Properties

Label 325.6.a.i.1.2
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 181 x^{7} + 688 x^{6} + 10455 x^{5} - 37904 x^{4} - 197375 x^{3} + 702868 x^{2} + \cdots - 366960 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.28147\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.28147 q^{2} +14.9935 q^{3} +21.0198 q^{4} -109.175 q^{6} -135.391 q^{7} +79.9521 q^{8} -18.1955 q^{9} +191.317 q^{11} +315.160 q^{12} -169.000 q^{13} +985.848 q^{14} -1254.80 q^{16} +874.338 q^{17} +132.490 q^{18} +1992.26 q^{19} -2029.99 q^{21} -1393.07 q^{22} +2091.74 q^{23} +1198.76 q^{24} +1230.57 q^{26} -3916.23 q^{27} -2845.90 q^{28} -46.3621 q^{29} -9450.42 q^{31} +6578.33 q^{32} +2868.52 q^{33} -6366.46 q^{34} -382.466 q^{36} +3374.82 q^{37} -14506.6 q^{38} -2533.90 q^{39} -10511.6 q^{41} +14781.3 q^{42} -4056.27 q^{43} +4021.45 q^{44} -15230.9 q^{46} +17035.2 q^{47} -18813.8 q^{48} +1523.82 q^{49} +13109.4 q^{51} -3552.34 q^{52} +23984.5 q^{53} +28515.9 q^{54} -10824.8 q^{56} +29870.9 q^{57} +337.584 q^{58} -10197.8 q^{59} -27440.0 q^{61} +68812.9 q^{62} +2463.52 q^{63} -7746.27 q^{64} -20887.0 q^{66} +317.851 q^{67} +18378.4 q^{68} +31362.5 q^{69} +39664.7 q^{71} -1454.77 q^{72} -4764.06 q^{73} -24573.7 q^{74} +41876.9 q^{76} -25902.7 q^{77} +18450.5 q^{78} -74545.9 q^{79} -54296.4 q^{81} +76539.5 q^{82} +14234.5 q^{83} -42669.9 q^{84} +29535.6 q^{86} -695.130 q^{87} +15296.2 q^{88} -132052. q^{89} +22881.1 q^{91} +43967.9 q^{92} -141695. q^{93} -124041. q^{94} +98632.1 q^{96} -19366.7 q^{97} -11095.6 q^{98} -3481.12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 11 q^{3} + 91 q^{4} - 83 q^{6} - 12 q^{7} + 639 q^{8} + 562 q^{9} - 1422 q^{11} - 1567 q^{12} - 1521 q^{13} - 342 q^{14} - 1061 q^{16} - 648 q^{17} - 418 q^{18} - 408 q^{19} - 3912 q^{21}+ \cdots - 757776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7.28147 −1.28719 −0.643597 0.765365i \(-0.722559\pi\)
−0.643597 + 0.765365i \(0.722559\pi\)
\(3\) 14.9935 0.961832 0.480916 0.876767i \(-0.340304\pi\)
0.480916 + 0.876767i \(0.340304\pi\)
\(4\) 21.0198 0.656868
\(5\) 0 0
\(6\) −109.175 −1.23806
\(7\) −135.391 −1.04435 −0.522175 0.852839i \(-0.674879\pi\)
−0.522175 + 0.852839i \(0.674879\pi\)
\(8\) 79.9521 0.441677
\(9\) −18.1955 −0.0748787
\(10\) 0 0
\(11\) 191.317 0.476731 0.238365 0.971176i \(-0.423388\pi\)
0.238365 + 0.971176i \(0.423388\pi\)
\(12\) 315.160 0.631797
\(13\) −169.000 −0.277350
\(14\) 985.848 1.34428
\(15\) 0 0
\(16\) −1254.80 −1.22539
\(17\) 874.338 0.733765 0.366883 0.930267i \(-0.380425\pi\)
0.366883 + 0.930267i \(0.380425\pi\)
\(18\) 132.490 0.0963834
\(19\) 1992.26 1.26608 0.633042 0.774118i \(-0.281806\pi\)
0.633042 + 0.774118i \(0.281806\pi\)
\(20\) 0 0
\(21\) −2029.99 −1.00449
\(22\) −1393.07 −0.613645
\(23\) 2091.74 0.824495 0.412248 0.911072i \(-0.364744\pi\)
0.412248 + 0.911072i \(0.364744\pi\)
\(24\) 1198.76 0.424819
\(25\) 0 0
\(26\) 1230.57 0.357003
\(27\) −3916.23 −1.03385
\(28\) −2845.90 −0.686000
\(29\) −46.3621 −0.0102369 −0.00511845 0.999987i \(-0.501629\pi\)
−0.00511845 + 0.999987i \(0.501629\pi\)
\(30\) 0 0
\(31\) −9450.42 −1.76623 −0.883114 0.469158i \(-0.844558\pi\)
−0.883114 + 0.469158i \(0.844558\pi\)
