Properties

Label 325.6.a.i.1.5
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 181 x^{7} + 688 x^{6} + 10455 x^{5} - 37904 x^{4} - 197375 x^{3} + 702868 x^{2} + \cdots - 366960 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.603392\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.396608 q^{2} -11.4974 q^{3} -31.8427 q^{4} -4.55994 q^{6} +8.04695 q^{7} -25.3205 q^{8} -110.811 q^{9} +335.903 q^{11} +366.107 q^{12} -169.000 q^{13} +3.19148 q^{14} +1008.92 q^{16} +38.1592 q^{17} -43.9484 q^{18} +1178.86 q^{19} -92.5186 q^{21} +133.222 q^{22} +1679.35 q^{23} +291.119 q^{24} -67.0267 q^{26} +4067.89 q^{27} -256.237 q^{28} -6705.42 q^{29} +7858.95 q^{31} +1210.40 q^{32} -3861.99 q^{33} +15.1342 q^{34} +3528.51 q^{36} -1715.81 q^{37} +467.545 q^{38} +1943.05 q^{39} -10076.9 q^{41} -36.6936 q^{42} +10822.3 q^{43} -10696.0 q^{44} +666.042 q^{46} +12999.2 q^{47} -11600.0 q^{48} -16742.2 q^{49} -438.730 q^{51} +5381.42 q^{52} +2639.19 q^{53} +1613.36 q^{54} -203.753 q^{56} -13553.8 q^{57} -2659.42 q^{58} +4956.81 q^{59} -43787.4 q^{61} +3116.92 q^{62} -891.687 q^{63} -31805.5 q^{64} -1531.70 q^{66} -9170.90 q^{67} -1215.09 q^{68} -19308.0 q^{69} -13030.5 q^{71} +2805.78 q^{72} -41726.8 q^{73} -680.503 q^{74} -37538.1 q^{76} +2702.99 q^{77} +770.630 q^{78} -49809.7 q^{79} -19843.0 q^{81} -3996.58 q^{82} -86196.9 q^{83} +2946.04 q^{84} +4292.19 q^{86} +77094.6 q^{87} -8505.22 q^{88} -67287.2 q^{89} -1359.93 q^{91} -53474.9 q^{92} -90357.2 q^{93} +5155.58 q^{94} -13916.4 q^{96} +175537. q^{97} -6640.10 q^{98} -37221.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 11 q^{3} + 91 q^{4} - 83 q^{6} - 12 q^{7} + 639 q^{8} + 562 q^{9} - 1422 q^{11} - 1567 q^{12} - 1521 q^{13} - 342 q^{14} - 1061 q^{16} - 648 q^{17} - 418 q^{18} - 408 q^{19} - 3912 q^{21}+ \cdots - 757776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.396608 0.0701110 0.0350555 0.999385i \(-0.488839\pi\)
0.0350555 + 0.999385i \(0.488839\pi\)
\(3\) −11.4974 −0.737556 −0.368778 0.929517i \(-0.620224\pi\)
−0.368778 + 0.929517i \(0.620224\pi\)
\(4\) −31.8427 −0.995084
\(5\) 0 0
\(6\) −4.55994 −0.0517108
\(7\) 8.04695 0.0620706 0.0310353 0.999518i \(-0.490120\pi\)
0.0310353 + 0.999518i \(0.490120\pi\)
\(8\) −25.3205 −0.139877
\(9\) −110.811 −0.456011
\(10\) 0 0
\(11\) 335.903 0.837012 0.418506 0.908214i \(-0.362554\pi\)
0.418506 + 0.908214i \(0.362554\pi\)
\(12\) 366.107 0.733931
\(13\) −169.000 −0.277350
\(14\) 3.19148 0.00435183
\(15\) 0 0
\(16\) 1008.92 0.985278
\(17\) 38.1592 0.0320241 0.0160121 0.999872i \(-0.494903\pi\)
0.0160121 + 0.999872i \(0.494903\pi\)
\(18\) −43.9484 −0.0319714
\(19\) 1178.86 0.749167 0.374584 0.927193i \(-0.377786\pi\)
0.374584 + 0.927193i \(0.377786\pi\)
\(20\) 0 0
\(21\) −92.5186 −0.0457806
\(22\) 133.222 0.0586837
\(23\) 1679.35 0.661943 0.330972 0.943641i \(-0.392624\pi\)
0.330972 + 0.943641i \(0.392624\pi\)
\(24\) 291.119 0.103167
\(25\) 0 0
\(26\) −67.0267 −0.0194453
\(27\) 4067.89 1.07389
\(28\) −256.237 −0.0617655
\(29\) −6705.42 −1.48058 −0.740288 0.672290i \(-0.765311\pi\)
−0.740288 + 0.672290i \(0.765311\pi\)
\(30\) 0 0
\(31\) 7858.95 1.46879 0.734396 0.678721i \(-0.237465\pi\)
0.734396 + 0.678721i \(0.237465\pi\)
\(32\) 1210.40 0.208956
\(33\) −3861.99 −0.617343
\(34\) 15.1342 0.00224524
\(35\) 0 0
\(36\) 3528.51 0.453769
\(37\) −1715.81 −0.206046 −0.103023 0.994679i \(-0.532852\pi\)
−0.103023 + 0.994679i \(0.532852\pi\)
\(38\) 467.545 0.0525249
\(39\) 1943.05 0.204561
\(40\) 0 0
\(41\) −10076.9 −0.936198 −0.468099 0.883676i \(-0.655061\pi\)
−0.468099 + 0.883676i \(0.655061\pi\)
\(42\) −36.6936 −0.00320972
\(43\) 10822.3 0.892579 0.446289 0.894889i \(-0.352745\pi\)
0.446289 + 0.894889i \(0.352745\pi\)
\(44\) −10696.0 −0.832897
\(45\) 0 0
\(46\) 666.042 0.0464095
\(47\) 12999.2 0.858364 0.429182 0.903218i \(-0.358802\pi\)
0.429182 + 0.903218i \(0.358802\pi\)
\(48\) −11600.0 −0.726697
\(49\) −16742.2 −0.996147
\(50\) 0 0
\(51\) −438.730 −0.0236196
\(52\) 5381.42 0.275987
\(53\) 2639.19 0.129057 0.0645285 0.997916i \(-0.479446\pi\)
0.0645285 + 0.997916i \(0.479446\pi\)
\(54\) 1613.36 0.0752915
\(55\) 0 0
\(56\) −203.753 −0.00868227
\(57\) −13553.8 −0.552553
\(58\) −2659.42 −0.103805
\(59\) 4956.81 0.185384 0.0926919 0.995695i \(-0.470453\pi\)
0.0926919 + 0.995695i \(0.470453\pi\)
\(60\) 0 0
\(61\) −43787.4 −1.50669 −0.753346 0.657625i \(-0.771561\pi\)
−0.753346 + 0.657625i \(0.771561\pi\)
\(62\) 3116.92 0.102979
\(63\) −891.687 −0.0283049
\(64\) −31805.5 −0.970627
\(65\) 0 0
\(66\) −1531.70 −0.0432825
\(67\) −9170.90 −0.249589 −0.124794 0.992183i \(-0.539827\pi\)
−0.124794 + 0.992183i \(0.539827\pi\)
\(68\) −1215.09 −0.0318667
\(69\) −19308.0 −0.488220
\(70\) 0 0
\(71\) −13030.5 −0.306772 −0.153386 0.988166i \(-0.549018\pi\)
−0.153386 + 0.988166i \(0.549018\pi\)
\(72\) 2805.78 0.0637856
\(73\) −41726.8 −0.916447 −0.458224 0.888837i \(-0.651514\pi\)
