Properties

Label 325.6.b.a.274.1
Level $325$
Weight $6$
Character 325.274
Analytic conductor $52.125$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(274,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.274");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 325.274
Dual form 325.6.b.a.274.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000i q^{2} +6.00000i q^{3} +7.00000 q^{4} +30.0000 q^{6} +244.000i q^{7} -195.000i q^{8} +207.000 q^{9} +794.000 q^{11} +42.0000i q^{12} -169.000i q^{13} +1220.00 q^{14} -751.000 q^{16} +1534.00i q^{17} -1035.00i q^{18} -2706.00 q^{19} -1464.00 q^{21} -3970.00i q^{22} -702.000i q^{23} +1170.00 q^{24} -845.000 q^{26} +2700.00i q^{27} +1708.00i q^{28} +5038.00 q^{29} -3634.00 q^{31} -2485.00i q^{32} +4764.00i q^{33} +7670.00 q^{34} +1449.00 q^{36} +7058.00i q^{37} +13530.0i q^{38} +1014.00 q^{39} -294.000 q^{41} +7320.00i q^{42} +7618.00i q^{43} +5558.00 q^{44} -3510.00 q^{46} +3020.00i q^{47} -4506.00i q^{48} -42729.0 q^{49} -9204.00 q^{51} -1183.00i q^{52} +626.000i q^{53} +13500.0 q^{54} +47580.0 q^{56} -16236.0i q^{57} -25190.0i q^{58} +30066.0 q^{59} -5806.00 q^{61} +18170.0i q^{62} +50508.0i q^{63} -36457.0 q^{64} +23820.0 q^{66} +12436.0i q^{67} +10738.0i q^{68} +4212.00 q^{69} +4734.00 q^{71} -40365.0i q^{72} -14694.0i q^{73} +35290.0 q^{74} -18942.0 q^{76} +193736. i q^{77} -5070.00i q^{78} +39804.0 q^{79} +34101.0 q^{81} +1470.00i q^{82} -41776.0i q^{83} -10248.0 q^{84} +38090.0 q^{86} +30228.0i q^{87} -154830. i q^{88} -7970.00 q^{89} +41236.0 q^{91} -4914.00i q^{92} -21804.0i q^{93} +15100.0 q^{94} +14910.0 q^{96} +78050.0i q^{97} +213645. i q^{98} +164358. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{4} + 60 q^{6} + 414 q^{9} + 1588 q^{11} + 2440 q^{14} - 1502 q^{16} - 5412 q^{19} - 2928 q^{21} + 2340 q^{24} - 1690 q^{26} + 10076 q^{29} - 7268 q^{31} + 15340 q^{34} + 2898 q^{36} + 2028 q^{39}+ \cdots + 328716 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 5.00000i − 0.883883i −0.897044 0.441942i \(-0.854290\pi\)
0.897044 0.441942i \(-0.145710\pi\)
\(3\) 6.00000i 0.384900i 0.981307 + 0.192450i \(0.0616434\pi\)
−0.981307 + 0.192450i \(0.938357\pi\)
\(4\) 7.00000 0.218750
\(5\) 0 0
\(6\) 30.0000 0.340207
\(7\) 244.000i 1.88211i 0.338255 + 0.941054i \(0.390163\pi\)
−0.338255 + 0.941054i \(0.609837\pi\)
\(8\) − 195.000i − 1.07723i
\(9\) 207.000 0.851852
\(10\) 0 0
\(11\) 794.000 1.97851 0.989256 0.146192i \(-0.0467017\pi\)
0.989256 + 0.146192i \(0.0467017\pi\)
\(12\) 42.0000i 0.0841969i
\(13\) − 169.000i − 0.277350i
\(14\) 1220.00 1.66356
\(15\) 0 0
\(16\) −751.000 −0.733398
\(17\) 1534.00i 1.28737i 0.765291 + 0.643685i \(0.222595\pi\)
−0.765291 + 0.643685i \(0.777405\pi\)
\(18\) − 1035.00i − 0.752938i
\(19\) −2706.00 −1.71966 −0.859832 0.510576i \(-0.829432\pi\)
−0.859832 + 0.510576i \(0.829432\pi\)
\(20\) 0 0
\(21\) −1464.00 −0.724424
\(22\) − 3970.00i − 1.74877i
\(23\) − 702.000i − 0.276705i −0.990383 0.138353i \(-0.955819\pi\)
0.990383 0.138353i \(-0.0441807\pi\)
\(24\) 1170.00 0.414627
\(25\) 0 0
\(26\) −845.000 −0.245145
\(27\) 2700.00i 0.712778i
\(28\) 1708.00i 0.411711i
\(29\) 5038.00 1.11241 0.556203 0.831047i \(-0.312258\pi\)
0.556203 + 0.831047i \(0.312258\pi\)
\(30\) 0 0
\(31\) −3634.00 −0.679173 −0.339587 0.940575i \(-0.610287\pi\)
−0.339587 + 0.940575i \(0.610287\pi\)
\(32\) − 2485.00i − 0.428994i
\(33\) 4764.00i 0.761530i
\(34\) 7670.00 1.13788
\(35\) 0 0
\(36\) 1449.00 0.186343
\(37\) 7058.00i 0.847573i 0.905762 + 0.423787i \(0.139299\pi\)
−0.905762 + 0.423787i \(0.860701\pi\)
\(38\) 13530.0i 1.51998i
\(39\) 1014.00 0.106752
\(40\) 0 0
\(41\) −294.000 −0.0273141 −0.0136571 0.999907i \(-0.504347\pi\)
−0.0136571 + 0.999907i \(0.504347\pi\)
\(42\) 7320.00i 0.640306i
\(43\) 7618.00i 0.628304i 0.949373 + 0.314152i \(0.101720\pi\)
−0.949373 + 0.314152i \(0.898280\pi\)
\(44\) 5558.00 0.432800
\(45\) 0 0
\(46\) −3510.00 −0.244575
\(47\) 3020.00i 0.199417i 0.995017 + 0.0997085i \(0.0317910\pi\)
−0.995017 + 0.0997085i \(0.968209\pi\)
\(48\) − 4506.00i − 0.282285i
\(49\) −42729.0 −2.54233
\(50\) 0 0
\(51\) −9204.00 −0.495509
\(52\) − 1183.00i − 0.0606703i
\(53\) 626.000i 0.0306115i 0.999883 + 0.0153058i \(0.00487216\pi\)
−0.999883 + 0.0153058i \(0.995128\pi\)
\(54\) 13500.0 0.630013
\(55\) 0 0
\(56\) 47580.0 2.02747
\(57\) − 16236.0i − 0.661899i
\(58\) − 25190.0i − 0.983237i
\(59\) 30066.0 1.12446 0.562232 0.826979i \(-0.309943\pi\)
0.562232 + 0.826979i \(0.309943\pi\)
\(60\) 0 0
\(61\) −5806.00 −0.199780 −0.0998901 0.994998i \(-0.531849\pi\)
−0.0998901 + 0.994998i \(0.531849\pi\)
\(62\) 18170.0i 0.600310i
\(63\) 50508.0i 1.60328i
\(64\) −36457.0 −1.11258
\(65\) 0 0
\(66\) 23820.0 0.673104
\(67\) 12436.0i 0.338449i 0.985577 + 0.169225i \(0.0541264\pi\)
−0.985577 + 0.169225i \(0.945874\pi\)
\(68\) 10738.0i 0.281612i
\(69\) 4212.00 0.106504
\(70\) 0 0
\(71\) 4734.00 0.111451 0.0557253 0.998446i \(-0.482253\pi\)
0.0557253 + 0.998446i \(0.482253\pi\)
\(72\) − 40365.0i − 0.917643i
\(73\) − 14694.0i − 0.322725i −0.986895 0.161363i \(-0.948411\pi\)
