Properties

Label 325.6.a.k.1.11
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 5 x^{10} - 257 x^{9} + 1165 x^{8} + 22234 x^{7} - 90282 x^{6} - 751180 x^{5} + 2564400 x^{4} + \cdots + 44115200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(11.2252\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.2252 q^{2} +19.1897 q^{3} +94.0044 q^{4} +215.408 q^{6} +70.9909 q^{7} +696.009 q^{8} +125.246 q^{9} -161.025 q^{11} +1803.92 q^{12} +169.000 q^{13} +796.885 q^{14} +4804.68 q^{16} -121.397 q^{17} +1405.90 q^{18} -3111.76 q^{19} +1362.30 q^{21} -1807.53 q^{22} -3100.00 q^{23} +13356.2 q^{24} +1897.05 q^{26} -2259.68 q^{27} +6673.46 q^{28} +3172.08 q^{29} -3515.11 q^{31} +31661.0 q^{32} -3090.02 q^{33} -1362.70 q^{34} +11773.6 q^{36} +6991.30 q^{37} -34930.1 q^{38} +3243.06 q^{39} -19551.6 q^{41} +15292.0 q^{42} +13398.3 q^{43} -15137.0 q^{44} -34798.0 q^{46} +7637.52 q^{47} +92200.5 q^{48} -11767.3 q^{49} -2329.57 q^{51} +15886.7 q^{52} +27750.4 q^{53} -25365.2 q^{54} +49410.3 q^{56} -59713.9 q^{57} +35607.1 q^{58} +33042.3 q^{59} -33195.2 q^{61} -39457.6 q^{62} +8891.30 q^{63} +201651. q^{64} -34686.0 q^{66} +24591.9 q^{67} -11411.8 q^{68} -59488.1 q^{69} +16641.4 q^{71} +87172.0 q^{72} -5252.97 q^{73} +78478.5 q^{74} -292519. q^{76} -11431.3 q^{77} +36403.9 q^{78} -3121.54 q^{79} -73797.2 q^{81} -219470. q^{82} -25125.8 q^{83} +128062. q^{84} +150399. q^{86} +60871.3 q^{87} -112075. q^{88} +634.739 q^{89} +11997.5 q^{91} -291413. q^{92} -67453.9 q^{93} +85732.5 q^{94} +607566. q^{96} +156159. q^{97} -132090. q^{98} -20167.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 5 q^{2} + 11 q^{3} + 187 q^{4} + 351 q^{6} + 208 q^{7} + 165 q^{8} + 1372 q^{9} + 1276 q^{11} + 1533 q^{12} + 1859 q^{13} + 578 q^{14} + 5707 q^{16} + 2218 q^{17} - 6776 q^{18} + 3520 q^{19} + 1706 q^{21}+ \cdots + 426698 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 11.2252 1.98435 0.992174 0.124864i \(-0.0398494\pi\)
0.992174 + 0.124864i \(0.0398494\pi\)
\(3\) 19.1897 1.23102 0.615511 0.788129i \(-0.288950\pi\)
0.615511 + 0.788129i \(0.288950\pi\)
\(4\) 94.0044 2.93764
\(5\) 0 0
\(6\) 215.408 2.44277
\(7\) 70.9909 0.547593 0.273796 0.961788i \(-0.411721\pi\)
0.273796 + 0.961788i \(0.411721\pi\)
\(8\) 696.009 3.84494
\(9\) 125.246 0.515414
\(10\) 0 0
\(11\) −161.025 −0.401246 −0.200623 0.979669i \(-0.564297\pi\)
−0.200623 + 0.979669i \(0.564297\pi\)
\(12\) 1803.92 3.61629
\(13\) 169.000 0.277350
\(14\) 796.885 1.08661
\(15\) 0 0
\(16\) 4804.68 4.69207
\(17\) −121.397 −0.101879 −0.0509396 0.998702i \(-0.516222\pi\)
−0.0509396 + 0.998702i \(0.516222\pi\)
\(18\) 1405.90 1.02276
\(19\) −3111.76 −1.97753 −0.988764 0.149485i \(-0.952238\pi\)
−0.988764 + 0.149485i \(0.952238\pi\)
\(20\) 0 0
\(21\) 1362.30 0.674099
\(22\) −1807.53 −0.796211
\(23\) −3100.00 −1.22192 −0.610959 0.791662i \(-0.709216\pi\)
−0.610959 + 0.791662i \(0.709216\pi\)
\(24\) 13356.2 4.73321
\(25\) 0 0
\(26\) 1897.05 0.550359
\(27\) −2259.68 −0.596536
\(28\) 6673.46 1.60863
\(29\) 3172.08 0.700404 0.350202 0.936674i \(-0.386113\pi\)
0.350202 + 0.936674i \(0.386113\pi\)
\(30\) 0 0
\(31\) −3515.11 −0.656953 −0.328476 0.944512i \(-0.606535\pi\)
−0.328476 + 0.944512i \(0.606535\pi\)
\(32\) 31661.0 5.46575
\(33\) −3090.02 −0.493942
\(34\) −1362.70 −0.202164
\(35\) 0 0
\(36\) 11773.6 1.51410
\(37\) 6991.30 0.839563 0.419782 0.907625i \(-0.362107\pi\)
0.419782 + 0.907625i \(0.362107\pi\)
\(38\) −34930.1 −3.92410
\(39\) 3243.06 0.341424
\(40\) 0 0
\(41\) −19551.6 −1.81644 −0.908222 0.418488i \(-0.862560\pi\)
−0.908222 + 0.418488i \(0.862560\pi\)
\(42\) 15292.0 1.33765
\(43\) 13398.3 1.10504 0.552522 0.833498i \(-0.313665\pi\)
0.552522 + 0.833498i \(0.313665\pi\)
\(44\) −15137.0 −1.17871
\(45\) 0 0
\(46\) −34798.0 −2.42471
\(47\) 7637.52 0.504322 0.252161 0.967685i \(-0.418859\pi\)
0.252161 + 0.967685i \(0.418859\pi\)
\(48\) 92200.5 5.77604
\(49\) −11767.3 −0.700142
\(50\) 0 0
\(51\) −2329.57 −0.125415
\(52\) 15886.7 0.814754
\(53\) 27750.4 1.35700 0.678500 0.734600i \(-0.262630\pi\)
0.678500 + 0.734600i \(0.262630\pi\)
\(54\) −25365.2 −1.18374
\(55\) 0 0
\(56\) 49410.3 2.10546
\(57\) −59713.9 −2.43438
\(58\) 35607.1 1.38985
\(59\) 33042.3 1.23578 0.617889 0.786265i \(-0.287988\pi\)
0.617889 + 0.786265i \(0.287988\pi\)
\(60\) 0 0
\(61\) −33195.2 −1.14222 −0.571110 0.820873i \(-0.693487\pi\)
−0.571110 + 0.820873i \(0.693487\pi\)
\(62\) −39457.6 −1.30362
\(63\) 8891.30 0.282237
\(64\) 201651. 6.15389
\(65\) 0 0
\(66\) −34686.0 −0.980153
\(67\) 24591.9 0.669275 0.334637 0.942347i \(-0.391386\pi\)
0.334637 + 0.942347i \(0.391386\pi\)
\(68\) −11411.8 −0.299284
\(69\) −59488.1 −1.50421
\(70\) 0 0
\(71\) 16641.4 0.391781 0.195891 0.980626i \(-0.437240\pi\)
0.195891 + 0.980626i \(0.437240\pi\)
\(72\) 87172.0 1.98174
\(73\) −5252.97 −0.115371 −0.0576856 0.998335i \(-0.518372\pi\)