−0.458224 + 0.888837i \(0.651514\pi\)
\(74\) −680.503 −0.0144461
\(75\) 0 0
\(76\) −37538.1 −0.745485
\(77\) 2702.99 0.0519538
\(78\) 770.630 0.0143420
\(79\) −49809.7 −0.897938 −0.448969 0.893547i \(-0.648209\pi\)
−0.448969 + 0.893547i \(0.648209\pi\)
\(80\) 0 0
\(81\) −19843.0 −0.336043
\(82\) −3996.58 −0.0656378
\(83\) −86196.9 −1.37340 −0.686699 0.726942i \(-0.740941\pi\)
−0.686699 + 0.726942i \(0.740941\pi\)
\(84\) 2946.04 0.0455555
\(85\) 0 0
\(86\) 4292.19 0.0625796
\(87\) 77094.6 1.09201
\(88\) −8505.22 −0.117079
\(89\) −67287.2 −0.900446 −0.450223 0.892916i \(-0.648656\pi\)
−0.450223 + 0.892916i \(0.648656\pi\)
\(90\) 0 0
\(91\) −1359.93 −0.0172153
\(92\) −53474.9 −0.658689
\(93\) −90357.2 −1.08332
\(94\) 5155.58 0.0601808
\(95\) 0 0
\(96\) −13916.4 −0.154117
\(97\) 175537. 1.89426 0.947130 0.320850i \(-0.103969\pi\)
0.947130 + 0.320850i \(0.103969\pi\)
\(98\) −6640.10 −0.0698409
\(99\) −37221.6 −0.381687
\(100\) 0 0
\(101\) −20550.4 −0.200455 −0.100227 0.994965i \(-0.531957\pi\)
−0.100227 + 0.994965i \(0.531957\pi\)
\(102\) −174.004 −0.00165599
\(103\) −73661.4 −0.684143 −0.342071 0.939674i \(-0.611128\pi\)
−0.342071 + 0.939674i \(0.611128\pi\)
\(104\) 4279.17 0.0387950
\(105\) 0 0
\(106\) 1046.72 0.00904831
\(107\) 141079. 1.19125 0.595626 0.803262i \(-0.296904\pi\)
0.595626 + 0.803262i \(0.296904\pi\)
\(108\) −129533. −1.06861
\(109\) −3329.82 −0.0268444 −0.0134222 0.999910i \(-0.504273\pi\)
−0.0134222 + 0.999910i \(0.504273\pi\)
\(110\) 0 0
\(111\) 19727.3 0.151971
\(112\) 8118.76 0.0611568
\(113\) 80229.6 0.591070 0.295535 0.955332i \(-0.404502\pi\)
0.295535 + 0.955332i \(0.404502\pi\)
\(114\) −5375.54 −0.0387400
\(115\) 0 0
\(116\) 213519. 1.47330
\(117\) 18727.0 0.126475
\(118\) 1965.91 0.0129974
\(119\) 307.065 0.00198776
\(120\) 0 0
\(121\) −48220.5 −0.299411
\(122\) −17366.4 −0.105636
\(123\) 115858. 0.690499
\(124\) −250250. −1.46157
\(125\) 0 0
\(126\) −353.650 −0.00198448
\(127\) −91691.7 −0.504453 −0.252227 0.967668i \(-0.581163\pi\)
−0.252227 + 0.967668i \(0.581163\pi\)
\(128\) −51347.2 −0.277008
\(129\) −124427. −0.658327
\(130\) 0 0
\(131\) −150911. −0.768319 −0.384160 0.923267i \(-0.625509\pi\)
−0.384160 + 0.923267i \(0.625509\pi\)
\(132\) 122976. 0.614309
\(133\) 9486.23 0.0465013
\(134\) −3637.25 −0.0174989
\(135\) 0 0
\(136\) −966.211 −0.00447945
\(137\) 20446.3 0.0930710 0.0465355 0.998917i \(-0.485182\pi\)
0.0465355 + 0.998917i \(0.485182\pi\)
\(138\) −7657.72 −0.0342296
\(139\) −142881. −0.627245 −0.313623 0.949548i \(-0.601543\pi\)
−0.313623 + 0.949548i \(0.601543\pi\)
\(140\) 0 0
\(141\) −149456. −0.633092
\(142\) −5168.00 −0.0215081
\(143\) −56767.5 −0.232145
\(144\) −111800. −0.449297
\(145\) 0 0
\(146\) −16549.2 −0.0642530
\(147\) 192492. 0.734714
\(148\) 54636.0 0.205033
\(149\) −175152. −0.646321 −0.323161 0.946344i \(-0.604745\pi\)
−0.323161 + 0.946344i \(0.604745\pi\)
\(150\) 0 0
\(151\) −3588.76 −0.0128086 −0.00640431 0.999979i \(-0.502039\pi\)
−0.00640431 + 0.999979i \(0.502039\pi\)
\(152\) −29849.4 −0.104792
\(153\) −4228.45 −0.0146034
\(154\) 1072.03 0.00364253
\(155\) 0 0
\(156\) −61872.1 −0.203556
\(157\) 232402. 0.752473 0.376236 0.926524i \(-0.377218\pi\)
0.376236 + 0.926524i \(0.377218\pi\)
\(158\) −19754.9 −0.0629554
\(159\) −30343.7 −0.0951867
\(160\) 0 0
\(161\) 13513.6 0.0410872
\(162\) −7869.89 −0.0235603
\(163\) 144816. 0.426921 0.213460 0.976952i \(-0.431527\pi\)
0.213460 + 0.976952i \(0.431527\pi\)
\(164\) 320876. 0.931596
\(165\) 0 0
\(166\) −34186.3 −0.0962903
\(167\) −413472. −1.14724 −0.573621 0.819121i \(-0.694462\pi\)
−0.573621 + 0.819121i \(0.694462\pi\)
\(168\) 2342.62 0.00640366
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −130630. −0.341628
\(172\) −344610. −0.888191
\(173\) 686615. 1.74421 0.872103 0.489322i \(-0.162756\pi\)
0.872103 + 0.489322i \(0.162756\pi\)
\(174\) 30576.3 0.0765618
\(175\) 0 0
\(176\) 338900. 0.824689
\(177\) −56990.2 −0.136731
\(178\) −26686.6 −0.0631312
\(179\) 217412. 0.507168 0.253584 0.967313i \(-0.418391\pi\)
0.253584 + 0.967313i \(0.418391\pi\)
\(180\) 0 0
\(181\) −282439. −0.640807 −0.320404 0.947281i \(-0.603819\pi\)
−0.320404 + 0.947281i \(0.603819\pi\)
\(182\) −539.360 −0.00120698
\(183\) 503439. 1.11127
\(184\) −42521.9 −0.0925908
\(185\) 0 0
\(186\) −35836.4 −0.0759524
\(187\) 12817.8 0.0268046
\(188\) −413929. −0.854145
\(189\) 32734.1 0.0666570
\(190\) 0 0
\(191\) −141669. −0.280990 −0.140495 0.990081i \(-0.544869\pi\)
−0.140495 + 0.990081i \(0.544869\pi\)
\(192\) 365680. 0.715892
\(193\) −817556. −1.57988 −0.789941 0.613183i \(-0.789889\pi\)
−0.789941 + 0.613183i \(0.789889\pi\)
\(194\) 69619.4 0.132808
\(195\) 0 0
\(196\) 533118. 0.991251
\(197\) −566426. −1.03987 −0.519933 0.854207i \(-0.674043\pi\)
−0.519933 + 0.854207i \(0.674043\pi\)
\(198\) −14762.4 −0.0267604
\(199\) 400781. 0.717422 0.358711 0.933449i \(-0.383216\pi\)