0.986895 0.161363i \(-0.0515889\pi\)
\(74\) 35290.0 0.749156
\(75\) 0 0
\(76\) −18942.0 −0.376177
\(77\) 193736.i 3.72378i
\(78\) − 5070.00i − 0.0943564i
\(79\) 39804.0 0.717561 0.358781 0.933422i \(-0.383193\pi\)
0.358781 + 0.933422i \(0.383193\pi\)
\(80\) 0 0
\(81\) 34101.0 0.577503
\(82\) 1470.00i 0.0241425i
\(83\) − 41776.0i − 0.665628i −0.942992 0.332814i \(-0.892002\pi\)
0.942992 0.332814i \(-0.107998\pi\)
\(84\) −10248.0 −0.158468
\(85\) 0 0
\(86\) 38090.0 0.555348
\(87\) 30228.0i 0.428165i
\(88\) − 154830.i − 2.13132i
\(89\) −7970.00 −0.106656 −0.0533278 0.998577i \(-0.516983\pi\)
−0.0533278 + 0.998577i \(0.516983\pi\)
\(90\) 0 0
\(91\) 41236.0 0.522003
\(92\) − 4914.00i − 0.0605293i
\(93\) − 21804.0i − 0.261414i
\(94\) 15100.0 0.176261
\(95\) 0 0
\(96\) 14910.0 0.165120
\(97\) 78050.0i 0.842255i 0.907001 + 0.421127i \(0.138366\pi\)
−0.907001 + 0.421127i \(0.861634\pi\)
\(98\) 213645.i 2.24713i
\(99\) 164358. 1.68540
\(100\) 0 0
\(101\) −23010.0 −0.224447 −0.112223 0.993683i \(-0.535797\pi\)
−0.112223 + 0.993683i \(0.535797\pi\)
\(102\) 46020.0i 0.437972i
\(103\) 121706.i 1.13037i 0.824966 + 0.565183i \(0.191194\pi\)
−0.824966 + 0.565183i \(0.808806\pi\)
\(104\) −32955.0 −0.298771
\(105\) 0 0
\(106\) 3130.00 0.0270570
\(107\) 70142.0i 0.592269i 0.955146 + 0.296134i \(0.0956976\pi\)
−0.955146 + 0.296134i \(0.904302\pi\)
\(108\) 18900.0i 0.155920i
\(109\) 195878. 1.57914 0.789568 0.613663i \(-0.210305\pi\)
0.789568 + 0.613663i \(0.210305\pi\)
\(110\) 0 0
\(111\) −42348.0 −0.326231
\(112\) − 183244.i − 1.38034i
\(113\) − 100238.i − 0.738476i −0.929335 0.369238i \(-0.879619\pi\)
0.929335 0.369238i \(-0.120381\pi\)
\(114\) −81180.0 −0.585042
\(115\) 0 0
\(116\) 35266.0 0.243339
\(117\) − 34983.0i − 0.236261i
\(118\) − 150330.i − 0.993895i
\(119\) −374296. −2.42297
\(120\) 0 0
\(121\) 469385. 2.91451
\(122\) 29030.0i 0.176582i
\(123\) − 1764.00i − 0.0105132i
\(124\) −25438.0 −0.148569
\(125\) 0 0
\(126\) 252540. 1.41711
\(127\) − 39286.0i − 0.216137i −0.994143 0.108068i \(-0.965533\pi\)
0.994143 0.108068i \(-0.0344665\pi\)
\(128\) 102765.i 0.554396i
\(129\) −45708.0 −0.241834
\(130\) 0 0
\(131\) 211460. 1.07659 0.538295 0.842757i \(-0.319069\pi\)
0.538295 + 0.842757i \(0.319069\pi\)
\(132\) 33348.0i 0.166585i
\(133\) − 660264.i − 3.23660i
\(134\) 62180.0 0.299150
\(135\) 0 0
\(136\) 299130. 1.38680
\(137\) − 26302.0i − 0.119726i −0.998207 0.0598628i \(-0.980934\pi\)
0.998207 0.0598628i \(-0.0190663\pi\)
\(138\) − 21060.0i − 0.0941371i
\(139\) −1344.00 −0.00590014 −0.00295007 0.999996i \(-0.500939\pi\)
−0.00295007 + 0.999996i \(0.500939\pi\)
\(140\) 0 0
\(141\) −18120.0 −0.0767557
\(142\) − 23670.0i − 0.0985093i
\(143\) − 134186.i − 0.548741i
\(144\) −155457. −0.624747
\(145\) 0 0
\(146\) −73470.0 −0.285251
\(147\) − 256374.i − 0.978545i
\(148\) 49406.0i 0.185407i
\(149\) 49086.0 0.181131 0.0905653 0.995891i \(-0.471133\pi\)
0.0905653 + 0.995891i \(0.471133\pi\)
\(150\) 0 0
\(151\) −357998. −1.27773 −0.638864 0.769320i \(-0.720595\pi\)
−0.638864 + 0.769320i \(0.720595\pi\)
\(152\) 527670.i 1.85248i
\(153\) 317538.i 1.09665i
\(154\) 968680. 3.29138
\(155\) 0 0
\(156\) 7098.00 0.0233520
\(157\) − 45450.0i − 0.147158i −0.997289 0.0735791i \(-0.976558\pi\)
0.997289 0.0735791i \(-0.0234422\pi\)
\(158\) − 199020.i − 0.634241i
\(159\) −3756.00 −0.0117824
\(160\) 0 0
\(161\) 171288. 0.520790
\(162\) − 170505.i − 0.510446i
\(163\) 5892.00i 0.0173698i 0.999962 + 0.00868488i \(0.00276452\pi\)
−0.999962 + 0.00868488i \(0.997235\pi\)
\(164\) −2058.00 −0.00597497
\(165\) 0 0
\(166\) −208880. −0.588338
\(167\) − 212772.i − 0.590369i −0.955440 0.295184i \(-0.904619\pi\)
0.955440 0.295184i \(-0.0953811\pi\)
\(168\) 285480.i 0.780373i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −560142. −1.46490
\(172\) 53326.0i 0.137442i
\(173\) 503178.i 1.27822i 0.769114 + 0.639111i \(0.220698\pi\)
−0.769114 + 0.639111i \(0.779302\pi\)
\(174\) 151140. 0.378448
\(175\) 0 0
\(176\) −596294. −1.45104
\(177\) 180396.i 0.432806i
\(178\) 39850.0i 0.0942710i
\(179\) −581724. −1.35701 −0.678507 0.734594i \(-0.737373\pi\)
−0.678507 + 0.734594i \(0.737373\pi\)
\(180\) 0 0
\(181\) 202202. 0.458764 0.229382 0.973337i \(-0.426330\pi\)
0.229382 + 0.973337i \(0.426330\pi\)
\(182\) − 206180.i − 0.461390i
\(183\) − 34836.0i − 0.0768954i
\(184\) −136890. −0.298076
\(185\) 0 0
\(186\) −109020. −0.231059
\(187\) 1.21800e6i 2.54708i
\(188\) 21140.0i 0.0436225i
\(189\) −658800. −1.34153
\(190\) 0 0
\(191\) −340608. −0.675572 −0.337786 0.941223i \(-0.609678\pi\)
−0.337786 + 0.941223i \(0.609678\pi\)
\(192\) − 218742.i − 0.428232i
\(193\) 275614.i 0.532608i 0.963889 + 0.266304i \(0.0858026\pi\)
−0.963889 + 0.266304i \(0.914197\pi\)
\(194\) 390250. 0.744455
\(195\) 0 0
\(196\) −299103. −0.556135
\(197\) − 538218.i − 0.988081i −0.869439 0.494041i \(-0.835519\pi\)
0.869439 0.494041i \(-0.164481\pi\)
\(198\) − 821790.i − 1.48970i
\(199\) 853840. 1.52842 0.764212 0.644965i \(-0.223128\pi\)
0.764212 + 0.644965i \(0.223128\pi\)