−0.0576856 + 0.998335i \(0.518372\pi\)
\(74\) 78478.5 1.66599
\(75\) 0 0
\(76\) −292519. −5.80926
\(77\) −11431.3 −0.219719
\(78\) 36403.9 0.677504
\(79\) −3121.54 −0.0562731 −0.0281366 0.999604i \(-0.508957\pi\)
−0.0281366 + 0.999604i \(0.508957\pi\)
\(80\) 0 0
\(81\) −73797.2 −1.24976
\(82\) −219470. −3.60446
\(83\) −25125.8 −0.400336 −0.200168 0.979762i \(-0.564149\pi\)
−0.200168 + 0.979762i \(0.564149\pi\)
\(84\) 128062. 1.98026
\(85\) 0 0
\(86\) 150399. 2.19279
\(87\) 60871.3 0.862213
\(88\) −112075. −1.54277
\(89\) 634.739 0.00849416 0.00424708 0.999991i \(-0.498648\pi\)
0.00424708 + 0.999991i \(0.498648\pi\)
\(90\) 0 0
\(91\) 11997.5 0.151875
\(92\) −291413. −3.58955
\(93\) −67453.9 −0.808723
\(94\) 85732.5 1.00075
\(95\) 0 0
\(96\) 607566. 6.72846
\(97\) 156159. 1.68514 0.842572 0.538584i \(-0.181041\pi\)
0.842572 + 0.538584i \(0.181041\pi\)
\(98\) −132090. −1.38933
\(99\) −20167.6 −0.206808
\(100\) 0 0
\(101\) −165081. −1.61026 −0.805128 0.593101i \(-0.797903\pi\)
−0.805128 + 0.593101i \(0.797903\pi\)
\(102\) −26149.9 −0.248868
\(103\) 75861.6 0.704578 0.352289 0.935891i \(-0.385403\pi\)
0.352289 + 0.935891i \(0.385403\pi\)
\(104\) 117626. 1.06640
\(105\) 0 0
\(106\) 311503. 2.69276
\(107\) −141728. −1.19673 −0.598366 0.801223i \(-0.704183\pi\)
−0.598366 + 0.801223i \(0.704183\pi\)
\(108\) −212419. −1.75241
\(109\) 11820.9 0.0952981 0.0476490 0.998864i \(-0.484827\pi\)
0.0476490 + 0.998864i \(0.484827\pi\)
\(110\) 0 0
\(111\) 134161. 1.03352
\(112\) 341089. 2.56934
\(113\) −43552.7 −0.320862 −0.160431 0.987047i \(-0.551288\pi\)
−0.160431 + 0.987047i \(0.551288\pi\)
\(114\) −670298. −4.83065
\(115\) 0 0
\(116\) 298189. 2.05753
\(117\) 21166.5 0.142950
\(118\) 370906. 2.45222
\(119\) −8618.08 −0.0557883
\(120\) 0 0
\(121\) −135122. −0.839002
\(122\) −372621. −2.26656
\(123\) −375189. −2.23608
\(124\) −330435. −1.92989
\(125\) 0 0
\(126\) 99806.3 0.560056
\(127\) 229412. 1.26214 0.631068 0.775727i \(-0.282617\pi\)
0.631068 + 0.775727i \(0.282617\pi\)
\(128\) 1.25041e6 6.74570
\(129\) 257110. 1.36033
\(130\) 0 0
\(131\) −161719. −0.823347 −0.411674 0.911331i \(-0.635056\pi\)
−0.411674 + 0.911331i \(0.635056\pi\)
\(132\) −290475. −1.45102
\(133\) −220907. −1.08288
\(134\) 276048. 1.32807
\(135\) 0 0
\(136\) −84493.4 −0.391720
\(137\) 233597. 1.06332 0.531662 0.846956i \(-0.321567\pi\)
0.531662 + 0.846956i \(0.321567\pi\)
\(138\) −667764. −2.98487
\(139\) 97992.9 0.430187 0.215094 0.976593i \(-0.430994\pi\)
0.215094 + 0.976593i \(0.430994\pi\)
\(140\) 0 0
\(141\) 146562. 0.620831
\(142\) 186802. 0.777430
\(143\) −27213.1 −0.111286
\(144\) 601765. 2.41836
\(145\) 0 0
\(146\) −58965.4 −0.228937
\(147\) −225811. −0.861890
\(148\) 657212. 2.46633
\(149\) 267805. 0.988219 0.494110 0.869400i \(-0.335494\pi\)
0.494110 + 0.869400i \(0.335494\pi\)
\(150\) 0 0
\(151\) −125041. −0.446283 −0.223141 0.974786i \(-0.571631\pi\)
−0.223141 + 0.974786i \(0.571631\pi\)
\(152\) −2.16582e6 −7.60348
\(153\) −15204.4 −0.0525099
\(154\) −128318. −0.436000
\(155\) 0 0
\(156\) 304862. 1.00298
\(157\) −323793. −1.04838 −0.524189 0.851602i \(-0.675632\pi\)
−0.524189 + 0.851602i \(0.675632\pi\)
\(158\) −35039.8 −0.111665
\(159\) 532523. 1.67050
\(160\) 0 0
\(161\) −220072. −0.669113
\(162\) −828386. −2.47996
\(163\) −483015. −1.42394 −0.711970 0.702210i \(-0.752197\pi\)
−0.711970 + 0.702210i \(0.752197\pi\)
\(164\) −1.83793e6 −5.33605
\(165\) 0 0
\(166\) −282041. −0.794406
\(167\) 272660. 0.756538 0.378269 0.925696i \(-0.376520\pi\)
0.378269 + 0.925696i \(0.376520\pi\)
\(168\) 948171. 2.59187
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −389734. −1.01924
\(172\) 1.25950e6 3.24622
\(173\) 248584. 0.631477 0.315738 0.948846i \(-0.397748\pi\)
0.315738 + 0.948846i \(0.397748\pi\)
\(174\) 683290. 1.71093
\(175\) 0 0
\(176\) −773671. −1.88267
\(177\) 634073. 1.52127
\(178\) 7125.05 0.0168554
\(179\) 29132.9 0.0679597 0.0339798 0.999423i \(-0.489182\pi\)
0.0339798 + 0.999423i \(0.489182\pi\)
\(180\) 0 0
\(181\) 583931. 1.32485 0.662423 0.749130i \(-0.269528\pi\)
0.662423 + 0.749130i \(0.269528\pi\)
\(182\) 134674. 0.301373
\(183\) −637006. −1.40610
\(184\) −2.15763e6 −4.69820
\(185\) 0 0
\(186\) −757181. −1.60479
\(187\) 19547.9 0.0408786
\(188\) 717960. 1.48151
\(189\) −160417. −0.326659
\(190\) 0 0
\(191\) 708228. 1.40472 0.702359 0.711822i \(-0.252130\pi\)
0.702359 + 0.711822i \(0.252130\pi\)
\(192\) 3.86962e6 7.57557
\(193\) −596277. −1.15227 −0.576136 0.817354i \(-0.695440\pi\)
−0.576136 + 0.817354i \(0.695440\pi\)
\(194\) 1.75291e6 3.34391
\(195\) 0 0
\(196\) −1.10618e6 −2.05676
\(197\) −23822.5 −0.0437342 −0.0218671 0.999761i \(-0.506961\pi\)
−0.0218671 + 0.999761i \(0.506961\pi\)
\(198\) −226385. −0.410378
\(199\) 470656. 0.842503 0.421251 0.906944i \(-0.361591\pi\)
0.421251 + 0.906944i \(0.361591\pi\)
\(200\) 0 0