0.358711 + 0.933449i \(0.383216\pi\)
\(200\) 0 0
\(201\) 105441. 0.184086
\(202\) −8150.43 −0.0140541
\(203\) −53958.1 −0.0919002
\(204\) 13970.4 0.0235035
\(205\) 0 0
\(206\) −29214.7 −0.0479659
\(207\) −186089. −0.301853
\(208\) −170508. −0.273267
\(209\) 395982. 0.627062
\(210\) 0 0
\(211\) 389440. 0.602191 0.301095 0.953594i \(-0.402648\pi\)
0.301095 + 0.953594i \(0.402648\pi\)
\(212\) −84039.0 −0.128423
\(213\) 149816. 0.226261
\(214\) 55953.1 0.0835198
\(215\) 0 0
\(216\) −103001. −0.150213
\(217\) 63240.6 0.0911688
\(218\) −1320.63 −0.00188209
\(219\) 479748. 0.675931
\(220\) 0 0
\(221\) −6448.91 −0.00888190
\(222\) 7823.99 0.0106548
\(223\) −312613. −0.420964 −0.210482 0.977598i \(-0.567503\pi\)
−0.210482 + 0.977598i \(0.567503\pi\)
\(224\) 9740.05 0.0129700
\(225\) 0 0
\(226\) 31819.7 0.0414405
\(227\) −863698. −1.11249 −0.556246 0.831017i \(-0.687759\pi\)
−0.556246 + 0.831017i \(0.687759\pi\)
\(228\) 431589. 0.549837
\(229\) −255333. −0.321749 −0.160875 0.986975i \(-0.551431\pi\)
−0.160875 + 0.986975i \(0.551431\pi\)
\(230\) 0 0
\(231\) −31077.2 −0.0383189
\(232\) 169785. 0.207099
\(233\) 566258. 0.683321 0.341660 0.939823i \(-0.389011\pi\)
0.341660 + 0.939823i \(0.389011\pi\)
\(234\) 7427.27 0.00886727
\(235\) 0 0
\(236\) −157838. −0.184473
\(237\) 572681. 0.662280
\(238\) 121.784 0.000139364 0
\(239\) 1.70328e6 1.92882 0.964410 0.264412i \(-0.0851777\pi\)
0.964410 + 0.264412i \(0.0851777\pi\)
\(240\) 0 0
\(241\) 189220. 0.209857 0.104929 0.994480i \(-0.466539\pi\)
0.104929 + 0.994480i \(0.466539\pi\)
\(242\) −19124.6 −0.0209920
\(243\) −760355. −0.826039
\(244\) 1.39431e6 1.49928
\(245\) 0 0
\(246\) 45950.1 0.0484116
\(247\) −199228. −0.207782
\(248\) −198993. −0.205451
\(249\) 991037. 1.01296
\(250\) 0 0
\(251\) 807394. 0.808911 0.404456 0.914558i \(-0.367461\pi\)
0.404456 + 0.914558i \(0.367461\pi\)
\(252\) 28393.7 0.0281657
\(253\) 564097. 0.554054
\(254\) −36365.6 −0.0353677
\(255\) 0 0
\(256\) 997412. 0.951206
\(257\) −1.71583e6 −1.62047 −0.810234 0.586107i \(-0.800660\pi\)
−0.810234 + 0.586107i \(0.800660\pi\)
\(258\) −49348.8 −0.0461559
\(259\) −13807.0 −0.0127894
\(260\) 0 0
\(261\) 743032. 0.675159
\(262\) −59852.3 −0.0538676
\(263\) 2.09428e6 1.86701 0.933504 0.358568i \(-0.116735\pi\)
0.933504 + 0.358568i \(0.116735\pi\)
\(264\) 97787.6 0.0863523
\(265\) 0 0
\(266\) 3762.31 0.00326025
\(267\) 773626. 0.664129
\(268\) 292026. 0.248362
\(269\) −431530. −0.363605 −0.181803 0.983335i \(-0.558193\pi\)
−0.181803 + 0.983335i \(0.558193\pi\)
\(270\) 0 0
\(271\) −290063. −0.239921 −0.119961 0.992779i \(-0.538277\pi\)
−0.119961 + 0.992779i \(0.538277\pi\)
\(272\) 38499.8 0.0315527
\(273\) 15635.7 0.0126972
\(274\) 8109.18 0.00652530
\(275\) 0 0
\(276\) 614820. 0.485820
\(277\) −1.89373e6 −1.48292 −0.741462 0.670995i \(-0.765867\pi\)
−0.741462 + 0.670995i \(0.765867\pi\)
\(278\) −56667.7 −0.0439768
\(279\) −870856. −0.669786
\(280\) 0 0
\(281\) −655309. −0.495086 −0.247543 0.968877i \(-0.579623\pi\)
−0.247543 + 0.968877i \(0.579623\pi\)
\(282\) −59275.6 −0.0443867
\(283\) −695619. −0.516304 −0.258152 0.966104i \(-0.583113\pi\)
−0.258152 + 0.966104i \(0.583113\pi\)
\(284\) 414926. 0.305264
\(285\) 0 0
\(286\) −22514.4 −0.0162759
\(287\) −81088.4 −0.0581104
\(288\) −134126. −0.0952863
\(289\) −1.41840e6 −0.998974
\(290\) 0 0
\(291\) −2.01821e6 −1.39712
\(292\) 1.32869e6 0.911943
\(293\) 2.44727e6 1.66538 0.832689 0.553742i \(-0.186800\pi\)
0.832689 + 0.553742i \(0.186800\pi\)
\(294\) 76343.7 0.0515116
\(295\) 0 0
\(296\) 43445.2 0.0288212
\(297\) 1.36641e6 0.898858
\(298\) −69466.5 −0.0453142
\(299\) −283809. −0.183590
\(300\) 0 0
\(301\) 87086.1 0.0554029
\(302\) −1423.33 −0.000898025 0
\(303\) 236275. 0.147847
\(304\) 1.18938e6 0.738138
\(305\) 0 0
\(306\) −1677.04 −0.00102386
\(307\) −1.41799e6 −0.858674 −0.429337 0.903144i \(-0.641253\pi\)
−0.429337 + 0.903144i \(0.641253\pi\)
\(308\) −86070.5 −0.0516984
\(309\) 846911. 0.504594
\(310\) 0 0
\(311\) −146871. −0.0861062 −0.0430531 0.999073i \(-0.513708\pi\)
−0.0430531 + 0.999073i \(0.513708\pi\)
\(312\) −49199.1 −0.0286135
\(313\) 2.60983e6 1.50575 0.752873 0.658165i \(-0.228667\pi\)
0.752873 + 0.658165i \(0.228667\pi\)
\(314\) 92172.4 0.0527566
\(315\) 0 0
\(316\) 1.58608e6 0.893525
\(317\) −2.85498e6 −1.59571 −0.797857 0.602847i \(-0.794033\pi\)
−0.797857 + 0.602847i \(0.794033\pi\)
\(318\) −12034.6 −0.00667364
\(319\) −2.25237e6 −1.23926
\(320\) 0 0
\(321\) −1.62204e6 −0.878615
\(322\) 5359.60 0.00288066
\(323\) 44984.4 0.0239914
\(324\) 631855. 0.334391
\(325\) 0 0
\(326\) 57435.1 0.0299319
\(327\) 38284.1 0.0197993
\(328\) 255153. 0.130953
\(329\) 104604. 0.0532792
\(330\) 0 0
\(331\) −2.25339e6 −1.13049 −0.565245 0.824923i \(-0.691218\pi\)
−0.565245 + 0.824923i \(0.691218\pi\)
\(332\) 2.74474e6 1.36665
\(333\) 190130. 0.0939594