\(200\) 0 0
\(201\) −74616.0 −0.130269
\(202\) 115050.i 0.198385i
\(203\) 1.22927e6i 2.09367i
\(204\) −64428.0 −0.108392
\(205\) 0 0
\(206\) 608530. 0.999111
\(207\) − 145314.i − 0.235712i
\(208\) 126919.i 0.203408i
\(209\) −2.14856e6 −3.40238
\(210\) 0 0
\(211\) −1.00112e6 −1.54804 −0.774019 0.633162i \(-0.781757\pi\)
−0.774019 + 0.633162i \(0.781757\pi\)
\(212\) 4382.00i 0.00669627i
\(213\) 28404.0i 0.0428974i
\(214\) 350710. 0.523496
\(215\) 0 0
\(216\) 526500. 0.767828
\(217\) − 886696.i − 1.27828i
\(218\) − 979390.i − 1.39577i
\(219\) 88164.0 0.124217
\(220\) 0 0
\(221\) 259246. 0.357052
\(222\) 211740.i 0.288350i
\(223\) 21364.0i 0.0287687i 0.999897 + 0.0143844i \(0.00457884\pi\)
−0.999897 + 0.0143844i \(0.995421\pi\)
\(224\) 606340. 0.807414
\(225\) 0 0
\(226\) −501190. −0.652727
\(227\) 880748.i 1.13445i 0.823561 + 0.567227i \(0.191984\pi\)
−0.823561 + 0.567227i \(0.808016\pi\)
\(228\) − 113652.i − 0.144790i
\(229\) 13030.0 0.0164193 0.00820967 0.999966i \(-0.497387\pi\)
0.00820967 + 0.999966i \(0.497387\pi\)
\(230\) 0 0
\(231\) −1.16242e6 −1.43328
\(232\) − 982410.i − 1.19832i
\(233\) − 1.20700e6i − 1.45652i −0.685300 0.728260i \(-0.740329\pi\)
0.685300 0.728260i \(-0.259671\pi\)
\(234\) −174915. −0.208827
\(235\) 0 0
\(236\) 210462. 0.245977
\(237\) 238824.i 0.276189i
\(238\) 1.87148e6i 2.14162i
\(239\) 187038. 0.211804 0.105902 0.994377i \(-0.466227\pi\)
0.105902 + 0.994377i \(0.466227\pi\)
\(240\) 0 0
\(241\) 271690. 0.301322 0.150661 0.988585i \(-0.451860\pi\)
0.150661 + 0.988585i \(0.451860\pi\)
\(242\) − 2.34692e6i − 2.57609i
\(243\) 860706.i 0.935059i
\(244\) −40642.0 −0.0437019
\(245\) 0 0
\(246\) −8820.00 −0.00929246
\(247\) 457314.i 0.476949i
\(248\) 708630.i 0.731628i
\(249\) 250656. 0.256200
\(250\) 0 0
\(251\) 102648. 0.102841 0.0514205 0.998677i \(-0.483625\pi\)
0.0514205 + 0.998677i \(0.483625\pi\)
\(252\) 353556.i 0.350717i
\(253\) − 557388.i − 0.547465i
\(254\) −196430. −0.191040
\(255\) 0 0
\(256\) −652799. −0.622558
\(257\) 221182.i 0.208890i 0.994531 + 0.104445i \(0.0333066\pi\)
−0.994531 + 0.104445i \(0.966693\pi\)
\(258\) 228540.i 0.213753i
\(259\) −1.72215e6 −1.59523
\(260\) 0 0
\(261\) 1.04287e6 0.947605
\(262\) − 1.05730e6i − 0.951579i
\(263\) 1.40317e6i 1.25090i 0.780265 + 0.625449i \(0.215084\pi\)
−0.780265 + 0.625449i \(0.784916\pi\)
\(264\) 928980. 0.820345
\(265\) 0 0
\(266\) −3.30132e6 −2.86077
\(267\) − 47820.0i − 0.0410517i
\(268\) 87052.0i 0.0740358i
\(269\) 582954. 0.491195 0.245597 0.969372i \(-0.421016\pi\)
0.245597 + 0.969372i \(0.421016\pi\)
\(270\) 0 0
\(271\) −1.04690e6 −0.865930 −0.432965 0.901411i \(-0.642533\pi\)
−0.432965 + 0.901411i \(0.642533\pi\)
\(272\) − 1.15203e6i − 0.944154i
\(273\) 247416.i 0.200919i
\(274\) −131510. −0.105824
\(275\) 0 0
\(276\) 29484.0 0.0232977
\(277\) − 1.10461e6i − 0.864987i −0.901637 0.432493i \(-0.857634\pi\)
0.901637 0.432493i \(-0.142366\pi\)
\(278\) 6720.00i 0.00521504i
\(279\) −752238. −0.578555
\(280\) 0 0
\(281\) 908826. 0.686618 0.343309 0.939223i \(-0.388452\pi\)
0.343309 + 0.939223i \(0.388452\pi\)
\(282\) 90600.0i 0.0678431i
\(283\) − 449254.i − 0.333446i −0.986004 0.166723i \(-0.946681\pi\)
0.986004 0.166723i \(-0.0533186\pi\)
\(284\) 33138.0 0.0243798
\(285\) 0 0
\(286\) −670930. −0.485023
\(287\) − 71736.0i − 0.0514082i
\(288\) − 514395.i − 0.365440i
\(289\) −933299. −0.657319
\(290\) 0 0
\(291\) −468300. −0.324184
\(292\) − 102858.i − 0.0705961i
\(293\) − 1.96083e6i − 1.33435i −0.744901 0.667175i \(-0.767503\pi\)
0.744901 0.667175i \(-0.232497\pi\)
\(294\) −1.28187e6 −0.864919
\(295\) 0 0
\(296\) 1.37631e6 0.913034
\(297\) 2.14380e6i 1.41024i
\(298\) − 245430.i − 0.160098i
\(299\) −118638. −0.0767442
\(300\) 0 0
\(301\) −1.85879e6 −1.18254
\(302\) 1.78999e6i 1.12936i
\(303\) − 138060.i − 0.0863896i
\(304\) 2.03221e6 1.26120
\(305\) 0 0
\(306\) 1.58769e6 0.969309
\(307\) 1.79385e6i 1.08627i 0.839644 + 0.543137i \(0.182764\pi\)
−0.839644 + 0.543137i \(0.817236\pi\)
\(308\) 1.35615e6i 0.814576i
\(309\) −730236. −0.435078
\(310\) 0 0
\(311\) 2.41233e6 1.41428 0.707141 0.707072i \(-0.249985\pi\)
0.707141 + 0.707072i \(0.249985\pi\)
\(312\) − 197730.i − 0.114997i
\(313\) − 2.15436e6i − 1.24296i −0.783430 0.621480i \(-0.786532\pi\)
0.783430 0.621480i \(-0.213468\pi\)
\(314\) −227250. −0.130071
\(315\) 0 0
\(316\) 278628. 0.156967
\(317\) − 2.59616e6i − 1.45105i −0.688195 0.725526i \(-0.741597\pi\)
0.688195 0.725526i \(-0.258403\pi\)
\(318\) 18780.0i 0.0104142i
\(319\) 4.00017e6 2.20091
\(320\) 0 0
\(321\) −420852. −0.227964
\(322\) − 856440.i − 0.460317i
\(323\) − 4.15100e6i − 2.21384i
\(324\) 238707. 0.126329
\(325\) 0 0
\(326\) 29460.0 0.0153528
\(327\) 1.17527e6i 0.607810i
\(328\) 57330.0i 0.0294237i
\(329\) −736880. −0.375325
\(330\) 0 0
\(331\) −917226. −0.460157 −0.230079 0.973172i \(-0.573898\pi\)
−0.230079 + 0.973172i \(0.573898\pi\)
\(332\) − 292432.i − 0.145606i
\(333\) 1.46101e6i 0.722007i
\(334\) −1.06386e6 −0.521817
\(335\) 0 0
\(336\) 1.09946e6 0.531291
\(337\) − 2.23894e6i − 1.07391i −0.843611 0.536954i \(-0.819575\pi\)