\(201\) 471911. 0.823892
\(202\) −1.85307e6 −3.19531
\(203\) 225189. 0.383536
\(204\) −218990. −0.368425
\(205\) 0 0
\(206\) 851560. 1.39813
\(207\) −388261. −0.629793
\(208\) 811991. 1.30135
\(209\) 501070. 0.793475
\(210\) 0 0
\(211\) −619805. −0.958405 −0.479202 0.877704i \(-0.659074\pi\)
−0.479202 + 0.877704i \(0.659074\pi\)
\(212\) 2.60866e6 3.98637
\(213\) 319344. 0.482291
\(214\) −1.59092e6 −2.37473
\(215\) 0 0
\(216\) −1.57276e6 −2.29365
\(217\) −249541. −0.359743
\(218\) 132692. 0.189105
\(219\) −100803. −0.142024
\(220\) 0 0
\(221\) −20516.1 −0.0282562
\(222\) 1.50598e6 2.05086
\(223\) −310997. −0.418787 −0.209394 0.977831i \(-0.567149\pi\)
−0.209394 + 0.977831i \(0.567149\pi\)
\(224\) 2.24765e6 2.99301
\(225\) 0 0
\(226\) −488886. −0.636702
\(227\) −450336. −0.580059 −0.290030 0.957018i \(-0.593665\pi\)
−0.290030 + 0.957018i \(0.593665\pi\)
\(228\) −5.61337e6 −7.15132
\(229\) 855126. 1.07756 0.538780 0.842447i \(-0.318886\pi\)
0.538780 + 0.842447i \(0.318886\pi\)
\(230\) 0 0
\(231\) −219363. −0.270479
\(232\) 2.20779e6 2.69301
\(233\) −1.09514e6 −1.32153 −0.660767 0.750591i \(-0.729769\pi\)
−0.660767 + 0.750591i \(0.729769\pi\)
\(234\) 237597. 0.283663
\(235\) 0 0
\(236\) 3.10612e6 3.63027
\(237\) −59901.4 −0.0692734
\(238\) −96739.4 −0.110703
\(239\) 917921. 1.03947 0.519733 0.854329i \(-0.326031\pi\)
0.519733 + 0.854329i \(0.326031\pi\)
\(240\) 0 0
\(241\) −642632. −0.712721 −0.356361 0.934349i \(-0.615982\pi\)
−0.356361 + 0.934349i \(0.615982\pi\)
\(242\) −1.51677e6 −1.66487
\(243\) −867047. −0.941948
\(244\) −3.12049e6 −3.35543
\(245\) 0 0
\(246\) −4.21156e6 −4.43717
\(247\) −525888. −0.548468
\(248\) −2.44655e6 −2.52595
\(249\) −482157. −0.492822
\(250\) 0 0
\(251\) −96744.1 −0.0969260 −0.0484630 0.998825i \(-0.515432\pi\)
−0.0484630 + 0.998825i \(0.515432\pi\)
\(252\) 835821. 0.829109
\(253\) 499176. 0.490289
\(254\) 2.57518e6 2.50452
\(255\) 0 0
\(256\) 7.58322e6 7.23192
\(257\) 1.06681e6 1.00752 0.503759 0.863844i \(-0.331950\pi\)
0.503759 + 0.863844i \(0.331950\pi\)
\(258\) 2.88611e6 2.69937
\(259\) 496319. 0.459739
\(260\) 0 0
\(261\) 397288. 0.360998
\(262\) −1.81532e6 −1.63381
\(263\) 503116. 0.448517 0.224258 0.974530i \(-0.428004\pi\)
0.224258 + 0.974530i \(0.428004\pi\)
\(264\) −2.15068e6 −1.89918
\(265\) 0 0
\(266\) −2.47972e6 −2.14881
\(267\) 12180.5 0.0104565
\(268\) 2.31174e6 1.96609
\(269\) −104820. −0.0883212 −0.0441606 0.999024i \(-0.514061\pi\)
−0.0441606 + 0.999024i \(0.514061\pi\)
\(270\) 0 0
\(271\) −168792. −0.139614 −0.0698069 0.997561i \(-0.522238\pi\)
−0.0698069 + 0.997561i \(0.522238\pi\)
\(272\) −583273. −0.478024
\(273\) 230228. 0.186961
\(274\) 2.62217e6 2.11001
\(275\) 0 0
\(276\) −5.59214e6 −4.41881
\(277\) −863313. −0.676034 −0.338017 0.941140i \(-0.609756\pi\)
−0.338017 + 0.941140i \(0.609756\pi\)
\(278\) 1.09999e6 0.853641
\(279\) −440251. −0.338602
\(280\) 0 0
\(281\) −1.56951e6 −1.18577 −0.592883 0.805289i \(-0.702010\pi\)
−0.592883 + 0.805289i \(0.702010\pi\)
\(282\) 1.64518e6 1.23194
\(283\) 1.10553e6 0.820546 0.410273 0.911963i \(-0.365433\pi\)
0.410273 + 0.911963i \(0.365433\pi\)
\(284\) 1.56436e6 1.15091
\(285\) 0 0
\(286\) −305472. −0.220829
\(287\) −1.38799e6 −0.994672
\(288\) 3.96540e6 2.81712
\(289\) −1.40512e6 −0.989621
\(290\) 0 0
\(291\) 2.99664e6 2.07445
\(292\) −493802. −0.338919
\(293\) −116407. −0.0792155 −0.0396077 0.999215i \(-0.512611\pi\)
−0.0396077 + 0.999215i \(0.512611\pi\)
\(294\) −2.53477e6 −1.71029
\(295\) 0 0
\(296\) 4.86601e6 3.22807
\(297\) 363863. 0.239358
\(298\) 3.00616e6 1.96097
\(299\) −523900. −0.338899
\(300\) 0 0
\(301\) 951161. 0.605115
\(302\) −1.40361e6 −0.885580
\(303\) −3.16787e6 −1.98226
\(304\) −1.49510e7 −9.27870
\(305\) 0 0
\(306\) −170672. −0.104198
\(307\) −830234. −0.502753 −0.251376 0.967889i \(-0.580883\pi\)
−0.251376 + 0.967889i \(0.580883\pi\)
\(308\) −1.07459e6 −0.645455
\(309\) 1.45576e6 0.867351
\(310\) 0 0
\(311\) 204863. 0.120105 0.0600526 0.998195i \(-0.480873\pi\)
0.0600526 + 0.998195i \(0.480873\pi\)
\(312\) 2.25720e6 1.31276
\(313\) −1.96760e6 −1.13521 −0.567604 0.823302i \(-0.692129\pi\)
−0.567604 + 0.823302i \(0.692129\pi\)
\(314\) −3.63463e6 −2.08035
\(315\) 0 0
\(316\) −293438. −0.165310
\(317\) −2.47859e6 −1.38534 −0.692670 0.721255i \(-0.743566\pi\)
−0.692670 + 0.721255i \(0.743566\pi\)
\(318\) 5.97766e6 3.31485
\(319\) −510782. −0.281034
\(320\) 0 0
\(321\) −2.71973e6 −1.47320
\(322\) −2.47034e6 −1.32775
\(323\) 377759. 0.201469
\(324\) −6.93726e6 −3.67135
\(325\) 0 0
\(326\) −5.42193e6 −2.82559
\(327\) 226840. 0.117314
\(328\) −1.36081e7 −6.98413
\(329\) 542195. 0.276163
\(330\) 0 0
\(331\) −3.17720e6 −1.59395 −0.796974 0.604013i \(-0.793567\pi\)
−0.796974 + 0.604013i \(0.793567\pi\)
\(332\) −2.36193e6 −1.17604
\(333\) 875629. 0.432722
\(334\) 3.06066e6 1.50123
\(335\) 0 0