\(334\) −163986. −0.0804342
\(335\) 0 0
\(336\) −93344.3 −0.0451066
\(337\) 795896. 0.381752 0.190876 0.981614i \(-0.438867\pi\)
0.190876 + 0.981614i \(0.438867\pi\)
\(338\) 11327.5 0.00539315
\(339\) −922429. −0.435947
\(340\) 0 0
\(341\) 2.63984e6 1.22940
\(342\) −51809.0 −0.0239519
\(343\) −269969. −0.123902
\(344\) −274025. −0.124852
\(345\) 0 0
\(346\) 272317. 0.122288
\(347\) 869632. 0.387714 0.193857 0.981030i \(-0.437900\pi\)
0.193857 + 0.981030i \(0.437900\pi\)
\(348\) −2.45490e6 −1.08664
\(349\) −268145. −0.117844 −0.0589219 0.998263i \(-0.518766\pi\)
−0.0589219 + 0.998263i \(0.518766\pi\)
\(350\) 0 0
\(351\) −687473. −0.297843
\(352\) 406578. 0.174899
\(353\) −2.22293e6 −0.949485 −0.474743 0.880125i \(-0.657459\pi\)
−0.474743 + 0.880125i \(0.657459\pi\)
\(354\) −22602.7 −0.00958634
\(355\) 0 0
\(356\) 2.14261e6 0.896020
\(357\) −3530.44 −0.00146608
\(358\) 86227.4 0.0355581
\(359\) 356227. 0.145878 0.0729391 0.997336i \(-0.476762\pi\)
0.0729391 + 0.997336i \(0.476762\pi\)
\(360\) 0 0
\(361\) −1.08639e6 −0.438749
\(362\) −112017. −0.0449276
\(363\) 554409. 0.220833
\(364\) 43304.0 0.0171307
\(365\) 0 0
\(366\) 199668. 0.0779122
\(367\) −1.68973e6 −0.654867 −0.327433 0.944874i \(-0.606184\pi\)
−0.327433 + 0.944874i \(0.606184\pi\)
\(368\) 1.69433e6 0.652198
\(369\) 1.11663e6 0.426917
\(370\) 0 0
\(371\) 21237.4 0.00801064
\(372\) 2.87722e6 1.07799
\(373\) −2.01242e6 −0.748938 −0.374469 0.927239i \(-0.622175\pi\)
−0.374469 + 0.927239i \(0.622175\pi\)
\(374\) 5083.63 0.00187930
\(375\) 0 0
\(376\) −329146. −0.120066
\(377\) 1.13322e6 0.410638
\(378\) 12982.6 0.00467339
\(379\) −3.07308e6 −1.09894 −0.549472 0.835512i \(-0.685171\pi\)
−0.549472 + 0.835512i \(0.685171\pi\)
\(380\) 0 0
\(381\) 1.05421e6 0.372063
\(382\) −56186.9 −0.0197005
\(383\) −5.65657e6 −1.97041 −0.985204 0.171387i \(-0.945175\pi\)
−0.985204 + 0.171387i \(0.945175\pi\)
\(384\) 590358. 0.204309
\(385\) 0 0
\(386\) −324249. −0.110767
\(387\) −1.19922e6 −0.407026
\(388\) −5.58958e6 −1.88495
\(389\) −1.20141e6 −0.402547 −0.201274 0.979535i \(-0.564508\pi\)
−0.201274 + 0.979535i \(0.564508\pi\)
\(390\) 0 0
\(391\) 64082.6 0.0211981
\(392\) 423922. 0.139338
\(393\) 1.73507e6 0.566678
\(394\) −224649. −0.0729060
\(395\) 0 0
\(396\) 1.18524e6 0.379810
\(397\) 1.91438e6 0.609610 0.304805 0.952415i \(-0.401409\pi\)
0.304805 + 0.952415i \(0.401409\pi\)
\(398\) 158953. 0.0502992
\(399\) −109067. −0.0342973
\(400\) 0 0
\(401\) −5.02610e6 −1.56088 −0.780441 0.625229i \(-0.785006\pi\)
−0.780441 + 0.625229i \(0.785006\pi\)
\(402\) 41818.8 0.0129064
\(403\) −1.32816e6 −0.407370
\(404\) 654379. 0.199469
\(405\) 0 0
\(406\) −21400.2 −0.00644322
\(407\) −576345. −0.172463
\(408\) 11108.9 0.00330385
\(409\) −2.26919e6 −0.670754 −0.335377 0.942084i \(-0.608864\pi\)
−0.335377 + 0.942084i \(0.608864\pi\)
\(410\) 0 0
\(411\) −235079. −0.0686450
\(412\) 2.34558e6 0.680780
\(413\) 39887.1 0.0115069
\(414\) −73804.5 −0.0211632
\(415\) 0 0
\(416\) −204558. −0.0579540
\(417\) 1.64275e6 0.462629
\(418\) 157050. 0.0439639
\(419\) −3.92074e6 −1.09102 −0.545510 0.838104i \(-0.683664\pi\)
−0.545510 + 0.838104i \(0.683664\pi\)
\(420\) 0 0
\(421\) 1.77811e6 0.488939 0.244469 0.969657i \(-0.421386\pi\)
0.244469 + 0.969657i \(0.421386\pi\)
\(422\) 154455. 0.0422202
\(423\) −1.44045e6 −0.391424
\(424\) −66825.7 −0.0180521
\(425\) 0 0
\(426\) 59418.3 0.0158634
\(427\) −352355. −0.0935212
\(428\) −4.49234e6 −1.18540
\(429\) 652677. 0.171220
\(430\) 0 0
\(431\) −4.45663e6 −1.15561 −0.577807 0.816173i \(-0.696091\pi\)
−0.577807 + 0.816173i \(0.696091\pi\)
\(432\) 4.10419e6 1.05808
\(433\) 1.25271e6 0.321093 0.160547 0.987028i \(-0.448674\pi\)
0.160547 + 0.987028i \(0.448674\pi\)
\(434\) 25081.7 0.00639194
\(435\) 0 0
\(436\) 106030. 0.0267125
\(437\) 1.97972e6 0.495906
\(438\) 190272. 0.0473902
\(439\) 3.75453e6 0.929810 0.464905 0.885360i \(-0.346088\pi\)
0.464905 + 0.885360i \(0.346088\pi\)
\(440\) 0 0
\(441\) 1.85522e6 0.454254
\(442\) −2557.69 −0.000622719 0
\(443\) 2.31259e6 0.559874 0.279937 0.960018i \(-0.409686\pi\)
0.279937 + 0.960018i \(0.409686\pi\)
\(444\) −628170. −0.151224
\(445\) 0 0
\(446\) −123985. −0.0295142
\(447\) 2.01378e6 0.476698
\(448\) −255937. −0.0602474
\(449\) −7.80175e6 −1.82632 −0.913159 0.407603i \(-0.866365\pi\)
−0.913159 + 0.407603i \(0.866365\pi\)
\(450\) 0 0
\(451\) −3.38486e6 −0.783609
\(452\) −2.55473e6 −0.588164
\(453\) 41261.3 0.00944708
\(454\) −342549. −0.0779980
\(455\) 0 0
\(456\) 343189. 0.0772896
\(457\) −4.88928e6 −1.09510 −0.547551 0.836772i \(-0.684440\pi\)
−0.547551 + 0.836772i \(0.684440\pi\)
\(458\) −101267. −0.0225582
\(459\) 155228. 0.0343904
\(460\) 0 0
\(461\) −4.08764e6 −0.895818 −0.447909 0.894079i \(-0.647831\pi\)
−0.447909 + 0.894079i \(0.647831\pi\)
\(462\) −12325.5 −0.00268657
\(463\) −3.13129e6 −0.678845 −0.339423 0.940634i \(-0.610232\pi\)