0.843611 0.536954i \(-0.180425\pi\)
\(338\) 142805.i 0.0679910i
\(339\) 601428. 0.284239
\(340\) 0 0
\(341\) −2.88540e6 −1.34375
\(342\) 2.80071e6i 1.29480i
\(343\) − 6.32497e6i − 2.90284i
\(344\) 1.48551e6 0.676830
\(345\) 0 0
\(346\) 2.51589e6 1.12980
\(347\) − 3.41808e6i − 1.52391i −0.647631 0.761954i \(-0.724240\pi\)
0.647631 0.761954i \(-0.275760\pi\)
\(348\) 211596.i 0.0936611i
\(349\) −2.35691e6 −1.03581 −0.517905 0.855438i \(-0.673288\pi\)
−0.517905 + 0.855438i \(0.673288\pi\)
\(350\) 0 0
\(351\) 456300. 0.197689
\(352\) − 1.97309e6i − 0.848770i
\(353\) − 3.76395e6i − 1.60771i −0.594827 0.803854i \(-0.702779\pi\)
0.594827 0.803854i \(-0.297221\pi\)
\(354\) 901980. 0.382550
\(355\) 0 0
\(356\) −55790.0 −0.0233309
\(357\) − 2.24578e6i − 0.932601i
\(358\) 2.90862e6i 1.19944i
\(359\) −3.28216e6 −1.34407 −0.672037 0.740517i \(-0.734581\pi\)
−0.672037 + 0.740517i \(0.734581\pi\)
\(360\) 0 0
\(361\) 4.84634e6 1.95725
\(362\) − 1.01101e6i − 0.405494i
\(363\) 2.81631e6i 1.12180i
\(364\) 288652. 0.114188
\(365\) 0 0
\(366\) −174180. −0.0679666
\(367\) 2.42605e6i 0.940233i 0.882604 + 0.470116i \(0.155788\pi\)
−0.882604 + 0.470116i \(0.844212\pi\)
\(368\) 527202.i 0.202935i
\(369\) −60858.0 −0.0232676
\(370\) 0 0
\(371\) −152744. −0.0576142
\(372\) − 152628.i − 0.0571843i
\(373\) 2.80635e6i 1.04441i 0.852820 + 0.522204i \(0.174890\pi\)
−0.852820 + 0.522204i \(0.825110\pi\)
\(374\) 6.08998e6 2.25132
\(375\) 0 0
\(376\) 588900. 0.214819
\(377\) − 851422.i − 0.308526i
\(378\) 3.29400e6i 1.18575i
\(379\) −3.15392e6 −1.12785 −0.563927 0.825825i \(-0.690710\pi\)
−0.563927 + 0.825825i \(0.690710\pi\)
\(380\) 0 0
\(381\) 235716. 0.0831911
\(382\) 1.70304e6i 0.597127i
\(383\) − 475044.i − 0.165477i −0.996571 0.0827384i \(-0.973633\pi\)
0.996571 0.0827384i \(-0.0263666\pi\)
\(384\) −616590. −0.213387
\(385\) 0 0
\(386\) 1.37807e6 0.470764
\(387\) 1.57693e6i 0.535222i
\(388\) 546350.i 0.184243i
\(389\) −150566. −0.0504490 −0.0252245 0.999682i \(-0.508030\pi\)
−0.0252245 + 0.999682i \(0.508030\pi\)
\(390\) 0 0
\(391\) 1.07687e6 0.356222
\(392\) 8.33216e6i 2.73869i
\(393\) 1.26876e6i 0.414379i
\(394\) −2.69109e6 −0.873349
\(395\) 0 0
\(396\) 1.15051e6 0.368681
\(397\) − 241686.i − 0.0769618i −0.999259 0.0384809i \(-0.987748\pi\)
0.999259 0.0384809i \(-0.0122519\pi\)
\(398\) − 4.26920e6i − 1.35095i
\(399\) 3.96158e6 1.24577
\(400\) 0 0
\(401\) −3.19679e6 −0.992780 −0.496390 0.868100i \(-0.665341\pi\)
−0.496390 + 0.868100i \(0.665341\pi\)
\(402\) 373080.i 0.115143i
\(403\) 614146.i 0.188369i
\(404\) −161070. −0.0490977
\(405\) 0 0
\(406\) 6.14636e6 1.85056
\(407\) 5.60405e6i 1.67693i
\(408\) 1.79478e6i 0.533778i
\(409\) −423282. −0.125119 −0.0625593 0.998041i \(-0.519926\pi\)
−0.0625593 + 0.998041i \(0.519926\pi\)
\(410\) 0 0
\(411\) 157812. 0.0460824
\(412\) 851942.i 0.247267i
\(413\) 7.33610e6i 2.11636i
\(414\) −726570. −0.208342
\(415\) 0 0
\(416\) −419965. −0.118982
\(417\) − 8064.00i − 0.00227096i
\(418\) 1.07428e7i 3.00731i
\(419\) 1.13159e6 0.314887 0.157444 0.987528i \(-0.449675\pi\)
0.157444 + 0.987528i \(0.449675\pi\)
\(420\) 0 0
\(421\) 3.47699e6 0.956088 0.478044 0.878336i \(-0.341346\pi\)
0.478044 + 0.878336i \(0.341346\pi\)
\(422\) 5.00562e6i 1.36829i
\(423\) 625140.i 0.169874i
\(424\) 122070. 0.0329757
\(425\) 0 0
\(426\) 142020. 0.0379163
\(427\) − 1.41666e6i − 0.376008i
\(428\) 490994.i 0.129559i
\(429\) 805116. 0.211210
\(430\) 0 0
\(431\) 3.41044e6 0.884335 0.442168 0.896932i \(-0.354210\pi\)
0.442168 + 0.896932i \(0.354210\pi\)
\(432\) − 2.02770e6i − 0.522750i
\(433\) − 3.40722e6i − 0.873335i −0.899623 0.436667i \(-0.856159\pi\)
0.899623 0.436667i \(-0.143841\pi\)
\(434\) −4.43348e6 −1.12985
\(435\) 0 0
\(436\) 1.37115e6 0.345436
\(437\) 1.89961e6i 0.475840i
\(438\) − 440820.i − 0.109793i
\(439\) 7.09114e6 1.75612 0.878061 0.478549i \(-0.158837\pi\)
0.878061 + 0.478549i \(0.158837\pi\)
\(440\) 0 0
\(441\) −8.84490e6 −2.16569
\(442\) − 1.29623e6i − 0.315592i
\(443\) − 8.23508e6i − 1.99369i −0.0793445 0.996847i \(-0.525283\pi\)
0.0793445 0.996847i \(-0.474717\pi\)
\(444\) −296436. −0.0713631
\(445\) 0 0
\(446\) 106820. 0.0254282
\(447\) 294516.i 0.0697172i
\(448\) − 8.89551e6i − 2.09400i
\(449\) 1.29601e6 0.303383 0.151691 0.988428i \(-0.451528\pi\)
0.151691 + 0.988428i \(0.451528\pi\)
\(450\) 0 0
\(451\) −233436. −0.0540414
\(452\) − 701666.i − 0.161542i
\(453\) − 2.14799e6i − 0.491798i
\(454\) 4.40374e6 1.00273
\(455\) 0 0
\(456\) −3.16602e6 −0.713020
\(457\) − 1.68196e6i − 0.376725i −0.982100 0.188363i \(-0.939682\pi\)
0.982100 0.188363i \(-0.0603180\pi\)
\(458\) − 65150.0i − 0.0145128i
\(459\) −4.14180e6 −0.917608
\(460\) 0 0
\(461\) −3.20663e6 −0.702743 −0.351372 0.936236i \(-0.614285\pi\)
−0.351372 + 0.936236i \(0.614285\pi\)
\(462\) 5.81208e6i 1.26685i
\(463\) − 5.26370e6i − 1.14114i −0.821249 0.570570i \(-0.806722\pi\)
0.821249 0.570570i \(-0.193278\pi\)
\(464\) −3.78354e6 −0.815837
\(465\) 0 0
\(466\) −6.03499e6 −1.28739
\(467\) 8.26813e6i 1.75435i 0.480175 + 0.877173i \(0.340573\pi\)
