Defining parameters
Level: | \( N \) | \(=\) | \( 325 = 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 325.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(210\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(325, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 182 | 90 | 92 |
Cusp forms | 170 | 90 | 80 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(325, [\chi])\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(325, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)