−0.339423 + 0.940634i \(0.610232\pi\)
\(464\) −6.76526e6 −1.45878
\(465\) 0 0
\(466\) 224582. 0.0479083
\(467\) −5.78075e6 −1.22657 −0.613284 0.789862i \(-0.710152\pi\)
−0.613284 + 0.789862i \(0.710152\pi\)
\(468\) −596318. −0.125853
\(469\) −73797.7 −0.0154921
\(470\) 0 0
\(471\) −2.67201e6 −0.554991
\(472\) −125509. −0.0259310
\(473\) 3.63522e6 0.747099
\(474\) 227130. 0.0464331
\(475\) 0 0
\(476\) −9777.79 −0.00197799
\(477\) −292451. −0.0588514
\(478\) 675535. 0.135231
\(479\) −5.98034e6 −1.19093 −0.595467 0.803380i \(-0.703033\pi\)
−0.595467 + 0.803380i \(0.703033\pi\)
\(480\) 0 0
\(481\) 289972. 0.0571469
\(482\) 75045.9 0.0147133
\(483\) −155371. −0.0303041
\(484\) 1.53547e6 0.297940
\(485\) 0 0
\(486\) −301563. −0.0579144
\(487\) 8.62843e6 1.64858 0.824289 0.566169i \(-0.191575\pi\)
0.824289 + 0.566169i \(0.191575\pi\)
\(488\) 1.10872e6 0.210752
\(489\) −1.66500e6 −0.314878
\(490\) 0 0
\(491\) −4.67336e6 −0.874834 −0.437417 0.899259i \(-0.644107\pi\)
−0.437417 + 0.899259i \(0.644107\pi\)
\(492\) −3.68923e6 −0.687105
\(493\) −255873. −0.0474142
\(494\) −79015.2 −0.0145678
\(495\) 0 0
\(496\) 7.92909e6 1.44717
\(497\) −104856. −0.0190415
\(498\) 393053. 0.0710195
\(499\) 1.02014e7 1.83404 0.917018 0.398847i \(-0.130589\pi\)
0.917018 + 0.398847i \(0.130589\pi\)
\(500\) 0 0
\(501\) 4.75383e6 0.846155
\(502\) 320218. 0.0567136
\(503\) −1.14659e6 −0.202064 −0.101032 0.994883i \(-0.532214\pi\)
−0.101032 + 0.994883i \(0.532214\pi\)
\(504\) 22578.0 0.00395921
\(505\) 0 0
\(506\) 223725. 0.0388453
\(507\) −328376. −0.0567351
\(508\) 2.91971e6 0.501974
\(509\) −2.19167e6 −0.374957 −0.187478 0.982269i \(-0.560031\pi\)
−0.187478 + 0.982269i \(0.560031\pi\)
\(510\) 0 0
\(511\) −335773. −0.0568844
\(512\) 2.03869e6 0.343698
\(513\) 4.79548e6 0.804523
\(514\) −680509. −0.113613
\(515\) 0 0
\(516\) 3.96210e6 0.655091
\(517\) 4.36646e6 0.718461
\(518\) −5475.97 −0.000896679 0
\(519\) −7.89426e6 −1.28645
\(520\) 0 0
\(521\) −6.90308e6 −1.11416 −0.557082 0.830458i \(-0.688079\pi\)
−0.557082 + 0.830458i \(0.688079\pi\)
\(522\) 294692. 0.0473361
\(523\) 1.59809e6 0.255473 0.127737 0.991808i \(-0.459229\pi\)
0.127737 + 0.991808i \(0.459229\pi\)
\(524\) 4.80540e6 0.764542
\(525\) 0 0
\(526\) 830609. 0.130898
\(527\) 299892. 0.0470368
\(528\) −3.89646e6 −0.608254
\(529\) −3.61614e6 −0.561831
\(530\) 0 0
\(531\) −549267. −0.0845371
\(532\) −302067. −0.0462727
\(533\) 1.70300e6 0.259655
\(534\) 306826. 0.0465628
\(535\) 0 0
\(536\) 232212. 0.0349118
\(537\) −2.49967e6 −0.374065
\(538\) −171148. −0.0254927
\(539\) −5.62376e6 −0.833787
\(540\) 0 0
\(541\) −279387. −0.0410405 −0.0205202 0.999789i \(-0.506532\pi\)
−0.0205202 + 0.999789i \(0.506532\pi\)
\(542\) −115041. −0.0168211
\(543\) 3.24730e6 0.472631
\(544\) 46188.1 0.00669164
\(545\) 0 0
\(546\) 6201.22 0.000890216 0
\(547\) −606222. −0.0866290 −0.0433145 0.999061i \(-0.513792\pi\)
−0.0433145 + 0.999061i \(0.513792\pi\)
\(548\) −651067. −0.0926135
\(549\) 4.85211e6 0.687068
\(550\) 0 0
\(551\) −7.90475e6 −1.10920
\(552\) 488890. 0.0682909
\(553\) −400816. −0.0557356
\(554\) −751068. −0.103969
\(555\) 0 0
\(556\) 4.54972e6 0.624162
\(557\) 3.37279e6 0.460629 0.230315 0.973116i \(-0.426024\pi\)
0.230315 + 0.973116i \(0.426024\pi\)
\(558\) −345388. −0.0469593
\(559\) −1.82896e6 −0.247557
\(560\) 0 0
\(561\) −147371. −0.0197699
\(562\) −259901. −0.0347110
\(563\) 3.75518e6 0.499298 0.249649 0.968336i \(-0.419685\pi\)
0.249649 + 0.968336i \(0.419685\pi\)
\(564\) 4.75910e6 0.629980
\(565\) 0 0
\(566\) −275888. −0.0361986
\(567\) −159676. −0.0208584
\(568\) 329939. 0.0429104
\(569\) 5.11904e6 0.662839 0.331420 0.943483i \(-0.392472\pi\)
0.331420 + 0.943483i \(0.392472\pi\)
\(570\) 0 0
\(571\) 1.23612e7 1.58662 0.793308 0.608821i \(-0.208357\pi\)
0.793308 + 0.608821i \(0.208357\pi\)
\(572\) 1.80763e6 0.231004
\(573\) 1.62882e6 0.207246
\(574\) −32160.3 −0.00407418
\(575\) 0 0
\(576\) 3.52439e6 0.442617
\(577\) −1.46773e6 −0.183530 −0.0917651 0.995781i \(-0.529251\pi\)
−0.0917651 + 0.995781i \(0.529251\pi\)
\(578\) −562549. −0.0700391
\(579\) 9.39974e6 1.16525
\(580\) 0 0
\(581\) −693622. −0.0852476
\(582\) −800439. −0.0979537
\(583\) 886511. 0.108022
\(584\) 1.05654e6 0.128190
\(585\) 0 0
\(586\) 970606. 0.116761
\(587\) −6.01770e6 −0.720834 −0.360417 0.932791i \(-0.617366\pi\)
−0.360417 + 0.932791i \(0.617366\pi\)
\(588\) −6.12945e6 −0.731103
\(589\) 9.26461e6 1.10037
\(590\) 0 0
\(591\) 6.51240e6 0.766959
\(592\) −1.73112e6 −0.203013
\(593\) 1.28954e7 1.50590 0.752951 0.658076i \(-0.228629\pi\)
0.752951 + 0.658076i \(0.228629\pi\)
\(594\) 541930. 0.0630199
\(595\) 0 0
\(596\) 5.57730e6 0.643144
\(597\) −4.60793e6 −0.529139
\(598\) −112561. −0.0128717
\(599\) 1.07891e7 1.22863 0.614313 0.789062i \(-0.289433\pi\)
0.614313 + 0.789062i \(0.289433\pi\)
\(600\) 0 0
\(601\) 3.51995e6 0.397512 0.198756 0.980049i \(-0.436310\pi\)
