\) 2.69552e6 0.128344
\(850\) 0 0
\(851\) 4.95472e6 0.234528
\(852\) − 198828.i − 0.00938380i
\(853\) 683466.i 0.0321621i 0.999871 + 0.0160810i \(0.00511898\pi\)
−0.999871 + 0.0160810i \(0.994881\pi\)
\(854\) −7.08332e6 −0.332347
\(855\) 0 0
\(856\) 1.36777e7 0.638011
\(857\) − 7.89742e6i − 0.367310i −0.982991 0.183655i \(-0.941207\pi\)
0.982991 0.183655i \(-0.0587930\pi\)
\(858\) 4.02558e6i 0.186685i
\(859\) −3.52556e7 −1.63021 −0.815107 0.579310i \(-0.803322\pi\)
−0.815107 + 0.579310i \(0.803322\pi\)
\(860\) 0 0
\(861\) 430416. 0.0197870
\(862\) 1.70522e7i 0.781649i
\(863\) − 1.76565e7i − 0.807007i −0.914978 0.403503i \(-0.867792\pi\)
0.914978 0.403503i \(-0.132208\pi\)
\(864\) 6.70950e6 0.305778
\(865\) 0 0
\(866\) −1.70361e7 −0.771926
\(867\) 5.59979e6i 0.253002i
\(868\) 6.20687e6i 0.279623i
\(869\) 3.16044e7 1.41970
\(870\) 0 0
\(871\) 2.10168e6 0.0938690
\(872\) 3.81962e7i 1.70110i
\(873\) − 1.61564e7i − 0.717476i
\(874\) 9.49806e6 0.420587
\(875\) 0 0
\(876\) 617148. 0.0271725
\(877\) − 6.40016e6i − 0.280991i −0.990081 0.140495i \(-0.955131\pi\)
0.990081 0.140495i \(-0.0448695\pi\)
\(878\) 3.54557e7i 1.55221i
\(879\) 1.17650e7 0.513592
\(880\) 0 0
\(881\) −1.14571e7 −0.497318 −0.248659 0.968591i \(-0.579990\pi\)
−0.248659 + 0.968591i \(0.579990\pi\)
\(882\) − 4.42245e7i − 1.91422i
\(883\) − 2.42296e7i − 1.04579i −0.852397 0.522896i \(-0.824852\pi\)
0.852397 0.522896i \(-0.175148\pi\)
\(884\) 1.81472e6 0.0781051
\(885\) 0 0
\(886\) −4.11754e7 −1.76219
\(887\) 8.66087e6i 0.369617i 0.982775 + 0.184809i \(0.0591665\pi\)
−0.982775 + 0.184809i \(0.940833\pi\)
\(888\) − 8.25786e6i − 0.351427i
\(889\) 9.58578e6 0.406793
\(890\) 0 0
\(891\) 2.70762e7 1.14260
\(892\) − 149548.i − 0.00629316i
\(893\) 8.17212e6i 0.342930i
\(894\) 1.47258e6 0.0616219
\(895\) 0 0
\(896\) −2.50747e7 −1.04343
\(897\) 711828.i 0.0295389i
\(898\) 6.48003e6i 0.268155i
\(899\) −1.83081e7 −0.755516
\(900\) 0 0
\(901\) −960284. −0.0394083
\(902\) − 1.16718e6i − 0.0477663i
\(903\) 1.11528e7i 0.455159i
\(904\) −1.95464e7 −0.795511
\(905\) 0 0
\(906\) −1.07399e7 −0.434692
\(907\) − 7.84287e6i − 0.316561i −0.987394 0.158280i \(-0.949405\pi\)
0.987394 0.158280i \(-0.0505950\pi\)
\(908\) − 6.16524e6i − 0.248162i
\(909\) −4.76307e6 −0.191195
\(910\) 0 0
\(911\) −942576. −0.0376288 −0.0188144 0.999823i \(-0.505989\pi\)
−0.0188144 + 0.999823i \(0.505989\pi\)
\(912\) − 1.21932e7i − 0.485436i
\(913\) 3.31701e7i 1.31695i
\(914\) −8.40979e6 −0.332981
\(915\) 0 0
\(916\) 91210.0 0.00359173
\(917\) − 5.15962e7i − 2.02626i
\(918\) − 2.07090e7i − 0.811059i
\(919\) 2.00734e7 0.784030 0.392015 0.919959i \(-0.371778\pi\)
0.392015 + 0.919959i \(0.371778\pi\)
\(920\) 0 0
\(921\) −1.07631e7 −0.418107
\(922\) − 1.60332e7i − 0.621143i
\(923\) 800046.i 0.0309108i
\(924\) −8.13691e6 −0.313530
\(925\) 0 0
\(926\) −2.63185e7 −1.00863
\(927\) − 2.51931e7i − 0.962904i
\(928\) 1.25194e7i 0.477216i
\(929\) −1.10181e7 −0.418858 −0.209429 0.977824i \(-0.567160\pi\)
−0.209429 + 0.977824i \(0.567160\pi\)
\(930\) 0 0