−0.480175 + 0.877173i \(0.659427\pi\)
\(468\) − 244881.i − 0.0516821i
\(469\) −3.03438e6 −0.636999
\(470\) 0 0
\(471\) 272700. 0.0566413
\(472\) − 5.86287e6i − 1.21131i
\(473\) 6.04869e6i 1.24311i
\(474\) 1.19412e6 0.244119
\(475\) 0 0
\(476\) −2.62007e6 −0.530024
\(477\) 129582.i 0.0260765i
\(478\) − 935190.i − 0.187210i
\(479\) −3.65468e6 −0.727797 −0.363899 0.931439i \(-0.618555\pi\)
−0.363899 + 0.931439i \(0.618555\pi\)
\(480\) 0 0
\(481\) 1.19280e6 0.235075
\(482\) − 1.35845e6i − 0.266334i
\(483\) 1.02773e6i 0.200452i
\(484\) 3.28570e6 0.637549
\(485\) 0 0
\(486\) 4.30353e6 0.826483
\(487\) − 7.13084e6i − 1.36244i −0.732077 0.681221i \(-0.761449\pi\)
0.732077 0.681221i \(-0.238551\pi\)
\(488\) 1.13217e6i 0.215210i
\(489\) −35352.0 −0.00668562
\(490\) 0 0
\(491\) 5.72551e6 1.07179 0.535896 0.844284i \(-0.319974\pi\)
0.535896 + 0.844284i \(0.319974\pi\)
\(492\) − 12348.0i − 0.00229977i
\(493\) 7.72829e6i 1.43208i
\(494\) 2.28657e6 0.421568
\(495\) 0 0
\(496\) 2.72913e6 0.498105
\(497\) 1.15510e6i 0.209762i
\(498\) − 1.25328e6i − 0.226451i
\(499\) 7.17251e6 1.28950 0.644748 0.764395i \(-0.276962\pi\)
0.644748 + 0.764395i \(0.276962\pi\)
\(500\) 0 0
\(501\) 1.27663e6 0.227233
\(502\) − 513240.i − 0.0908994i
\(503\) − 2.90611e6i − 0.512143i −0.966658 0.256072i \(-0.917572\pi\)
0.966658 0.256072i \(-0.0824283\pi\)
\(504\) 9.84906e6 1.72710
\(505\) 0 0
\(506\) −2.78694e6 −0.483895
\(507\) − 171366.i − 0.0296077i
\(508\) − 275002.i − 0.0472799i
\(509\) 8.37125e6 1.43217 0.716087 0.698011i \(-0.245931\pi\)
0.716087 + 0.698011i \(0.245931\pi\)
\(510\) 0 0
\(511\) 3.58534e6 0.607404
\(512\) 6.55248e6i 1.10466i
\(513\) − 7.30620e6i − 1.22574i
\(514\) 1.10591e6 0.184634
\(515\) 0 0
\(516\) −319956. −0.0529013
\(517\) 2.39788e6i 0.394549i
\(518\) 8.61076e6i 1.40999i
\(519\) −3.01907e6 −0.491988
\(520\) 0 0
\(521\) 5.37332e6 0.867258 0.433629 0.901092i \(-0.357233\pi\)
0.433629 + 0.901092i \(0.357233\pi\)
\(522\) − 5.21433e6i − 0.837572i
\(523\) 5.26875e6i 0.842274i 0.906997 + 0.421137i \(0.138369\pi\)
−0.906997 + 0.421137i \(0.861631\pi\)
\(524\) 1.48022e6 0.235504
\(525\) 0 0
\(526\) 7.01587e6 1.10565
\(527\) − 5.57456e6i − 0.874347i
\(528\) − 3.57776e6i − 0.558505i
\(529\) 5.94354e6 0.923434
\(530\) 0 0
\(531\) 6.22366e6 0.957877
\(532\) − 4.62185e6i − 0.708005i
\(533\) 49686.0i 0.00757558i
\(534\) −239100. −0.0362849
\(535\) 0 0
\(536\) 2.42502e6 0.364589
\(537\) − 3.49034e6i − 0.522315i
\(538\) − 2.91477e6i − 0.434159i
\(539\) −3.39268e7 −5.03004
\(540\) 0 0
\(541\) −6.07956e6 −0.893056 −0.446528 0.894770i \(-0.647340\pi\)
−0.446528 + 0.894770i \(0.647340\pi\)
\(542\) 5.23451e6i 0.765381i
\(543\) 1.21321e6i 0.176578i
\(544\) 3.81199e6 0.552274
\(545\) 0 0
\(546\) 1.23708e6 0.177589
\(547\) 7.88715e6i 1.12707i 0.826091 + 0.563536i \(0.190559\pi\)
−0.826091 + 0.563536i \(0.809441\pi\)
\(548\) − 184114.i − 0.0261900i
\(549\) −1.20184e6 −0.170183
\(550\) 0 0
\(551\) −1.36328e7 −1.91296
\(552\) − 821340.i − 0.114730i
\(553\) 9.71218e6i 1.35053i
\(554\) −5.52305e6 −0.764548
\(555\) 0 0
\(556\) −9408.00 −0.00129066
\(557\) 5.88545e6i 0.803788i 0.915686 + 0.401894i \(0.131648\pi\)
−0.915686 + 0.401894i \(0.868352\pi\)
\(558\) 3.76119e6i 0.511375i
\(559\) 1.28744e6 0.174260
\(560\) 0 0
\(561\) −7.30798e6 −0.980370
\(562\) − 4.54413e6i − 0.606890i
\(563\) − 3.91526e6i − 0.520583i −0.965530 0.260291i \(-0.916181\pi\)
0.965530 0.260291i \(-0.0838186\pi\)
\(564\) −126840. −0.0167903
\(565\) 0 0
\(566\) −2.24627e6 −0.294728
\(567\) 8.32064e6i 1.08692i
\(568\) − 923130.i − 0.120058i
\(569\) −9.78180e6 −1.26660 −0.633298 0.773908i \(-0.718299\pi\)
−0.633298 + 0.773908i \(0.718299\pi\)
\(570\) 0 0
\(571\) −1.08198e7 −1.38877 −0.694386 0.719603i \(-0.744324\pi\)
−0.694386 + 0.719603i \(0.744324\pi\)
\(572\) − 939302.i − 0.120037i
\(573\) − 2.04365e6i − 0.260028i
\(574\) −358680. −0.0454389
\(575\) 0 0
\(576\) −7.54660e6 −0.947753
\(577\) − 1.48792e7i − 1.86055i −0.366865 0.930274i \(-0.619569\pi\)
0.366865 0.930274i \(-0.380431\pi\)
\(578\) 4.66650e6i 0.580993i
\(579\) −1.65368e6 −0.205001
\(580\) 0 0
\(581\) 1.01933e7 1.25278
\(582\) 2.34150e6i 0.286541i
\(583\) 497044.i 0.0605652i
\(584\) −2.86533e6 −0.347650
\(585\) 0 0
\(586\) −9.80413e6 −1.17941
\(587\) − 1.22649e7i − 1.46916i −0.678525 0.734578i \(-0.737380\pi\)
0.678525 0.734578i \(-0.262620\pi\)
\(588\) − 1.79462e6i − 0.214057i
\(589\) 9.83360e6 1.16795
\(590\) 0 0
\(591\) 3.22931e6 0.380313
\(592\) − 5.30056e6i − 0.621609i
\(593\) − 1.54878e7i − 1.80864i −0.426856 0.904320i \(-0.640379\pi\)
0.426856 0.904320i \(-0.359621\pi\)
\(594\) 1.07190e7 1.24649
\(595\) 0 0
\(596\) 343602. 0.0396223
\(597\) 5.12304e6i 0.588291i
\(598\) 593190.i 0.0678330i
\(599\) −9.75710e6 −1.11110 −0.555551 0.831483i \(-0.687493\pi\)
−0.555551 + 0.831483i \(0.687493\pi\)
\(600\) 0 0
\(601\) −7.57967e6 −0.855981 −0.427990 0.903783i \(-0.640778\pi\)
−0.427990 + 0.903783i \(0.640778\pi\)
\(602\) 9.29396e6i 1.04522i
\(603\) 2.57425e6i 0.288309i
\(604\) −2.50599e6 −0.279503