\(32\) 6578.33 1.13564
\(33\) 2868.52 0.458535
\(34\) −6366.46 −0.944498
\(35\) 0 0
\(36\) −382.466 −0.0491854
\(37\) 3374.82 0.405272 0.202636 0.979254i \(-0.435049\pi\)
0.202636 + 0.979254i \(0.435049\pi\)
\(38\) −14506.6 −1.62969
\(39\) −2533.90 −0.266764
\(40\) 0 0
\(41\) −10511.6 −0.976578 −0.488289 0.872682i \(-0.662379\pi\)
−0.488289 + 0.872682i \(0.662379\pi\)
\(42\) 14781.3 1.29297
\(43\) −4056.27 −0.334546 −0.167273 0.985911i \(-0.553496\pi\)
−0.167273 + 0.985911i \(0.553496\pi\)
\(44\) 4021.45 0.313149
\(45\) 0 0
\(46\) −15230.9 −1.06129
\(47\) 17035.2 1.12487 0.562435 0.826842i \(-0.309865\pi\)
0.562435 + 0.826842i \(0.309865\pi\)
\(48\) −18813.8 −1.17862
\(49\) 1523.82 0.0906658
\(50\) 0 0
\(51\) 13109.4 0.705759
\(52\) −3552.34 −0.182182
\(53\) 23984.5 1.17285 0.586424 0.810004i \(-0.300535\pi\)
0.586424 + 0.810004i \(0.300535\pi\)
\(54\) 28515.9 1.33077
\(55\) 0 0
\(56\) −10824.8 −0.461265
\(57\) 29870.9 1.21776
\(58\) 337.584 0.0131769
\(59\) −10197.8 −0.381398 −0.190699 0.981649i \(-0.561075\pi\)
−0.190699 + 0.981649i \(0.561075\pi\)
\(60\) 0 0
\(61\) −27440.0 −0.944191 −0.472095 0.881547i \(-0.656502\pi\)
−0.472095 + 0.881547i \(0.656502\pi\)
\(62\) 68812.9 2.27348
\(63\) 2463.52 0.0781995
\(64\) −7746.27 −0.236397
\(65\) 0 0
\(66\) −20887.0 −0.590223
\(67\) 317.851 0.00865040 0.00432520 0.999991i \(-0.498623\pi\)
0.00432520 + 0.999991i \(0.498623\pi\)
\(68\) 18378.4 0.481987
\(69\) 31362.5 0.793026
\(70\) 0 0
\(71\) 39664.7 0.933809 0.466905 0.884308i \(-0.345369\pi\)
0.466905 + 0.884308i \(0.345369\pi\)
\(72\) −1454.77 −0.0330722
\(73\) −4764.06 −0.104633 −0.0523167 0.998631i \(-0.516661\pi\)
−0.0523167 + 0.998631i \(0.516661\pi\)
\(74\) −24573.7 −0.521664
\(75\) 0 0
\(76\) 41876.9 0.831650
\(77\) −25902.7 −0.497873
\(78\) 18450.5 0.343377
\(79\) −74545.9 −1.34387 −0.671933 0.740612i \(-0.734536\pi\)
−0.671933 + 0.740612i \(0.734536\pi\)
\(80\) 0 0
\(81\) −54296.4 −0.919514
\(82\) 76539.5 1.25705
\(83\) 14234.5 0.226803 0.113401 0.993549i \(-0.463825\pi\)
0.113401 + 0.993549i \(0.463825\pi\)
\(84\) −42669.9 −0.659817
\(85\) 0 0
\(86\) 29535.6 0.430625
\(87\) −695.130 −0.00984618
\(88\) 15296.2 0.210561
\(89\) −132052. −1.76713 −0.883566 0.468307i \(-0.844864\pi\)
−0.883566 + 0.468307i \(0.844864\pi\)
\(90\) 0 0
\(91\) 22881.1 0.289650
\(92\) 43967.9 0.541585
\(93\) −141695. −1.69882
\(94\) −124041. −1.44793
\(95\) 0 0
\(96\) 98632.1 1.09230
\(97\) −19366.7 −0.208990 −0.104495 0.994525i \(-0.533323\pi\)
−0.104495 + 0.994525i \(0.533323\pi\)
\(98\) −11095.6 −0.116704
\(99\) −3481.12 −0.0356970
\(100\) 0 0
\(101\) −90391.7 −0.881709 −0.440855 0.897579i \(-0.645325\pi\)
−0.440855 + 0.897579i \(0.645325\pi\)
\(102\) −95455.5 −0.908449
\(103\) −59762.2 −0.555051 −0.277526 0.960718i \(-0.589514\pi\)
−0.277526 + 0.960718i \(0.589514\pi\)
\(104\) −13511.9 −0.122499
\(105\) 0 0
\(106\) −174643. −1.50968
\(107\) −178407. −1.50645 −0.753223 0.657766i \(-0.771502\pi\)
−0.753223 + 0.657766i \(0.771502\pi\)
\(108\) −82318.3 −0.679105
\(109\) −37689.5 −0.303847 −0.151923 0.988392i \(-0.548547\pi\)
−0.151923 + 0.988392i \(0.548547\pi\)
\(110\) 0 0
\(111\) 50600.3 0.389804
\(112\) 169889. 1.27974