\(336\) 6.54540e6 3.16292
\(337\) 1.04972e6 0.503500 0.251750 0.967792i \(-0.418994\pi\)
0.251750 + 0.967792i \(0.418994\pi\)
\(338\) 320602. 0.152642
\(339\) −835764. −0.394988
\(340\) 0 0
\(341\) 566018. 0.263599
\(342\) −4.37483e6 −2.02254
\(343\) −2.02852e6 −0.930986
\(344\) 9.32537e6 4.24883
\(345\) 0 0
\(346\) 2.79039e6 1.25307
\(347\) 502238. 0.223916 0.111958 0.993713i \(-0.464288\pi\)
0.111958 + 0.993713i \(0.464288\pi\)
\(348\) 5.72217e6 2.53287
\(349\) −1.28824e6 −0.566152 −0.283076 0.959098i \(-0.591355\pi\)
−0.283076 + 0.959098i \(0.591355\pi\)
\(350\) 0 0
\(351\) −381885. −0.165449
\(352\) −5.09820e6 −2.19311
\(353\) 3.80443e6 1.62500 0.812499 0.582962i \(-0.198107\pi\)
0.812499 + 0.582962i \(0.198107\pi\)
\(354\) 7.11758e6 3.01873
\(355\) 0 0
\(356\) 59668.2 0.0249527
\(357\) −165379. −0.0686766
\(358\) 327022. 0.134856
\(359\) 3.18303e6 1.30348 0.651740 0.758442i \(-0.274039\pi\)
0.651740 + 0.758442i \(0.274039\pi\)
\(360\) 0 0
\(361\) 7.20697e6 2.91062
\(362\) 6.55472e6 2.62895
\(363\) −2.59296e6 −1.03283
\(364\) 1.12781e6 0.446153
\(365\) 0 0
\(366\) −7.15050e6 −2.79019
\(367\) 1.51403e6 0.586770 0.293385 0.955994i \(-0.405218\pi\)
0.293385 + 0.955994i \(0.405218\pi\)
\(368\) −1.48945e7 −5.73332
\(369\) −2.44875e6 −0.936221
\(370\) 0 0
\(371\) 1.97003e6 0.743084
\(372\) −6.34096e6 −2.37573
\(373\) 1.59920e6 0.595156 0.297578 0.954698i \(-0.403821\pi\)
0.297578 + 0.954698i \(0.403821\pi\)
\(374\) 219428. 0.0811173
\(375\) 0 0
\(376\) 5.31579e6 1.93909
\(377\) 536081. 0.194257
\(378\) −1.80070e6 −0.648205
\(379\) 2.52547e6 0.903116 0.451558 0.892242i \(-0.350868\pi\)
0.451558 + 0.892242i \(0.350868\pi\)
\(380\) 0 0
\(381\) 4.40235e6 1.55372
\(382\) 7.94997e6 2.78745
\(383\) −3.16883e6 −1.10383 −0.551915 0.833900i \(-0.686103\pi\)
−0.551915 + 0.833900i \(0.686103\pi\)
\(384\) 2.39950e7 8.30410
\(385\) 0 0
\(386\) −6.69331e6 −2.28651
\(387\) 1.67808e6 0.569555
\(388\) 1.46796e7 4.95034
\(389\) 1.03129e6 0.345545 0.172773 0.984962i \(-0.444727\pi\)
0.172773 + 0.984962i \(0.444727\pi\)
\(390\) 0 0
\(391\) 376330. 0.124488
\(392\) −8.19014e6 −2.69201
\(393\) −3.10334e6 −1.01356
\(394\) −267411. −0.0867838
\(395\) 0 0
\(396\) −1.89584e6 −0.607525
\(397\) 634862. 0.202164 0.101082 0.994878i \(-0.467770\pi\)
0.101082 + 0.994878i \(0.467770\pi\)
\(398\) 5.28320e6 1.67182
\(399\) −4.23915e6 −1.33305
\(400\) 0 0
\(401\) 2.19913e6 0.682952 0.341476 0.939890i \(-0.389073\pi\)
0.341476 + 0.939890i \(0.389073\pi\)
\(402\) 5.29728e6 1.63489
\(403\) −594053. −0.182206
\(404\) −1.55184e7 −4.73035
\(405\) 0 0
\(406\) 2.52778e6 0.761070
\(407\) −1.12577e6 −0.336871
\(408\) −1.62140e6 −0.482215
\(409\) −4.25223e6 −1.25692 −0.628461 0.777841i \(-0.716315\pi\)
−0.628461 + 0.777841i \(0.716315\pi\)
\(410\) 0 0
\(411\) 4.48266e6 1.30898
\(412\) 7.13132e6 2.06979
\(413\) 2.34571e6 0.676704
\(414\) −4.35829e6 −1.24973
\(415\) 0 0
\(416\) 5.35071e6 1.51593
\(417\) 1.88046e6 0.529570
\(418\) 5.62460e6 1.57453
\(419\) 3.54751e6 0.987161 0.493581 0.869700i \(-0.335688\pi\)
0.493581 + 0.869700i \(0.335688\pi\)
\(420\) 0 0
\(421\) 1.40038e6 0.385071 0.192535 0.981290i \(-0.438329\pi\)
0.192535 + 0.981290i \(0.438329\pi\)
\(422\) −6.95742e6 −1.90181
\(423\) 956565. 0.259934
\(424\) 1.93146e7 5.21759
\(425\) 0 0
\(426\) 3.58469e6 0.957033
\(427\) −2.35656e6 −0.625472
\(428\) −1.33231e7 −3.51556
\(429\) −522213. −0.136995
\(430\) 0 0
\(431\) 5.41665e6 1.40455 0.702276 0.711905i \(-0.252167\pi\)
0.702276 + 0.711905i \(0.252167\pi\)
\(432\) −1.08570e7 −2.79899
\(433\) 5.58069e6 1.43043 0.715217 0.698902i \(-0.246328\pi\)
0.715217 + 0.698902i \(0.246328\pi\)
\(434\) −2.80113e6 −0.713854
\(435\) 0 0
\(436\) 1.11122e6 0.279951
\(437\) 9.64646e6 2.41638
\(438\) −1.13153e6 −0.281826
\(439\) −1.76748e6 −0.437716 −0.218858 0.975757i \(-0.570233\pi\)
−0.218858 + 0.975757i \(0.570233\pi\)
\(440\) 0 0
\(441\) −1.47380e6 −0.360863
\(442\) −230296. −0.0560701
\(443\) −2.11511e6 −0.512062 −0.256031 0.966669i \(-0.582415\pi\)
−0.256031 + 0.966669i \(0.582415\pi\)
\(444\) 1.26117e7 3.03611
\(445\) 0 0
\(446\) −3.49099e6 −0.831019
\(447\) 5.13911e6 1.21652
\(448\) 1.43154e7 3.36982
\(449\) 2.74804e6 0.643290 0.321645 0.946860i \(-0.395764\pi\)
0.321645 + 0.946860i \(0.395764\pi\)
\(450\) 0 0
\(451\) 3.14828e6 0.728841
\(452\) −4.09414e6 −0.942577
\(453\) −2.39950e6 −0.549384
\(454\) −5.05510e6 −1.15104
\(455\) 0 0
\(456\) −4.15614e7 −9.36005
\(457\) 3.46825e6 0.776820 0.388410 0.921487i \(-0.373024\pi\)
0.388410 + 0.921487i \(0.373024\pi\)
\(458\) 9.59893e6 2.13825
\(459\) 274318. 0.0607746
\(460\) 0 0
\(461\) 5.16521e6 1.13197 0.565986 0.824415i \(-0.308496\pi\)
0.565986 + 0.824415i \(0.308496\pi\)
\(462\) −2.46239e6 −0.536725
\(463\) 6.87934e6 1.49140 0.745700 0.666282i \(-0.232115\pi\)
0.745700 + 0.666282i \(0.232115\pi\)
\(464\) 1.52408e7 3.28634