0.198756 + 0.980049i \(0.436310\pi\)
\(602\) 34539.0 0.00388435
\(603\) 1.01623e6 0.113815
\(604\) 114276. 0.0127457
\(605\) 0 0
\(606\) 93708.5 0.0103657
\(607\) 1.43143e6 0.157688 0.0788439 0.996887i \(-0.474877\pi\)
0.0788439 + 0.996887i \(0.474877\pi\)
\(608\) 1.42690e6 0.156543
\(609\) 620376. 0.0677816
\(610\) 0 0
\(611\) −2.19686e6 −0.238067
\(612\) 134645. 0.0145316
\(613\) −1.06458e7 −1.14426 −0.572131 0.820162i \(-0.693883\pi\)
−0.572131 + 0.820162i \(0.693883\pi\)
\(614\) −562387. −0.0602025
\(615\) 0 0
\(616\) −68441.1 −0.00726716
\(617\) −9.96269e6 −1.05357 −0.526785 0.849998i \(-0.676603\pi\)
−0.526785 + 0.849998i \(0.676603\pi\)
\(618\) 335892. 0.0353776
\(619\) 1.14066e7 1.19655 0.598273 0.801292i \(-0.295854\pi\)
0.598273 + 0.801292i \(0.295854\pi\)
\(620\) 0 0
\(621\) 6.83139e6 0.710854
\(622\) −58250.1 −0.00603699
\(623\) −541457. −0.0558912
\(624\) 1.96039e6 0.201550
\(625\) 0 0
\(626\) 1.03508e6 0.105569
\(627\) −4.55275e6 −0.462493
\(628\) −7.40031e6 −0.748774
\(629\) −65474.0 −0.00659845
\(630\) 0 0
\(631\) −1.56307e7 −1.56280 −0.781402 0.624028i \(-0.785495\pi\)
−0.781402 + 0.624028i \(0.785495\pi\)
\(632\) 1.26121e6 0.125601
\(633\) −4.47753e6 −0.444150
\(634\) −1.13231e6 −0.111877
\(635\) 0 0
\(636\) 966227. 0.0947188
\(637\) 2.82944e6 0.276282
\(638\) −893306. −0.0868857
\(639\) 1.44392e6 0.139891
\(640\) 0 0
\(641\) 4.75966e6 0.457542 0.228771 0.973480i \(-0.426529\pi\)
0.228771 + 0.973480i \(0.426529\pi\)
\(642\) −643313. −0.0616006
\(643\) 946165. 0.0902484 0.0451242 0.998981i \(-0.485632\pi\)
0.0451242 + 0.998981i \(0.485632\pi\)
\(644\) −430310. −0.0408852
\(645\) 0 0
\(646\) 17841.2 0.00168206
\(647\) −870173. −0.0817231 −0.0408616 0.999165i \(-0.513010\pi\)
−0.0408616 + 0.999165i \(0.513010\pi\)
\(648\) 502435. 0.0470048
\(649\) 1.66500e6 0.155168
\(650\) 0 0
\(651\) −727100. −0.0672421
\(652\) −4.61133e6 −0.424822
\(653\) −2.57122e6 −0.235970 −0.117985 0.993015i \(-0.537643\pi\)
−0.117985 + 0.993015i \(0.537643\pi\)
\(654\) 15183.8 0.00138815
\(655\) 0 0
\(656\) −1.01668e7 −0.922415
\(657\) 4.62377e6 0.417910
\(658\) 41486.7 0.00373546
\(659\) 1.09142e7 0.978988 0.489494 0.872007i \(-0.337182\pi\)
0.489494 + 0.872007i \(0.337182\pi\)
\(660\) 0 0
\(661\) 4.31733e6 0.384337 0.192168 0.981362i \(-0.438448\pi\)
0.192168 + 0.981362i \(0.438448\pi\)
\(662\) −893712. −0.0792597
\(663\) 74145.5 0.00655090
\(664\) 2.18255e6 0.192107
\(665\) 0 0
\(666\) 75407.0 0.00658758
\(667\) −1.12607e7 −0.980057
\(668\) 1.31661e7 1.14160
\(669\) 3.59422e6 0.310484
\(670\) 0 0
\(671\) −1.47083e7 −1.26112
\(672\) −111985. −0.00956613
\(673\) 2.02793e7 1.72590 0.862949 0.505292i \(-0.168615\pi\)
0.862949 + 0.505292i \(0.168615\pi\)
\(674\) 315658. 0.0267650
\(675\) 0 0
\(676\) −909459. −0.0765450
\(677\) 1.37469e7 1.15275 0.576373 0.817186i \(-0.304467\pi\)
0.576373 + 0.817186i \(0.304467\pi\)
\(678\) −365842. −0.0305647
\(679\) 1.41254e6 0.117578
\(680\) 0 0
\(681\) 9.93025e6 0.820526
\(682\) 1.04698e6 0.0861942
\(683\) −1.37681e7 −1.12933 −0.564665 0.825320i \(-0.690995\pi\)
−0.564665 + 0.825320i \(0.690995\pi\)
\(684\) 4.15963e6 0.339949
\(685\) 0 0
\(686\) −107072. −0.00868690
\(687\) 2.93565e6 0.237308
\(688\) 1.09188e7 0.879438
\(689\) −446023. −0.0357939
\(690\) 0 0
\(691\) 6.60598e6 0.526310 0.263155 0.964754i \(-0.415237\pi\)
0.263155 + 0.964754i \(0.415237\pi\)
\(692\) −2.18637e7 −1.73563
\(693\) −299520. −0.0236915
\(694\) 344903. 0.0271830
\(695\) 0 0
\(696\) −1.95207e6 −0.152747
\(697\) −384527. −0.0299809
\(698\) −106348. −0.00826214
\(699\) −6.51047e6 −0.503987
\(700\) 0 0
\(701\) −1.37908e7 −1.05997 −0.529985 0.848007i \(-0.677803\pi\)
−0.529985 + 0.848007i \(0.677803\pi\)
\(702\) −272657. −0.0208821
\(703\) −2.02270e6 −0.154363
\(704\) −1.06836e7 −0.812426
\(705\) 0 0
\(706\) −881630. −0.0665694
\(707\) −165368. −0.0124423
\(708\) 1.81472e6 0.136059
\(709\) 1.96433e7 1.46757 0.733785 0.679382i \(-0.237752\pi\)
0.733785 + 0.679382i \(0.237752\pi\)
\(710\) 0 0
\(711\) 5.51945e6 0.409470
\(712\) 1.70375e6 0.125952
\(713\) 1.31979e7 0.972257
\(714\) −1400.20 −0.000102788 0
\(715\) 0 0
\(716\) −6.92300e6 −0.504675
\(717\) −1.95832e7 −1.42261
\(718\) 141282. 0.0102277
\(719\) −2.26567e7 −1.63446 −0.817229 0.576312i \(-0.804491\pi\)
−0.817229 + 0.576312i \(0.804491\pi\)
\(720\) 0 0
\(721\) −592749. −0.0424652
\(722\) −430869. −0.0307611
\(723\) −2.17553e6 −0.154781
\(724\) 8.99361e6 0.637657
\(725\) 0 0
\(726\) 219883. 0.0154828
\(727\) −1.36449e7 −0.957491 −0.478746 0.877954i \(-0.658908\pi\)
−0.478746 + 0.877954i \(0.658908\pi\)
\(728\) 34434.2 0.00240803
\(729\) 1.35639e7 0.945293
\(730\) 0 0
\(731\) 412969. 0.0285841
\(732\) −1.60309e7 −1.10581
\(733\) 1.07727e7 0.740569 0.370284 0.928918i \(-0.379260\pi\)
0.370284 + 0.928918i \(0.379260\pi\)
\(734\) −670161. −0.0459134
\(735\) 0 0
\(736\) 2.03269e6 0.138317