\(605\) 0 0
\(606\) −690300. −0.0763583
\(607\) − 1.36231e7i − 1.50073i −0.661022 0.750367i \(-0.729877\pi\)
0.661022 0.750367i \(-0.270123\pi\)
\(608\) 6.72441e6i 0.737726i
\(609\) −7.37563e6 −0.805853
\(610\) 0 0
\(611\) 510380. 0.0553083
\(612\) 2.22277e6i 0.239892i
\(613\) − 1.20366e7i − 1.29376i −0.762592 0.646880i \(-0.776073\pi\)
0.762592 0.646880i \(-0.223927\pi\)
\(614\) 8.96924e6 0.960140
\(615\) 0 0
\(616\) 3.77785e7 4.01137
\(617\) − 8.55509e6i − 0.904715i −0.891837 0.452358i \(-0.850583\pi\)
0.891837 0.452358i \(-0.149417\pi\)
\(618\) 3.65118e6i 0.384558i
\(619\) 1.33018e7 1.39535 0.697675 0.716414i \(-0.254218\pi\)
0.697675 + 0.716414i \(0.254218\pi\)
\(620\) 0 0
\(621\) 1.89540e6 0.197230
\(622\) − 1.20617e7i − 1.25006i
\(623\) − 1.94468e6i − 0.200737i
\(624\) −761514. −0.0782918
\(625\) 0 0
\(626\) −1.07718e7 −1.09863
\(627\) − 1.28914e7i − 1.30958i
\(628\) − 318150.i − 0.0321909i
\(629\) −1.08270e7 −1.09114
\(630\) 0 0
\(631\) 9.16681e6 0.916526 0.458263 0.888817i \(-0.348472\pi\)
0.458263 + 0.888817i \(0.348472\pi\)
\(632\) − 7.76178e6i − 0.772981i
\(633\) − 6.00674e6i − 0.595840i
\(634\) −1.29808e7 −1.28256
\(635\) 0 0
\(636\) −26292.0 −0.00257739
\(637\) 7.22120e6i 0.705116i
\(638\) − 2.00009e7i − 1.94535i
\(639\) 979938. 0.0949394
\(640\) 0 0
\(641\) 9.96437e6 0.957866 0.478933 0.877851i \(-0.341024\pi\)
0.478933 + 0.877851i \(0.341024\pi\)
\(642\) 2.10426e6i 0.201494i
\(643\) 6.64194e6i 0.633530i 0.948504 + 0.316765i \(0.102597\pi\)
−0.948504 + 0.316765i \(0.897403\pi\)
\(644\) 1.19902e6 0.113923
\(645\) 0 0
\(646\) −2.07550e7 −1.95678
\(647\) − 844766.i − 0.0793370i −0.999213 0.0396685i \(-0.987370\pi\)
0.999213 0.0396685i \(-0.0126302\pi\)
\(648\) − 6.64969e6i − 0.622106i
\(649\) 2.38724e7 2.22477
\(650\) 0 0
\(651\) 5.32018e6 0.492010
\(652\) 41244.0i 0.00379963i
\(653\) 5.79681e6i 0.531993i 0.963974 + 0.265997i \(0.0857010\pi\)
−0.963974 + 0.265997i \(0.914299\pi\)
\(654\) 5.87634e6 0.537233
\(655\) 0 0
\(656\) 220794. 0.0200322
\(657\) − 3.04166e6i − 0.274914i
\(658\) 3.68440e6i 0.331743i
\(659\) 1.12406e7 1.00827 0.504136 0.863624i \(-0.331811\pi\)
0.504136 + 0.863624i \(0.331811\pi\)
\(660\) 0 0
\(661\) −1.54928e7 −1.37920 −0.689599 0.724191i \(-0.742213\pi\)
−0.689599 + 0.724191i \(0.742213\pi\)
\(662\) 4.58613e6i 0.406725i
\(663\) 1.55548e6i 0.137429i
\(664\) −8.14632e6 −0.717037
\(665\) 0 0
\(666\) 7.30503e6 0.638170
\(667\) − 3.53668e6i − 0.307809i
\(668\) − 1.48940e6i − 0.129143i
\(669\) −128184. −0.0110731
\(670\) 0 0
\(671\) −4.60996e6 −0.395268
\(672\) 3.63804e6i 0.310774i
\(673\) − 723294.i − 0.0615570i −0.999526 0.0307785i \(-0.990201\pi\)
0.999526 0.0307785i \(-0.00979864\pi\)
\(674\) −1.11947e7 −0.949210
\(675\) 0 0
\(676\) −199927. −0.0168269
\(677\) 7.57359e6i 0.635082i 0.948244 + 0.317541i \(0.102857\pi\)
−0.948244 + 0.317541i \(0.897143\pi\)
\(678\) − 3.00714e6i − 0.251235i
\(679\) −1.90442e7 −1.58522
\(680\) 0 0
\(681\) −5.28449e6 −0.436652
\(682\) 1.44270e7i 1.18772i
\(683\) − 1.65552e7i − 1.35794i −0.734164 0.678972i \(-0.762426\pi\)
0.734164 0.678972i \(-0.237574\pi\)
\(684\) −3.92099e6 −0.320447
\(685\) 0 0
\(686\) −3.16248e7 −2.56577
\(687\) 78180.0i 0.00631981i
\(688\) − 5.72112e6i − 0.460797i
\(689\) 105794. 0.00849010
\(690\) 0 0
\(691\) −2.04593e7 −1.63003 −0.815016 0.579438i \(-0.803272\pi\)
−0.815016 + 0.579438i \(0.803272\pi\)
\(692\) 3.52225e6i 0.279611i
\(693\) 4.01034e7i 3.17211i
\(694\) −1.70904e7 −1.34696
\(695\) 0 0
\(696\) 5.89446e6 0.461234
\(697\) − 450996.i − 0.0351634i
\(698\) 1.17846e7i 0.915535i
\(699\) 7.24199e6 0.560615
\(700\) 0 0
\(701\) 1.52050e7 1.16867 0.584334 0.811514i \(-0.301356\pi\)
0.584334 + 0.811514i \(0.301356\pi\)
\(702\) − 2.28150e6i − 0.174734i
\(703\) − 1.90989e7i − 1.45754i
\(704\) −2.89469e7 −2.20125
\(705\) 0 0
\(706\) −1.88198e7 −1.42103
\(707\) − 5.61444e6i − 0.422433i
\(708\) 1.26277e6i 0.0946764i
\(709\) 1.80833e7 1.35102 0.675509 0.737351i \(-0.263924\pi\)
0.675509 + 0.737351i \(0.263924\pi\)
\(710\) 0 0
\(711\) 8.23943e6 0.611256
\(712\) 1.55415e6i 0.114893i
\(713\) 2.55107e6i 0.187931i
\(714\) −1.12289e7 −0.824311
\(715\) 0 0
\(716\) −4.07207e6 −0.296847
\(717\) 1.12223e6i 0.0815236i
\(718\) 1.64108e7i 1.18801i
\(719\) 2.08096e7 1.50121 0.750604 0.660752i \(-0.229763\pi\)
0.750604 + 0.660752i \(0.229763\pi\)
\(720\) 0 0
\(721\) −2.96963e7 −2.12747
\(722\) − 2.42317e7i − 1.72998i
\(723\) 1.63014e6i 0.115979i
\(724\) 1.41541e6 0.100355
\(725\) 0 0
\(726\) 1.40816e7 0.991537
\(727\) 2.59006e7i 1.81750i 0.417344 + 0.908749i \(0.362961\pi\)
−0.417344 + 0.908749i \(0.637039\pi\)
\(728\) − 8.04102e6i − 0.562319i
\(729\) 3.12231e6 0.217599
\(730\) 0 0
\(731\) −1.16860e7 −0.808859
\(732\) − 243852.i − 0.0168209i
\(733\) − 1.96307e7i − 1.34951i −0.738043 0.674754i \(-0.764250\pi\)
0.738043 0.674754i \(-0.235750\pi\)
\(734\) 1.21303e7 0.831056
\(735\) 0 0
\(736\) −1.74447e6 −0.118705
\(737\) 9.87418e6i 0.669626i
\(738\) 304290.i 0.0205659i
\(739\) 1.67436e7 1.12781 0.563906 0.825839i \(-0.309298\pi\)