\(465\) 0 0
\(466\) −1.22931e7 −2.62238
\(467\) 569700. 0.120880 0.0604400 0.998172i \(-0.480750\pi\)
0.0604400 + 0.998172i \(0.480750\pi\)
\(468\) 1.98974e6 0.419935
\(469\) 1.74580e6 0.366490
\(470\) 0 0
\(471\) −6.21350e6 −1.29058
\(472\) 2.29978e7 4.75150
\(473\) −2.15746e6 −0.443394
\(474\) −672404. −0.137463
\(475\) 0 0
\(476\) −810137. −0.163886
\(477\) 3.47562e6 0.699417
\(478\) 1.03038e7 2.06266
\(479\) −3.33256e6 −0.663649 −0.331825 0.943341i \(-0.607664\pi\)
−0.331825 + 0.943341i \(0.607664\pi\)
\(480\) 0 0
\(481\) 1.18153e6 0.232853
\(482\) −7.21365e6 −1.41429
\(483\) −4.22312e6 −0.823693
\(484\) −1.27021e7 −2.46468
\(485\) 0 0
\(486\) −9.73275e6 −1.86915
\(487\) 5.24387e6 1.00191 0.500956 0.865473i \(-0.332982\pi\)
0.500956 + 0.865473i \(0.332982\pi\)
\(488\) −2.31041e7 −4.39177
\(489\) −9.26893e6 −1.75290
\(490\) 0 0
\(491\) −4.52706e6 −0.847447 −0.423724 0.905792i \(-0.639277\pi\)
−0.423724 + 0.905792i \(0.639277\pi\)
\(492\) −3.52694e7 −6.56880
\(493\) −385080. −0.0713566
\(494\) −5.90318e6 −1.08835
\(495\) 0 0
\(496\) −1.68890e7 −3.08247
\(497\) 1.18139e6 0.214537
\(498\) −5.41229e6 −0.977930
\(499\) 8.06232e6 1.44947 0.724734 0.689029i \(-0.241963\pi\)
0.724734 + 0.689029i \(0.241963\pi\)
\(500\) 0 0
\(501\) 5.23227e6 0.931314
\(502\) −1.08597e6 −0.192335
\(503\) −3.91235e6 −0.689474 −0.344737 0.938699i \(-0.612032\pi\)
−0.344737 + 0.938699i \(0.612032\pi\)
\(504\) 6.18842e6 1.08518
\(505\) 0 0
\(506\) 5.60333e6 0.972904
\(507\) 548078. 0.0946940
\(508\) 2.15657e7 3.70770
\(509\) −1.01584e7 −1.73792 −0.868959 0.494884i \(-0.835210\pi\)
−0.868959 + 0.494884i \(0.835210\pi\)
\(510\) 0 0
\(511\) −372913. −0.0631765
\(512\) 4.51098e7 7.60495
\(513\) 7.03158e6 1.17967
\(514\) 1.19751e7 1.99927
\(515\) 0 0
\(516\) 2.41695e7 3.99616
\(517\) −1.22983e6 −0.202357
\(518\) 5.57126e6 0.912282
\(519\) 4.77025e6 0.777361
\(520\) 0 0
\(521\) 1.44957e6 0.233962 0.116981 0.993134i \(-0.462678\pi\)
0.116981 + 0.993134i \(0.462678\pi\)
\(522\) 4.45963e6 0.716345
\(523\) −203871. −0.0325912 −0.0162956 0.999867i \(-0.505187\pi\)
−0.0162956 + 0.999867i \(0.505187\pi\)
\(524\) −1.52023e7 −2.41869
\(525\) 0 0
\(526\) 5.64756e6 0.890013
\(527\) 426723. 0.0669298
\(528\) −1.48465e7 −2.31761
\(529\) 3.17365e6 0.493082
\(530\) 0 0
\(531\) 4.13841e6 0.636937
\(532\) −2.07662e7 −3.18111
\(533\) −3.30422e6 −0.503791
\(534\) 136728. 0.0207493
\(535\) 0 0
\(536\) 1.71162e7 2.57332
\(537\) 559052. 0.0836598
\(538\) −1.17663e6 −0.175260
\(539\) 1.89482e6 0.280929
\(540\) 0 0
\(541\) 7.28883e6 1.07069 0.535346 0.844633i \(-0.320181\pi\)
0.535346 + 0.844633i \(0.320181\pi\)
\(542\) −1.89472e6 −0.277042
\(543\) 1.12055e7 1.63091
\(544\) −3.84355e6 −0.556846
\(545\) 0 0
\(546\) 2.58435e6 0.370996
\(547\) −5.64096e6 −0.806092 −0.403046 0.915180i \(-0.632049\pi\)
−0.403046 + 0.915180i \(0.632049\pi\)
\(548\) 2.19591e7 3.12366
\(549\) −4.15754e6 −0.588716
\(550\) 0 0
\(551\) −9.87075e6 −1.38507
\(552\) −4.14043e7 −5.78359
\(553\) −221601. −0.0308148
\(554\) −9.69083e6 −1.34149
\(555\) 0 0
\(556\) 9.21176e6 1.26373
\(557\) 910831. 0.124394 0.0621971 0.998064i \(-0.480189\pi\)
0.0621971 + 0.998064i \(0.480189\pi\)
\(558\) −4.94189e6 −0.671905
\(559\) 2.26432e6 0.306484
\(560\) 0 0
\(561\) 375119. 0.0503224
\(562\) −1.76180e7 −2.35297
\(563\) 7.96586e6 1.05916 0.529580 0.848260i \(-0.322349\pi\)
0.529580 + 0.848260i \(0.322349\pi\)
\(564\) 1.37775e7 1.82378
\(565\) 0 0
\(566\) 1.24097e7 1.62825
\(567\) −5.23893e6 −0.684361
\(568\) 1.15826e7 1.50638
\(569\) −3.26286e6 −0.422492 −0.211246 0.977433i \(-0.567752\pi\)
−0.211246 + 0.977433i \(0.567752\pi\)
\(570\) 0 0
\(571\) −7.89949e6 −1.01393 −0.506966 0.861966i \(-0.669233\pi\)
−0.506966 + 0.861966i \(0.669233\pi\)
\(572\) −2.55815e6 −0.326916
\(573\) 1.35907e7 1.72924
\(574\) −1.55804e7 −1.97378
\(575\) 0 0
\(576\) 2.52558e7 3.17180
\(577\) −1.91866e6 −0.239916 −0.119958 0.992779i \(-0.538276\pi\)
−0.119958 + 0.992779i \(0.538276\pi\)
\(578\) −1.57727e7 −1.96375
\(579\) −1.14424e7 −1.41847
\(580\) 0 0
\(581\) −1.78370e6 −0.219221
\(582\) 3.36378e7 4.11642
\(583\) −4.46850e6 −0.544491
\(584\) −3.65611e6 −0.443596
\(585\) 0 0
\(586\) −1.30669e6 −0.157191
\(587\) 1.98302e6 0.237537 0.118769 0.992922i \(-0.462105\pi\)
0.118769 + 0.992922i \(0.462105\pi\)
\(588\) −2.12272e7 −2.53192
\(589\) 1.09382e7 1.29914
\(590\) 0 0
\(591\) −457146. −0.0538377
\(592\) 3.35909e7 3.93929
\(593\) 9.43563e6 1.10188 0.550940 0.834545i \(-0.314269\pi\)
0.550940 + 0.834545i \(0.314269\pi\)
\(594\) 4.08443e6 0.474969
\(595\) 0 0
\(596\) 2.51749e7 2.90303
\(597\) 9.03177e6 1.03714
\(598\) −5.88086e6 −0.672493
\(599\) 6.57359e6 0.748576 0.374288 0.927313i \(-0.377887\pi\)
0.374288 + 0.927313i \(0.377887\pi\)
\(600\) 0 0
\(601\) 9.04817e6 1.02182 0.510910 0.859634i \(-0.329308\pi\)
0.510910 + 0.859634i \(0.329308\pi\)