\(737\) −3.08053e6 −0.208909
\(738\) 442864. 0.0299316
\(739\) 8.30186e6 0.559196 0.279598 0.960117i \(-0.409799\pi\)
0.279598 + 0.960117i \(0.409799\pi\)
\(740\) 0 0
\(741\) 2.29059e6 0.153251
\(742\) 8422.93 0.000561634 0
\(743\) 2.21659e7 1.47304 0.736519 0.676417i \(-0.236468\pi\)
0.736519 + 0.676417i \(0.236468\pi\)
\(744\) 2.28789e6 0.151531
\(745\) 0 0
\(746\) −798140. −0.0525088
\(747\) 9.55153e6 0.626284
\(748\) −408153. −0.0266728
\(749\) 1.13526e6 0.0739417
\(750\) 0 0
\(751\) 2.47886e7 1.60380 0.801902 0.597455i \(-0.203821\pi\)
0.801902 + 0.597455i \(0.203821\pi\)
\(752\) 1.31152e7 0.845727
\(753\) −9.28290e6 −0.596618
\(754\) 449442. 0.0287902
\(755\) 0 0
\(756\) −1.04234e6 −0.0663293
\(757\) 1.63378e6 0.103623 0.0518113 0.998657i \(-0.483501\pi\)
0.0518113 + 0.998657i \(0.483501\pi\)
\(758\) −1.21881e6 −0.0770481
\(759\) −6.48562e6 −0.408646
\(760\) 0 0
\(761\) −1.29552e7 −0.810931 −0.405465 0.914110i \(-0.632891\pi\)
−0.405465 + 0.914110i \(0.632891\pi\)
\(762\) 418109. 0.0260857
\(763\) −26794.9 −0.00166625
\(764\) 4.51111e6 0.279608
\(765\) 0 0
\(766\) −2.24344e6 −0.138147
\(767\) −837700. −0.0514162
\(768\) −1.14676e7 −0.701568
\(769\) −1.14055e7 −0.695502 −0.347751 0.937587i \(-0.613055\pi\)
−0.347751 + 0.937587i \(0.613055\pi\)
\(770\) 0 0
\(771\) 1.97275e7 1.19519
\(772\) 2.60332e7 1.57212
\(773\) 6.83570e6 0.411467 0.205733 0.978608i \(-0.434042\pi\)
0.205733 + 0.978608i \(0.434042\pi\)
\(774\) −475620. −0.0285370
\(775\) 0 0
\(776\) −4.44469e6 −0.264964
\(777\) 158744. 0.00943291
\(778\) −476488. −0.0282230
\(779\) −1.18793e7 −0.701369
\(780\) 0 0
\(781\) −4.37698e6 −0.256772
\(782\) 25415.6 0.00148622
\(783\) −2.72769e7 −1.58998
\(784\) −1.68917e7 −0.981481
\(785\) 0 0
\(786\) 688144. 0.0397304
\(787\) 2.71866e7 1.56465 0.782327 0.622868i \(-0.214033\pi\)
0.782327 + 0.622868i \(0.214033\pi\)
\(788\) 1.80365e7 1.03475
\(789\) −2.40787e7 −1.37702
\(790\) 0 0
\(791\) 645603. 0.0366880
\(792\) 942469. 0.0533893
\(793\) 7.40006e6 0.417881
\(794\) 759258. 0.0427403
\(795\) 0 0
\(796\) −1.27620e7 −0.713896
\(797\) −1.81329e7 −1.01117 −0.505583 0.862778i \(-0.668722\pi\)
−0.505583 + 0.862778i \(0.668722\pi\)
\(798\) −43256.7 −0.00240462
\(799\) 496039. 0.0274884
\(800\) 0 0
\(801\) 7.45614e6 0.410613
\(802\) −1.99339e6 −0.109435
\(803\) −1.40161e7 −0.767077
\(804\) −3.35753e6 −0.183181
\(805\) 0 0
\(806\) −526760. −0.0285611
\(807\) 4.96146e6 0.268179
\(808\) 520346. 0.0280391
\(809\) 3.89183e6 0.209065 0.104533 0.994521i \(-0.466665\pi\)
0.104533 + 0.994521i \(0.466665\pi\)
\(810\) 0 0
\(811\) −1.40881e7 −0.752142 −0.376071 0.926591i \(-0.622725\pi\)
−0.376071 + 0.926591i \(0.622725\pi\)
\(812\) 1.71817e6 0.0914485
\(813\) 3.33496e6 0.176955
\(814\) −228583. −0.0120916
\(815\) 0 0
\(816\) −442646. −0.0232719
\(817\) 1.27579e7 0.668691
\(818\) −899980. −0.0470272
\(819\) 150695. 0.00785036
\(820\) 0 0
\(821\) 3.32912e7 1.72374 0.861871 0.507128i \(-0.169293\pi\)
0.861871 + 0.507128i \(0.169293\pi\)
\(822\) −93234.1 −0.00481277
\(823\) −3.41282e7 −1.75636 −0.878180 0.478330i \(-0.841242\pi\)
−0.878180 + 0.478330i \(0.841242\pi\)
\(824\) 1.86514e6 0.0956961
\(825\) 0 0
\(826\) 15819.5 0.000806759 0
\(827\) 1.68225e7 0.855317 0.427658 0.903940i \(-0.359339\pi\)
0.427658 + 0.903940i \(0.359339\pi\)
\(828\) 5.92559e6 0.300370
\(829\) −2.49836e7 −1.26261 −0.631305 0.775534i \(-0.717480\pi\)
−0.631305 + 0.775534i \(0.717480\pi\)
\(830\) 0 0
\(831\) 2.17729e7 1.09374
\(832\) 5.37513e6 0.269204
\(833\) −638871. −0.0319007
\(834\) 651529. 0.0324354
\(835\) 0 0
\(836\) −1.26092e7 −0.623979
\(837\) 3.19693e7 1.57732
\(838\) −1.55500e6 −0.0764925
\(839\) 3.58243e7 1.75700 0.878501 0.477740i \(-0.158544\pi\)
0.878501 + 0.477740i \(0.158544\pi\)
\(840\) 0 0
\(841\) 2.44514e7 1.19211
\(842\) 705214. 0.0342800
\(843\) 7.53433e6 0.365153
\(844\) −1.24008e7 −0.599231
\(845\) 0 0
\(846\) −571293. −0.0274431
\(847\) −388028. −0.0185846
\(848\) 2.66274e6 0.127157
\(849\) 7.99778e6 0.380803
\(850\) 0 0
\(851\) −2.88144e6 −0.136391
\(852\) −4.77056e6 −0.225149
\(853\) −1.13433e7 −0.533786 −0.266893 0.963726i \(-0.585997\pi\)
−0.266893 + 0.963726i \(0.585997\pi\)
\(854\) −139747. −0.00655687
\(855\) 0 0
\(856\) −3.57220e6 −0.166629
\(857\) −2.46384e7 −1.14594 −0.572968 0.819578i \(-0.694208\pi\)
−0.572968 + 0.819578i \(0.694208\pi\)
\(858\) 258857. 0.0120044
\(859\) 1.82989e6 0.0846140 0.0423070 0.999105i \(-0.486529\pi\)
0.0423070 + 0.999105i \(0.486529\pi\)
\(860\) 0 0
\(861\) 932302. 0.0428597
\(862\) −1.76753e6 −0.0810213
\(863\) −2.26407e6 −0.103482 −0.0517408 0.998661i \(-0.516477\pi\)
−0.0517408 + 0.998661i \(0.516477\pi\)
\(864\) 4.92379e6 0.224396
\(865\) 0 0
\(866\) 496835. 0.0225122
\(867\) 1.63079e7 0.736800
\(868\) −2.01375e6 −0.0907207
\(869\) −1.67312e7 −0.751585
\(870\) 0 0
\(871\) 1.54988e6 0.0692234
\(872\) 84312.7 0.00375493