\(931\) 1.15625e8 4.37196
\(932\) 8.44899e6i 0.318614i
\(933\) − 1.44740e7i − 0.544358i
\(934\) 4.13406e7 1.55064
\(935\) 0 0
\(936\) −6.82168e6 −0.254508
\(937\) 3.59532e7i 1.33779i 0.743356 + 0.668896i \(0.233233\pi\)
−0.743356 + 0.668896i \(0.766767\pi\)
\(938\) − 1.51719e7i − 0.563032i
\(939\) 1.29261e7 0.478415
\(940\) 0 0
\(941\) 1.28845e7 0.474345 0.237172 0.971468i \(-0.423779\pi\)
0.237172 + 0.971468i \(0.423779\pi\)
\(942\) 1.36350e6i 0.0500643i
\(943\) − 206388.i − 0.00755797i
\(944\) −2.25796e7 −0.824680
\(945\) 0 0
\(946\) 3.02435e7 1.09876
\(947\) − 1.18911e7i − 0.430871i −0.976518 0.215436i \(-0.930883\pi\)
0.976518 0.215436i \(-0.0691171\pi\)
\(948\) − 1.67177e6i − 0.0604164i
\(949\) −2.48329e6 −0.0895079
\(950\) 0 0
\(951\) 1.55769e7 0.558510
\(952\) − 7.29877e7i − 2.61010i
\(953\) − 4.40094e7i − 1.56969i −0.619694 0.784844i \(-0.712743\pi\)
0.619694 0.784844i \(-0.287257\pi\)
\(954\) 647910. 0.0230486
\(955\) 0 0
\(956\) 1.30927e6 0.0463322
\(957\) − 2.40010e7i − 0.847130i
\(958\) − 1.82734e7i − 0.643288i
\(959\) 6.41769e6 0.225337
\(960\) 0 0
\(961\) −1.54232e7 −0.538723
\(962\) 5.96401e6i 0.207779i
\(963\) − 1.45194e7i − 0.504525i
\(964\) 1.90183e6 0.0659142
\(965\) 0 0
\(966\) 5.13864e6 0.177176
\(967\) 2.11144e7i 0.726128i 0.931764 + 0.363064i \(0.118269\pi\)
−0.931764 + 0.363064i \(0.881731\pi\)
\(968\) 9.15301e7i 3.13961i
\(969\) 2.49060e7 0.852109
\(970\) 0 0
\(971\) 2.44293e7 0.831502 0.415751 0.909478i \(-0.363519\pi\)
0.415751 + 0.909478i \(0.363519\pi\)
\(972\) − 6.02494e6i − 0.204544i
\(973\) 327936.i 0.0111047i
\(974\) −3.56542e7 −1.20424
\(975\) 0 0
\(976\) 4.36031e6 0.146518
\(977\) 5.15549e7i 1.72796i 0.503527 + 0.863980i \(0.332036\pi\)
−0.503527 + 0.863980i \(0.667964\pi\)
\(978\) − 176760.i − 0.00590931i
\(979\) −6.32818e6 −0.211019
\(980\) 0 0
\(981\) 4.05467e7 1.34519
\(982\) 2.86276e7i 0.947339i
\(983\) 1.38938e7i 0.458604i 0.973355 + 0.229302i \(0.0736444\pi\)
−0.973355 + 0.229302i \(0.926356\pi\)
\(984\) −343980. −0.0113252
\(985\) 0 0
\(986\) 3.86415e7 1.26579
\(987\) 4.42128e6i 0.144463i
\(988\) − 3.20120e6i − 0.104333i
\(989\) 5.34784e6 0.173855
\(990\) 0 0
\(991\) 3.31496e7 1.07225 0.536123 0.844140i \(-0.319888\pi\)
0.536123 + 0.844140i \(0.319888\pi\)
\(992\) − 9.03049e6i − 0.291361i
\(993\) 5.50336e6i 0.177115i
\(994\) 5.77548e6 0.185405
\(995\) 0 0
\(996\) 1.75459e6 0.0560438
\(997\) 9.45871e6i 0.301366i 0.988582 + 0.150683i \(0.0481473\pi\)
−0.988582 + 0.150683i \(0.951853\pi\)
\(998\) 3.58626e7i 1.13976i
\(999\) −1.90566e7 −0.604132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.a.274.2 2
5.2 odd 4 325.6.a.a.1.1 1
5.3 odd 4 65.6.a.a.1.1 1
5.4 even 2 inner 325.6.b.a.274.1 2
15.8 even 4 585.6.a.a.1.1 1
20.3 even 4 1040.6.a.a.1.1 1
65.38 odd 4 845.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.a.1.1 1 5.3 odd 4
325.6.a.a.1.1 1 5.2 odd 4
325.6.b.a.274.1 2 5.4 even 2 inner
325.6.b.a.274.2 2 1.1 even 1 trivial
585.6.a.a.1.1 1 15.8 even 4
845.6.a.a.1.1 1 65.38 odd 4
1040.6.a.a.1.1 1 20.3 even 4