\(602\) 1.06769e7 1.20076
\(603\) 3.08002e6 0.344953
\(604\) −1.17544e7 −1.31102
\(605\) 0 0
\(606\) −3.55598e7 −3.93349
\(607\) 2.54414e6 0.280266 0.140133 0.990133i \(-0.455247\pi\)
0.140133 + 0.990133i \(0.455247\pi\)
\(608\) −9.85216e7 −10.8087
\(609\) 4.32131e6 0.472141
\(610\) 0 0
\(611\) 1.29074e6 0.139874
\(612\) −1.42928e6 −0.154255
\(613\) 7.53921e6 0.810354 0.405177 0.914238i \(-0.367210\pi\)
0.405177 + 0.914238i \(0.367210\pi\)
\(614\) −9.31951e6 −0.997636
\(615\) 0 0
\(616\) −7.95628e6 −0.844808
\(617\) 1.44546e6 0.152860 0.0764300 0.997075i \(-0.475648\pi\)
0.0764300 + 0.997075i \(0.475648\pi\)
\(618\) 1.63412e7 1.72113
\(619\) 832032. 0.0872797 0.0436399 0.999047i \(-0.486105\pi\)
0.0436399 + 0.999047i \(0.486105\pi\)
\(620\) 0 0
\(621\) 7.00499e6 0.728918
\(622\) 2.29962e6 0.238330
\(623\) 45060.7 0.00465134
\(624\) 1.55819e7 1.60198
\(625\) 0 0
\(626\) −2.20866e7 −2.25265
\(627\) 9.61540e6 0.976784
\(628\) −3.04379e7 −3.07975
\(629\) −848722. −0.0855340
\(630\) 0 0
\(631\) 1.42941e6 0.142916 0.0714582 0.997444i \(-0.477235\pi\)
0.0714582 + 0.997444i \(0.477235\pi\)
\(632\) −2.17262e6 −0.216367
\(633\) −1.18939e7 −1.17982
\(634\) −2.78226e7 −2.74900
\(635\) 0 0
\(636\) 5.00595e7 4.90731
\(637\) −1.98867e6 −0.194184
\(638\) −5.73362e6 −0.557669
\(639\) 2.08426e6 0.201929
\(640\) 0 0
\(641\) −1.54071e7 −1.48107 −0.740537 0.672015i \(-0.765429\pi\)
−0.740537 + 0.672015i \(0.765429\pi\)
\(642\) −3.05294e7 −2.92335
\(643\) −3.71125e6 −0.353992 −0.176996 0.984212i \(-0.556638\pi\)
−0.176996 + 0.984212i \(0.556638\pi\)
\(644\) −2.06877e7 −1.96561
\(645\) 0 0
\(646\) 4.24040e6 0.399784
\(647\) −8.31438e6 −0.780853 −0.390426 0.920634i \(-0.627672\pi\)
−0.390426 + 0.920634i \(0.627672\pi\)
\(648\) −5.13635e7 −4.80527
\(649\) −5.32063e6 −0.495851
\(650\) 0 0
\(651\) −4.78862e6 −0.442851
\(652\) −4.54055e7 −4.18302
\(653\) 2.58516e6 0.237249 0.118624 0.992939i \(-0.462152\pi\)
0.118624 + 0.992939i \(0.462152\pi\)
\(654\) 2.54631e6 0.232792
\(655\) 0 0
\(656\) −9.39391e7 −8.52289
\(657\) −657911. −0.0594639
\(658\) 6.08623e6 0.548004
\(659\) 1.77052e7 1.58813 0.794065 0.607833i \(-0.207961\pi\)
0.794065 + 0.607833i \(0.207961\pi\)
\(660\) 0 0
\(661\) 2.01104e6 0.179027 0.0895134 0.995986i \(-0.471469\pi\)
0.0895134 + 0.995986i \(0.471469\pi\)
\(662\) −3.56646e7 −3.16295
\(663\) −393698. −0.0347840
\(664\) −1.74878e7 −1.53927
\(665\) 0 0
\(666\) 9.82908e6 0.858672
\(667\) −9.83343e6 −0.855836
\(668\) 2.56312e7 2.22243
\(669\) −5.96794e6 −0.515536
\(670\) 0 0
\(671\) 5.34523e6 0.458311
\(672\) 4.31317e7 3.68446
\(673\) −5.48300e6 −0.466639 −0.233319 0.972400i \(-0.574959\pi\)
−0.233319 + 0.972400i \(0.574959\pi\)
\(674\) 1.17833e7 0.999119
\(675\) 0 0
\(676\) 2.68486e6 0.225972
\(677\) −1.58127e7 −1.32597 −0.662987 0.748631i \(-0.730712\pi\)
−0.662987 + 0.748631i \(0.730712\pi\)
\(678\) −9.38159e6 −0.783794
\(679\) 1.10859e7 0.922772
\(680\) 0 0
\(681\) −8.64183e6 −0.714065
\(682\) 6.35365e6 0.523073
\(683\) 2.24599e7 1.84229 0.921143 0.389225i \(-0.127257\pi\)
0.921143 + 0.389225i \(0.127257\pi\)
\(684\) −3.66367e7 −2.99417
\(685\) 0 0
\(686\) −2.27704e7 −1.84740
\(687\) 1.64096e7 1.32650
\(688\) 6.43747e7 5.18495
\(689\) 4.68982e6 0.376364
\(690\) 0 0
\(691\) −8.90456e6 −0.709443 −0.354721 0.934972i \(-0.615424\pi\)
−0.354721 + 0.934972i \(0.615424\pi\)
\(692\) 2.33679e7 1.85505
\(693\) −1.43172e6 −0.113246
\(694\) 5.63770e6 0.444328
\(695\) 0 0
\(696\) 4.23670e7 3.31516
\(697\) 2.37350e6 0.185058
\(698\) −1.44607e7 −1.12344
\(699\) −2.10154e7 −1.62684
\(700\) 0 0
\(701\) −1.83550e7 −1.41078 −0.705392 0.708818i \(-0.749229\pi\)
−0.705392 + 0.708818i \(0.749229\pi\)
\(702\) −4.28673e6 −0.328309
\(703\) −2.17553e7 −1.66026
\(704\) −3.24707e7 −2.46922
\(705\) 0 0
\(706\) 4.27054e7 3.22456
\(707\) −1.17193e7 −0.881765
\(708\) 5.96057e7 4.46894
\(709\) −2.57581e7 −1.92441 −0.962207 0.272318i \(-0.912210\pi\)
−0.962207 + 0.272318i \(0.912210\pi\)
\(710\) 0 0
\(711\) −390959. −0.0290039
\(712\) 441784. 0.0326596
\(713\) 1.08968e7 0.802742
\(714\) −1.85640e6 −0.136278
\(715\) 0 0
\(716\) 2.73862e6 0.199641
\(717\) 1.76146e7 1.27961
\(718\) 3.57300e7 2.58656
\(719\) 1.69710e6 0.122429 0.0612146 0.998125i \(-0.480503\pi\)
0.0612146 + 0.998125i \(0.480503\pi\)
\(720\) 0 0
\(721\) 5.38549e6 0.385822
\(722\) 8.08995e7 5.77568
\(723\) −1.23319e7 −0.877375
\(724\) 5.48921e7 3.89191
\(725\) 0 0
\(726\) −2.91064e7 −2.04949
\(727\) −1.84315e7 −1.29338 −0.646689 0.762754i \(-0.723847\pi\)
−0.646689 + 0.762754i \(0.723847\pi\)
\(728\) 8.35035e6 0.583951
\(729\) 1.29433e6 0.0902041
\(730\) 0 0
\(731\) −1.62652e6 −0.112581
\(732\) −5.98813e7 −4.13060
\(733\) −1.79395e7 −1.23325 −0.616624 0.787258i \(-0.711500\pi\)
−0.616624 + 0.787258i \(0.711500\pi\)
\(734\) 1.69952e7 1.16436
\(735\) 0 0
\(736\) −9.81491e7 −6.67870