\(873\) −1.94514e7 −0.863803
\(874\) 785171. 0.0347685
\(875\) 0 0
\(876\) −1.52765e7 −0.672609
\(877\) −1.77367e7 −0.778708 −0.389354 0.921088i \(-0.627302\pi\)
−0.389354 + 0.921088i \(0.627302\pi\)
\(878\) 1.48908e6 0.0651899
\(879\) −2.81371e7 −1.22831
\(880\) 0 0
\(881\) −3.79053e7 −1.64536 −0.822679 0.568506i \(-0.807522\pi\)
−0.822679 + 0.568506i \(0.807522\pi\)
\(882\) 735794. 0.0318482
\(883\) −3.29131e7 −1.42058 −0.710291 0.703908i \(-0.751437\pi\)
−0.710291 + 0.703908i \(0.751437\pi\)
\(884\) 205351. 0.00883824
\(885\) 0 0
\(886\) 917192. 0.0392533
\(887\) −9.54706e6 −0.407437 −0.203719 0.979029i \(-0.565303\pi\)
−0.203719 + 0.979029i \(0.565303\pi\)
\(888\) −499505. −0.0212573
\(889\) −737838. −0.0313117
\(890\) 0 0
\(891\) −6.66531e6 −0.281272
\(892\) 9.95444e6 0.418894
\(893\) 1.53242e7 0.643058
\(894\) 798681. 0.0334218
\(895\) 0 0
\(896\) −413188. −0.0171940
\(897\) 3.26306e6 0.135408
\(898\) −3.09424e6 −0.128045
\(899\) −5.26975e7 −2.17466
\(900\) 0 0
\(901\) 100710. 0.00413293
\(902\) −1.34246e6 −0.0549396
\(903\) −1.00126e6 −0.0408627
\(904\) −2.03145e6 −0.0826773
\(905\) 0 0
\(906\) 16364.6 0.000662344 0
\(907\) 2.11768e7 0.854758 0.427379 0.904073i \(-0.359437\pi\)
0.427379 + 0.904073i \(0.359437\pi\)
\(908\) 2.75025e7 1.10702
\(909\) 2.27720e6 0.0914095
\(910\) 0 0
\(911\) −4.30962e7 −1.72045 −0.860227 0.509912i \(-0.829678\pi\)
−0.860227 + 0.509912i \(0.829678\pi\)
\(912\) −1.36748e7 −0.544418
\(913\) −2.89537e7 −1.14955
\(914\) −1.93913e6 −0.0767787
\(915\) 0 0
\(916\) 8.13048e6 0.320168
\(917\) −1.21437e6 −0.0476900
\(918\) 61564.4 0.00241114
\(919\) 1.40263e6 0.0547841 0.0273920 0.999625i \(-0.491280\pi\)
0.0273920 + 0.999625i \(0.491280\pi\)
\(920\) 0 0
\(921\) 1.63032e7 0.633320
\(922\) −1.62119e6 −0.0628067
\(923\) 2.20216e6 0.0850832
\(924\) 989583. 0.0381305
\(925\) 0 0
\(926\) −1.24189e6 −0.0475945
\(927\) 8.16247e6 0.311977
\(928\) −8.11626e6 −0.309375
\(929\) 1.27299e7 0.483934 0.241967 0.970285i \(-0.422207\pi\)
0.241967 + 0.970285i \(0.422207\pi\)
\(930\) 0 0
\(931\) −1.97368e7 −0.746281
\(932\) −1.80312e7 −0.679962
\(933\) 1.68863e6 0.0635081
\(934\) −2.29269e6 −0.0859960
\(935\) 0 0
\(936\) −474177. −0.0176909
\(937\) 4.02938e7 1.49930 0.749651 0.661833i \(-0.230221\pi\)
0.749651 + 0.661833i \(0.230221\pi\)
\(938\) −29268.7 −0.00108617
\(939\) −3.00062e7 −1.11057
\(940\) 0 0
\(941\) −2.47470e7 −0.911064 −0.455532 0.890219i \(-0.650551\pi\)
−0.455532 + 0.890219i \(0.650551\pi\)
\(942\) −1.05974e6 −0.0389110
\(943\) −1.69226e7 −0.619710
\(944\) 5.00104e6 0.182655
\(945\) 0 0
\(946\) 1.44176e6 0.0523798
\(947\) −3.28379e7 −1.18987 −0.594937 0.803772i \(-0.702823\pi\)
−0.594937 + 0.803772i \(0.702823\pi\)
\(948\) −1.82357e7 −0.659025
\(949\) 7.05182e6 0.254177
\(950\) 0 0
\(951\) 3.28248e7 1.17693
\(952\) −7775.05 −0.000278042 0
\(953\) −2.12237e7 −0.756989 −0.378494 0.925604i \(-0.623558\pi\)
−0.378494 + 0.925604i \(0.623558\pi\)
\(954\) −115988. −0.00412613
\(955\) 0 0
\(956\) −5.42371e7 −1.91934
\(957\) 2.58963e7 0.914023
\(958\) −2.37185e6 −0.0834975
\(959\) 164531. 0.00577697
\(960\) 0 0
\(961\) 3.31340e7 1.15735
\(962\) 115005. 0.00400663
\(963\) −1.56331e7 −0.543224
\(964\) −6.02526e6 −0.208825
\(965\) 0 0
\(966\) −61621.3 −0.00212465
\(967\) 5.66776e7 1.94915 0.974575 0.224060i \(-0.0719313\pi\)
0.974575 + 0.224060i \(0.0719313\pi\)
\(968\) 1.22097e6 0.0418809
\(969\) −517202. −0.0176950
\(970\) 0 0
\(971\) −3.20888e7 −1.09221 −0.546104 0.837718i \(-0.683889\pi\)
−0.546104 + 0.837718i \(0.683889\pi\)
\(972\) 2.42118e7 0.821979
\(973\) −1.14976e6 −0.0389335
\(974\) 3.42210e6 0.115583
\(975\) 0 0
\(976\) −4.41781e7 −1.48451
\(977\) −5.01796e7 −1.68186 −0.840931 0.541142i \(-0.817992\pi\)
−0.840931 + 0.541142i \(0.817992\pi\)
\(978\) −660352. −0.0220764
\(979\) −2.26020e7 −0.753684
\(980\) 0 0
\(981\) 368979. 0.0122414
\(982\) −1.85349e6 −0.0613355
\(983\) 1.44682e7 0.477563 0.238781 0.971073i \(-0.423252\pi\)
0.238781 + 0.971073i \(0.423252\pi\)
\(984\) −2.93358e6 −0.0965852
\(985\) 0 0
\(986\) −101481. −0.00332425
\(987\) −1.20267e6 −0.0392964
\(988\) 6.34394e6 0.206760
\(989\) 1.81743e7 0.590836
\(990\) 0 0
\(991\) 2.92271e7 0.945369 0.472685 0.881232i \(-0.343285\pi\)
0.472685 + 0.881232i \(0.343285\pi\)
\(992\) 9.51250e6 0.306913
\(993\) 2.59080e7 0.833799
\(994\) −41586.6 −0.00133502
\(995\) 0 0
\(996\) −3.15573e7 −1.00798
\(997\) −3.35666e7 −1.06947 −0.534736 0.845019i \(-0.679589\pi\)
−0.534736 + 0.845019i \(0.679589\pi\)
\(998\) 4.04595e6 0.128586
\(999\) −6.97972e6 −0.221271
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.i.1.5 yes 9
5.2 odd 4 325.6.b.h.274.10 18
5.3 odd 4 325.6.b.h.274.9 18
5.4 even 2 325.6.a.h.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.5 9 5.4 even 2
325.6.a.i.1.5 yes 9 1.1 even 1 trivial
325.6.b.h.274.9 18 5.3 odd 4
325.6.b.h.274.10 18 5.2 odd 4