0.563906 + 0.825839i \(0.309298\pi\)
\(740\) 0 0
\(741\) −2.74388e6 −0.183578
\(742\) 763720.i 0.0509242i
\(743\) 5.57725e6i 0.370637i 0.982679 + 0.185318i \(0.0593316\pi\)
−0.982679 + 0.185318i \(0.940668\pi\)
\(744\) −4.25178e6 −0.281604
\(745\) 0 0
\(746\) 1.40318e7 0.923135
\(747\) − 8.64763e6i − 0.567016i
\(748\) 8.52597e6i 0.557173i
\(749\) −1.71146e7 −1.11471
\(750\) 0 0
\(751\) 1.24035e7 0.802499 0.401250 0.915969i \(-0.368576\pi\)
0.401250 + 0.915969i \(0.368576\pi\)
\(752\) − 2.26802e6i − 0.146252i
\(753\) 615888.i 0.0395835i
\(754\) −4.25711e6 −0.272701
\(755\) 0 0
\(756\) −4.61160e6 −0.293459
\(757\) − 4.37170e6i − 0.277275i −0.990343 0.138637i \(-0.955728\pi\)
0.990343 0.138637i \(-0.0442723\pi\)
\(758\) 1.57696e7i 0.996892i
\(759\) 3.34433e6 0.210719
\(760\) 0 0
\(761\) −2.10490e7 −1.31756 −0.658780 0.752335i \(-0.728927\pi\)
−0.658780 + 0.752335i \(0.728927\pi\)
\(762\) − 1.17858e6i − 0.0735312i
\(763\) 4.77942e7i 2.97210i
\(764\) −2.38426e6 −0.147781
\(765\) 0 0
\(766\) −2.37522e6 −0.146262
\(767\) − 5.08115e6i − 0.311870i
\(768\) − 3.91679e6i − 0.239623i
\(769\) −2.26551e7 −1.38150 −0.690748 0.723096i \(-0.742718\pi\)
−0.690748 + 0.723096i \(0.742718\pi\)
\(770\) 0 0
\(771\) −1.32709e6 −0.0804017
\(772\) 1.92930e6i 0.116508i
\(773\) 1.15053e7i 0.692545i 0.938134 + 0.346272i \(0.112553\pi\)
−0.938134 + 0.346272i \(0.887447\pi\)
\(774\) 7.88463e6 0.473074
\(775\) 0 0
\(776\) 1.52198e7 0.907305
\(777\) − 1.03329e7i − 0.614003i
\(778\) 752830.i 0.0445911i
\(779\) 795564. 0.0469712
\(780\) 0 0
\(781\) 3.75880e6 0.220506
\(782\) − 5.38434e6i − 0.314859i
\(783\) 1.36026e7i 0.792898i
\(784\) 3.20895e7 1.86454
\(785\) 0 0
\(786\) 6.34380e6 0.366263
\(787\) − 967112.i − 0.0556596i −0.999613 0.0278298i \(-0.991140\pi\)
0.999613 0.0278298i \(-0.00885964\pi\)
\(788\) − 3.76753e6i − 0.216143i
\(789\) −8.41904e6 −0.481471
\(790\) 0 0
\(791\) 2.44581e7 1.38989
\(792\) − 3.20498e7i − 1.81557i
\(793\) 981214.i 0.0554091i
\(794\) −1.20843e6 −0.0680253
\(795\) 0 0
\(796\) 5.97688e6 0.334343
\(797\) 2.85072e7i 1.58968i 0.606821 + 0.794838i \(0.292444\pi\)
−0.606821 + 0.794838i \(0.707556\pi\)
\(798\) − 1.98079e7i − 1.10111i
\(799\) −4.63268e6 −0.256723
\(800\) 0 0
\(801\) −1.64979e6 −0.0908547
\(802\) 1.59840e7i 0.877502i
\(803\) − 1.16670e7i − 0.638516i
\(804\) −522312. −0.0284964
\(805\) 0 0
\(806\) 3.07073e6 0.166496
\(807\) 3.49772e6i 0.189061i
\(808\) 4.48695e6i 0.241781i
\(809\) −1.08912e7 −0.585065 −0.292533 0.956256i \(-0.594498\pi\)
−0.292533 + 0.956256i \(0.594498\pi\)
\(810\) 0 0
\(811\) 1.28535e7 0.686228 0.343114 0.939294i \(-0.388518\pi\)
0.343114 + 0.939294i \(0.388518\pi\)
\(812\) 8.60490e6i 0.457990i
\(813\) − 6.28141e6i − 0.333297i
\(814\) 2.80203e7 1.48221
\(815\) 0 0
\(816\) 6.91220e6 0.363405
\(817\) − 2.06143e7i − 1.08047i
\(818\) 2.11641e6i 0.110590i
\(819\) 8.53585e6 0.444669
\(820\) 0 0
\(821\) −9.60605e6 −0.497378 −0.248689 0.968583i \(-0.580000\pi\)
−0.248689 + 0.968583i \(0.580000\pi\)
\(822\) − 789060.i − 0.0407315i
\(823\) 1.42909e7i 0.735460i 0.929933 + 0.367730i \(0.119865\pi\)
−0.929933 + 0.367730i \(0.880135\pi\)
\(824\) 2.37327e7 1.21767
\(825\) 0 0
\(826\) 3.66805e7 1.87062
\(827\) − 2.40317e7i − 1.22186i −0.791685 0.610930i \(-0.790796\pi\)
0.791685 0.610930i \(-0.209204\pi\)
\(828\) − 1.01720e6i − 0.0515620i
\(829\) −1.10830e7 −0.560107 −0.280053 0.959984i \(-0.590352\pi\)
−0.280053 + 0.959984i \(0.590352\pi\)
\(830\) 0 0
\(831\) 6.62766e6 0.332934
\(832\) 6.16123e6i 0.308574i
\(833\) − 6.55463e7i − 3.27292i
\(834\) −40320.0 −0.00200727
\(835\) 0 0
\(836\) −1.50399e7 −0.744270
\(837\) − 9.81180e6i − 0.484100i
\(838\) − 5.65796e6i − 0.278323i
\(839\) 6.89303e6 0.338069 0.169034 0.985610i \(-0.445935\pi\)
0.169034 + 0.985610i \(0.445935\pi\)
\(840\) 0 0
\(841\) 4.87030e6 0.237446
\(842\) − 1.73849e7i − 0.845070i
\(843\) 5.45296e6i 0.264279i
\(844\) −7.00787e6 −0.338633
\(845\) 0 0
\(846\) 3.12570e6 0.150149
\(847\) 1.14530e8i 5.48543i
\(848\) − 470126.i − 0.0224504i
\(849\) 2.69552e6 0.128344
\(850\) 0 0
\(851\) 4.95472e6 0.234528
\(852\) 198828.i 0.00938380i
\(853\) − 683466.i − 0.0321621i −0.999871 0.0160810i \(-0.994881\pi\)
0.999871 0.0160810i \(-0.00511898\pi\)
\(854\) −7.08332e6 −0.332347
\(855\) 0 0
\(856\) 1.36777e7 0.638011
\(857\) 7.89742e6i 0.367310i 0.982991 + 0.183655i \(0.0587930\pi\)
−0.982991 + 0.183655i \(0.941207\pi\)
\(858\) − 4.02558e6i − 0.186685i
\(859\) −3.52556e7 −1.63021 −0.815107 0.579310i \(-0.803322\pi\)
−0.815107 + 0.579310i \(0.803322\pi\)
\(860\) 0 0
\(861\) 430416. 0.0197870
\(862\) − 1.70522e7i − 0.781649i
\(863\) 1.76565e7i 0.807007i 0.914978 + 0.403503i \(0.132208\pi\)
−0.914978 + 0.403503i \(0.867792\pi\)
\(864\) 6.70950e6 0.305778
\(865\) 0 0
\(866\) −1.70361e7 −0.771926
\(867\) − 5.59979e6i − 0.253002i
\(868\) − 6.20687e6i − 0.279623i
\(869\) 3.16044e7 1.41970
\(870\) 0 0
\(871\) 2.10168e6 0.0938690
\(872\) − 3.81962e7i − 1.70110i
\(873\) 1.61564e7i 0.717476i
\(874\) 9.49806e6 0.420587
\(875\) 0 0
\(876\) 617148. 0.0271725