\(737\) −3.95989e6 −0.268544
\(738\) −2.74876e7 −1.85779
\(739\) 1.84597e7 1.24341 0.621703 0.783253i \(-0.286441\pi\)
0.621703 + 0.783253i \(0.286441\pi\)
\(740\) 0 0
\(741\) −1.00916e7 −0.675175
\(742\) 2.21139e7 1.47454
\(743\) −3.97606e6 −0.264229 −0.132115 0.991234i \(-0.542177\pi\)
−0.132115 + 0.991234i \(0.542177\pi\)
\(744\) −4.69485e7 −3.10949
\(745\) 0 0
\(746\) 1.79513e7 1.18100
\(747\) −3.14689e6 −0.206339
\(748\) 1.83759e6 0.120086
\(749\) −1.00614e7 −0.655322
\(750\) 0 0
\(751\) 2.25945e7 1.46185 0.730925 0.682458i \(-0.239089\pi\)
0.730925 + 0.682458i \(0.239089\pi\)
\(752\) 3.66958e7 2.36631
\(753\) −1.85649e6 −0.119318
\(754\) 6.01760e6 0.385474
\(755\) 0 0
\(756\) −1.50799e7 −0.959605
\(757\) −1.40367e7 −0.890279 −0.445139 0.895461i \(-0.646846\pi\)
−0.445139 + 0.895461i \(0.646846\pi\)
\(758\) 2.83488e7 1.79210
\(759\) 9.57905e6 0.603556
\(760\) 0 0
\(761\) −6.05735e6 −0.379159 −0.189579 0.981865i \(-0.560712\pi\)
−0.189579 + 0.981865i \(0.560712\pi\)
\(762\) 4.94171e7 3.08311
\(763\) 839177. 0.0521846
\(764\) 6.65765e7 4.12655
\(765\) 0 0
\(766\) −3.55707e7 −2.19038
\(767\) 5.58416e6 0.342743
\(768\) 1.45520e8 8.90265
\(769\) 1.07705e7 0.656778 0.328389 0.944543i \(-0.393494\pi\)
0.328389 + 0.944543i \(0.393494\pi\)
\(770\) 0 0
\(771\) 2.04717e7 1.24028
\(772\) −5.60527e7 −3.38496
\(773\) −8.92164e6 −0.537027 −0.268514 0.963276i \(-0.586532\pi\)
−0.268514 + 0.963276i \(0.586532\pi\)
\(774\) 1.88367e7 1.13020
\(775\) 0 0
\(776\) 1.08688e8 6.47928
\(777\) 9.52422e6 0.565949
\(778\) 1.15764e7 0.685682
\(779\) 6.08399e7 3.59207
\(780\) 0 0
\(781\) −2.67967e6 −0.157201
\(782\) 4.22437e6 0.247027
\(783\) −7.16787e6 −0.417816
\(784\) −5.65380e7 −3.28511
\(785\) 0 0
\(786\) −3.48356e7 −2.01125
\(787\) −542225. −0.0312063 −0.0156032 0.999878i \(-0.504967\pi\)
−0.0156032 + 0.999878i \(0.504967\pi\)
\(788\) −2.23941e6 −0.128475
\(789\) 9.65466e6 0.552134
\(790\) 0 0
\(791\) −3.09185e6 −0.175702
\(792\) −1.40368e7 −0.795163
\(793\) −5.60998e6 −0.316795
\(794\) 7.12643e6 0.401163
\(795\) 0 0
\(796\) 4.42437e7 2.47497
\(797\) 1.82250e7 1.01630 0.508149 0.861269i \(-0.330330\pi\)
0.508149 + 0.861269i \(0.330330\pi\)
\(798\) −4.75851e7 −2.64523
\(799\) −927172. −0.0513799
\(800\) 0 0
\(801\) 79498.2 0.00437800
\(802\) 2.46856e7 1.35522
\(803\) 845857. 0.0462922
\(804\) 4.43617e7 2.42029
\(805\) 0 0
\(806\) −6.66834e6 −0.361560
\(807\) −2.01147e6 −0.108725
\(808\) −1.14898e8 −6.19134
\(809\) −3.56238e7 −1.91368 −0.956840 0.290615i \(-0.906140\pi\)
−0.956840 + 0.290615i \(0.906140\pi\)
\(810\) 0 0
\(811\) 9.68050e6 0.516828 0.258414 0.966034i \(-0.416800\pi\)
0.258414 + 0.966034i \(0.416800\pi\)
\(812\) 2.11687e7 1.12669
\(813\) −3.23907e6 −0.171868
\(814\) −1.26370e7 −0.668470
\(815\) 0 0
\(816\) −1.11929e7 −0.588458
\(817\) −4.16925e7 −2.18526
\(818\) −4.77320e7 −2.49417
\(819\) 1.50263e6 0.0782784
\(820\) 0 0
\(821\) 2.15879e7 1.11777 0.558885 0.829245i \(-0.311229\pi\)
0.558885 + 0.829245i \(0.311229\pi\)
\(822\) 5.03186e7 2.59746
\(823\) −2.95621e7 −1.52137 −0.760686 0.649120i \(-0.775137\pi\)
−0.760686 + 0.649120i \(0.775137\pi\)
\(824\) 5.28004e7 2.70906
\(825\) 0 0
\(826\) 2.63309e7 1.34282
\(827\) −2.85332e7 −1.45073 −0.725364 0.688365i \(-0.758329\pi\)
−0.725364 + 0.688365i \(0.758329\pi\)
\(828\) −3.64982e7 −1.85010
\(829\) −2.02156e7 −1.02165 −0.510823 0.859686i \(-0.670659\pi\)
−0.510823 + 0.859686i \(0.670659\pi\)
\(830\) 0 0
\(831\) −1.65667e7 −0.832213
\(832\) 3.40789e7 1.70678
\(833\) 1.42851e6 0.0713299
\(834\) 2.11084e7 1.05085
\(835\) 0 0
\(836\) 4.71028e7 2.33094
\(837\) 7.94300e6 0.391896
\(838\) 3.98214e7 1.95887
\(839\) −6.64057e6 −0.325687 −0.162843 0.986652i \(-0.552067\pi\)
−0.162843 + 0.986652i \(0.552067\pi\)
\(840\) 0 0
\(841\) −1.04491e7 −0.509434
\(842\) 1.57195e7 0.764114
\(843\) −3.01185e7 −1.45970
\(844\) −5.82644e7 −2.81544
\(845\) 0 0
\(846\) 1.07376e7 0.515800
\(847\) −9.59244e6 −0.459432
\(848\) 1.33332e8 6.36714
\(849\) 2.12148e7 1.01011
\(850\) 0 0
\(851\) −2.16730e7 −1.02588
\(852\) 3.00197e7 1.41680
\(853\) 1.92258e7 0.904716 0.452358 0.891836i \(-0.350583\pi\)
0.452358 + 0.891836i \(0.350583\pi\)
\(854\) −2.64527e7 −1.24115
\(855\) 0 0
\(856\) −9.86442e7 −4.60137
\(857\) 1.98896e6 0.0925068 0.0462534 0.998930i \(-0.485272\pi\)
0.0462534 + 0.998930i \(0.485272\pi\)
\(858\) −5.86193e6 −0.271845
\(859\) −7.32029e6 −0.338490 −0.169245 0.985574i \(-0.554133\pi\)
−0.169245 + 0.985574i \(0.554133\pi\)
\(860\) 0 0
\(861\) −2.66351e7 −1.22446
\(862\) 6.08028e7 2.78712
\(863\) −3.13431e7 −1.43257 −0.716283 0.697809i \(-0.754158\pi\)
−0.716283 + 0.697809i \(0.754158\pi\)
\(864\) −7.15437e7 −3.26052
\(865\) 0 0
\(866\) 6.26441e7 2.83848
\(867\) −2.69639e7 −1.21824
\(868\) −2.34579e7 −1.05679
\(869\) 502644. 0.0225793
\(870\) 0 0
\(871\) 4.15603e6 0.185623
\(872\) 8.22745e6 0.366416
\(873\) 1.95582e7 0.868546
\(874\) 1.08283e8 4.79493
\(875\) 0 0
\(876\) −9.47592e6 −0.417216
\(877\) 2.47672e7 1.08737 0.543686 0.839289i \(-0.317028\pi\)
0.543686 + 0.839289i \(0.317028\pi\)
\(878\) −1.98402e7 −0.868581
\(879\) −2.23382e6 −0.0975160
\(880\) 0 0
\(881\) 1.22752e7 0.532831 0.266415 0.963858i \(-0.414161\pi\)
0.266415 + 0.963858i \(0.414161\pi\)
\(882\) −1.65436e7 −0.716077
\(883\) −2.56013e7 −1.10500 −0.552498 0.833514i \(-0.686325\pi\)
−0.552498 + 0.833514i \(0.686325\pi\)
\(884\) −1.92860e6 −0.0830064
\(885\) 0 0
\(886\) −2.37424e7 −1.01611
\(887\) 5.01026e6 0.213821 0.106911 0.994269i \(-0.465904\pi\)
0.106911 + 0.994269i \(0.465904\pi\)
\(888\) 9.33773e7 3.97383
\(889\) 1.62862e7 0.691137
\(890\) 0 0
\(891\) 1.18832e7 0.501462
\(892\) −2.92350e7 −1.23024
\(893\) −2.37662e7 −0.997311
\(894\) 5.76873e7 2.41400
\(895\) 0 0
\(896\) 8.87676e7 3.69390
\(897\) −1.00535e7 −0.417192
\(898\) 3.08472e7 1.27651
\(899\) −1.11502e7 −0.460132
\(900\) 0 0
\(901\) −3.36882e6 −0.138250
\(902\) 3.53400e7 1.44627
\(903\) 1.82525e7 0.744909
\(904\) −3.03131e7 −1.23370
\(905\) 0 0
\(906\) −2.69348e7 −1.09017
\(907\) 4.85441e7 1.95938 0.979688 0.200527i \(-0.0642656\pi\)
0.979688 + 0.200527i \(0.0642656\pi\)
\(908\) −4.23336e7 −1.70400
\(909\) −2.06757e7 −0.829948
\(910\) 0 0
\(911\) −3.03805e7 −1.21283 −0.606413 0.795150i \(-0.707392\pi\)
−0.606413 + 0.795150i \(0.707392\pi\)
\(912\) −2.86906e8 −11.4223
\(913\) 4.04587e6 0.160633
\(914\) 3.89317e7 1.54148
\(915\) 0 0
\(916\) 8.03855e7 3.16548
\(917\) −1.14806e7 −0.450859
\(918\) 3.07926e6 0.120598
\(919\) −3.70802e7 −1.44828 −0.724141 0.689652i \(-0.757764\pi\)
−0.724141 + 0.689652i \(0.757764\pi\)
\(920\) 0 0
\(921\) −1.59320e7 −0.618899
\(922\) 5.79803e7 2.24623
\(923\) 2.81239e6 0.108661
\(924\) −2.06211e7 −0.794569
\(925\) 0 0
\(926\) 7.72217e7 2.95946
\(927\) 9.50133e6 0.363149
\(928\) 1.00431e8 3.82824
\(929\) 2.82561e6 0.107417 0.0537084 0.998557i \(-0.482896\pi\)
0.0537084 + 0.998557i \(0.482896\pi\)
\(930\) 0 0
\(931\) 3.66170e7 1.38455
\(932\) −1.02948e8 −3.88219
\(933\) 3.93126e6 0.147852
\(934\) 6.39498e6 0.239868
\(935\) 0 0
\(936\) 1.47321e7 0.549635
\(937\) −3.19406e6 −0.118849 −0.0594243 0.998233i \(-0.518926\pi\)
−0.0594243 + 0.998233i \(0.518926\pi\)
\(938\) 1.95969e7 0.727244
\(939\) −3.77576e7 −1.39746
\(940\) 0 0
\(941\) −2.22120e7 −0.817738 −0.408869 0.912593i \(-0.634077\pi\)
−0.408869 + 0.912593i \(0.634077\pi\)
\(942\) −6.97475e7 −2.56095
\(943\) 6.06099e7 2.21955
\(944\) 1.58758e8 5.79836
\(945\) 0 0
\(946\) −2.42179e7 −0.879849
\(947\) −2.24064e7 −0.811889 −0.405945 0.913898i \(-0.633057\pi\)
−0.405945 + 0.913898i \(0.633057\pi\)
\(948\) −5.63100e6 −0.203500
\(949\) −887751. −0.0319982
\(950\) 0 0
\(951\) −4.75634e7 −1.70538
\(952\) −5.99826e6 −0.214503
\(953\) −1.48416e7 −0.529358 −0.264679 0.964337i \(-0.585266\pi\)
−0.264679 + 0.964337i \(0.585266\pi\)
\(954\) 3.90144e7 1.38789
\(955\) 0 0
\(956\) 8.62886e7 3.05357
\(957\) −9.80177e6 −0.345959
\(958\) −3.74085e7 −1.31691
\(959\) 1.65833e7 0.582269
\(960\) 0 0
\(961\) −1.62732e7 −0.568413
\(962\) 1.32629e7 0.462061
\(963\) −1.77508e7 −0.616812
\(964\) −6.04102e7 −2.09371
\(965\) 0 0
\(966\) −4.74052e7 −1.63449
\(967\) −3.06919e7 −1.05550 −0.527749 0.849401i \(-0.676964\pi\)
−0.527749 + 0.849401i \(0.676964\pi\)
\(968\) −9.40462e7 −3.22591
\(969\) 7.24908e6 0.248013
\(970\) 0 0
\(971\) −4.18932e7 −1.42592 −0.712961 0.701203i \(-0.752646\pi\)
−0.712961 + 0.701203i \(0.752646\pi\)
\(972\) −8.15062e7 −2.76710
\(973\) 6.95661e6 0.235568
\(974\) 5.88633e7 1.98814
\(975\) 0 0
\(976\) −1.59492e8 −5.35938
\(977\) 2.54822e7 0.854084 0.427042 0.904232i \(-0.359556\pi\)
0.427042 + 0.904232i \(0.359556\pi\)
\(978\) −1.04045e8 −3.47837
\(979\) −102209. −0.00340824
\(980\) 0 0
\(981\) 1.48051e6 0.0491179
\(982\) −5.08170e7 −1.68163
\(983\) 5.91830e7 1.95350 0.976749 0.214388i \(-0.0687756\pi\)
0.976749 + 0.214388i \(0.0687756\pi\)
\(984\) −2.61135e8 −8.59761
\(985\) 0 0
\(986\) −4.32259e6 −0.141596
\(987\) 1.04046e7 0.339963
\(988\) −4.94358e7 −1.61120
\(989\) −4.15348e7 −1.35027
\(990\) 0 0
\(991\) −625464. −0.0202310 −0.0101155 0.999949i \(-0.503220\pi\)
−0.0101155 + 0.999949i \(0.503220\pi\)
\(992\) −1.11292e8 −3.59074
\(993\) −6.09695e7 −1.96218
\(994\) 1.32613e7 0.425715
\(995\) 0 0
\(996\) −4.53249e7 −1.44773
\(997\) −5.76822e7 −1.83783 −0.918913 0.394461i \(-0.870931\pi\)
−0.918913 + 0.394461i \(0.870931\pi\)
\(998\) 9.05009e7 2.87625
\(999\) −1.57981e7 −0.500830
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.k.1.11 yes 11
5.2 odd 4 325.6.b.i.274.22 22
5.3 odd 4 325.6.b.i.274.1 22
5.4 even 2 325.6.a.j.1.1 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.j.1.1 11 5.4 even 2
325.6.a.k.1.11 yes 11 1.1 even 1 trivial
325.6.b.i.274.1 22 5.3 odd 4
325.6.b.i.274.22 22 5.2 odd 4