\(877\) 6.40016e6i 0.280991i 0.990081 + 0.140495i \(0.0448695\pi\)
−0.990081 + 0.140495i \(0.955131\pi\)
\(878\) − 3.54557e7i − 1.55221i
\(879\) 1.17650e7 0.513592
\(880\) 0 0
\(881\) −1.14571e7 −0.497318 −0.248659 0.968591i \(-0.579990\pi\)
−0.248659 + 0.968591i \(0.579990\pi\)
\(882\) 4.42245e7i 1.91422i
\(883\) 2.42296e7i 1.04579i 0.852397 + 0.522896i \(0.175148\pi\)
−0.852397 + 0.522896i \(0.824852\pi\)
\(884\) 1.81472e6 0.0781051
\(885\) 0 0
\(886\) −4.11754e7 −1.76219
\(887\) − 8.66087e6i − 0.369617i −0.982775 0.184809i \(-0.940833\pi\)
0.982775 0.184809i \(-0.0591665\pi\)
\(888\) 8.25786e6i 0.351427i
\(889\) 9.58578e6 0.406793
\(890\) 0 0
\(891\) 2.70762e7 1.14260
\(892\) 149548.i 0.00629316i
\(893\) − 8.17212e6i − 0.342930i
\(894\) 1.47258e6 0.0616219
\(895\) 0 0
\(896\) −2.50747e7 −1.04343
\(897\) − 711828.i − 0.0295389i
\(898\) − 6.48003e6i − 0.268155i
\(899\) −1.83081e7 −0.755516
\(900\) 0 0
\(901\) −960284. −0.0394083
\(902\) 1.16718e6i 0.0477663i
\(903\) − 1.11528e7i − 0.455159i
\(904\) −1.95464e7 −0.795511
\(905\) 0 0
\(906\) −1.07399e7 −0.434692
\(907\) 7.84287e6i 0.316561i 0.987394 + 0.158280i \(0.0505950\pi\)
−0.987394 + 0.158280i \(0.949405\pi\)
\(908\) 6.16524e6i 0.248162i
\(909\) −4.76307e6 −0.191195
\(910\) 0 0
\(911\) −942576. −0.0376288 −0.0188144 0.999823i \(-0.505989\pi\)
−0.0188144 + 0.999823i \(0.505989\pi\)
\(912\) 1.21932e7i 0.485436i
\(913\) − 3.31701e7i − 1.31695i
\(914\) −8.40979e6 −0.332981
\(915\) 0 0
\(916\) 91210.0 0.00359173
\(917\) 5.15962e7i 2.02626i
\(918\) 2.07090e7i 0.811059i
\(919\) 2.00734e7 0.784030 0.392015 0.919959i \(-0.371778\pi\)
0.392015 + 0.919959i \(0.371778\pi\)
\(920\) 0 0
\(921\) −1.07631e7 −0.418107
\(922\) 1.60332e7i 0.621143i
\(923\) − 800046.i − 0.0309108i
\(924\) −8.13691e6 −0.313530
\(925\) 0 0
\(926\) −2.63185e7 −1.00863
\(927\) 2.51931e7i 0.962904i
\(928\) − 1.25194e7i − 0.477216i
\(929\) −1.10181e7 −0.418858 −0.209429 0.977824i \(-0.567160\pi\)
−0.209429 + 0.977824i \(0.567160\pi\)
\(930\) 0 0
\(931\) 1.15625e8 4.37196
\(932\) − 8.44899e6i − 0.318614i
\(933\) 1.44740e7i 0.544358i
\(934\) 4.13406e7 1.55064
\(935\) 0 0
\(936\) −6.82168e6 −0.254508
\(937\) − 3.59532e7i − 1.33779i −0.743356 0.668896i \(-0.766767\pi\)
0.743356 0.668896i \(-0.233233\pi\)
\(938\) 1.51719e7i 0.563032i
\(939\) 1.29261e7 0.478415
\(940\) 0 0
\(941\) 1.28845e7 0.474345 0.237172 0.971468i \(-0.423779\pi\)
0.237172 + 0.971468i \(0.423779\pi\)
\(942\) − 1.36350e6i − 0.0500643i
\(943\) 206388.i 0.00755797i
\(944\) −2.25796e7 −0.824680
\(945\) 0 0
\(946\) 3.02435e7 1.09876
\(947\) 1.18911e7i 0.430871i 0.976518 + 0.215436i \(0.0691171\pi\)
−0.976518 + 0.215436i \(0.930883\pi\)
\(948\) 1.67177e6i 0.0604164i
\(949\) −2.48329e6 −0.0895079
\(950\) 0 0
\(951\) 1.55769e7 0.558510
\(952\) 7.29877e7i 2.61010i
\(953\) 4.40094e7i 1.56969i 0.619694 + 0.784844i \(0.287257\pi\)
−0.619694 + 0.784844i \(0.712743\pi\)
\(954\) 647910. 0.0230486
\(955\) 0 0
\(956\) 1.30927e6 0.0463322
\(957\) 2.40010e7i 0.847130i
\(958\) 1.82734e7i 0.643288i
\(959\) 6.41769e6 0.225337
\(960\) 0 0
\(961\) −1.54232e7 −0.538723
\(962\) − 5.96401e6i − 0.207779i
\(963\) 1.45194e7i 0.504525i
\(964\) 1.90183e6 0.0659142
\(965\) 0 0
\(966\) 5.13864e6 0.177176
\(967\) − 2.11144e7i − 0.726128i −0.931764 0.363064i \(-0.881731\pi\)
0.931764 0.363064i \(-0.118269\pi\)
\(968\) − 9.15301e7i − 3.13961i
\(969\) 2.49060e7 0.852109
\(970\) 0 0
\(971\) 2.44293e7 0.831502 0.415751 0.909478i \(-0.363519\pi\)
0.415751 + 0.909478i \(0.363519\pi\)
\(972\) 6.02494e6i 0.204544i
\(973\) − 327936.i − 0.0111047i
\(974\) −3.56542e7 −1.20424
\(975\) 0 0
\(976\) 4.36031e6 0.146518
\(977\) − 5.15549e7i − 1.72796i −0.503527 0.863980i \(-0.667964\pi\)
0.503527 0.863980i \(-0.332036\pi\)
\(978\) 176760.i 0.00590931i
\(979\) −6.32818e6 −0.211019
\(980\) 0 0
\(981\) 4.05467e7 1.34519
\(982\) − 2.86276e7i − 0.947339i
\(983\) − 1.38938e7i − 0.458604i −0.973355 0.229302i \(-0.926356\pi\)
0.973355 0.229302i \(-0.0736444\pi\)
\(984\) −343980. −0.0113252
\(985\) 0 0
\(986\) 3.86415e7 1.26579
\(987\) − 4.42128e6i − 0.144463i
\(988\) 3.20120e6i 0.104333i
\(989\) 5.34784e6 0.173855
\(990\) 0 0
\(991\) 3.31496e7 1.07225 0.536123 0.844140i \(-0.319888\pi\)
0.536123 + 0.844140i \(0.319888\pi\)
\(992\) 9.03049e6i 0.291361i
\(993\) − 5.50336e6i − 0.177115i
\(994\) 5.77548e6 0.185405
\(995\) 0 0
\(996\) 1.75459e6 0.0560438
\(997\) − 9.45871e6i − 0.301366i −0.988582 0.150683i \(-0.951853\pi\)
0.988582 0.150683i \(-0.0481473\pi\)
\(998\) − 3.58626e7i − 1.13976i
\(999\) −1.90566e7 −0.604132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.b.a.274.1 2
5.2 odd 4 65.6.a.a.1.1 1
5.3 odd 4 325.6.a.a.1.1 1
5.4 even 2 inner 325.6.b.a.274.2 2
15.2 even 4 585.6.a.a.1.1 1
20.7 even 4 1040.6.a.a.1.1 1
65.12 odd 4 845.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.a.1.1 1 5.2 odd 4
325.6.a.a.1.1 1 5.3 odd 4
325.6.b.a.274.1 2 1.1 even 1 trivial
325.6.b.a.274.2 2 5.4 even 2 inner
585.6.a.a.1.1 1 15.2 even 4
845.6.a.a.1.1 1 65.12 odd 4
1040.6.a.a.1.1 1 20.7 even 4