\(113\) 38616.5 0.284497 0.142248 0.989831i \(-0.454567\pi\)
0.142248 + 0.989831i \(0.454567\pi\)
\(114\) −217504. −1.56749
\(115\) 0 0
\(116\) −974.522 −0.00672429
\(117\) 3075.04 0.0207676
\(118\) 74255.3 0.490933
\(119\) −118378. −0.766307
\(120\) 0 0
\(121\) −124449. −0.772728
\(122\) 199804. 1.21536
\(123\) −157605. −0.939305
\(124\) −198646. −1.16018
\(125\) 0 0
\(126\) −17938.0 −0.100658
\(127\) −301119. −1.65664 −0.828320 0.560255i \(-0.810703\pi\)
−0.828320 + 0.560255i \(0.810703\pi\)
\(128\) −154102. −0.831351
\(129\) −60817.6 −0.321777
\(130\) 0 0
\(131\) −100245. −0.510371 −0.255186 0.966892i \(-0.582137\pi\)
−0.255186 + 0.966892i \(0.582137\pi\)
\(132\) 60295.6 0.301197
\(133\) −269735. −1.32223
\(134\) −2314.42 −0.0111347
\(135\) 0 0
\(136\) 69905.2 0.324087
\(137\) −72376.9 −0.329457 −0.164728 0.986339i \(-0.552675\pi\)
−0.164728 + 0.986339i \(0.552675\pi\)
\(138\) −228365. −1.02078
\(139\) 296858. 1.30320 0.651601 0.758562i \(-0.274098\pi\)
0.651601 + 0.758562i \(0.274098\pi\)
\(140\) 0 0
\(141\) 255417. 1.08194
\(142\) −288817. −1.20199
\(143\) −32332.7 −0.132221
\(144\) 22831.8 0.0917558
\(145\) 0 0
\(146\) 34689.3 0.134683
\(147\) 22847.4 0.0872053
\(148\) 70938.0 0.266210
\(149\) 16259.4 0.0599981 0.0299991 0.999550i \(-0.490450\pi\)
0.0299991 + 0.999550i \(0.490450\pi\)
\(150\) 0 0
\(151\) 383495. 1.36873 0.684364 0.729140i \(-0.260080\pi\)
0.684364 + 0.729140i \(0.260080\pi\)
\(152\) 159285. 0.559200
\(153\) −15909.0 −0.0549434
\(154\) 188610. 0.640859
\(155\) 0 0
\(156\) −53262.0 −0.175229
\(157\) −235502. −0.762510 −0.381255 0.924470i \(-0.624508\pi\)
−0.381255 + 0.924470i \(0.624508\pi\)
\(158\) 542804. 1.72982
\(159\) 359612. 1.12808
\(160\) 0 0
\(161\) −283204. −0.861061
\(162\) 395358. 1.18359
\(163\) −205165. −0.604832 −0.302416 0.953176i \(-0.597793\pi\)
−0.302416 + 0.953176i \(0.597793\pi\)
\(164\) −220951. −0.641483
\(165\) 0 0
\(166\) −103648. −0.291939
\(167\) −68965.6 −0.191356 −0.0956778 0.995412i \(-0.530502\pi\)
−0.0956778 + 0.995412i \(0.530502\pi\)
\(168\) −162302. −0.443660
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −36250.2 −0.0948027
\(172\) −85261.9 −0.219753
\(173\) −613056. −1.55735 −0.778673 0.627430i \(-0.784107\pi\)
−0.778673 + 0.627430i \(0.784107\pi\)
\(174\) 5061.56 0.0126739
\(175\) 0 0
\(176\) −240066. −0.584182
\(177\) −152901. −0.366841
\(178\) 961530. 2.27464
\(179\) −637734. −1.48767 −0.743836 0.668362i \(-0.766996\pi\)
−0.743836 + 0.668362i \(0.766996\pi\)
\(180\) 0 0
\(181\) 145338. 0.329749 0.164875 0.986315i \(-0.447278\pi\)
0.164875 + 0.986315i \(0.447278\pi\)
\(182\) −166608. −0.372836
\(183\) −411421. −0.908153
\(184\) 167239. 0.364161
\(185\) 0 0
\(186\) 1.03175e6 2.18671
\(187\) 167276. 0.349808
\(188\) 358076. 0.738891
\(189\) 530224. 1.07970
\(190\) 0 0
\(191\) −967379. −1.91873 −0.959364 0.282173i \(-0.908945\pi\)
−0.959364 + 0.282173i \(0.908945\pi\)
\(192\) −116143. −0.227375
\(193\) 9104.15 0.0175932 0.00879662 0.999961i \(-0.497200\pi\)
0.00879662 + 0.999961i \(0.497200\pi\)
\(194\) 141018. 0.269011
\(195\) 0 0
\(196\) 32030.4 0.0595555
\(197\) 567218. 1.04132 0.520660 0.853764i \(-0.325686\pi\)
0.520660 + 0.853764i \(0.325686\pi\)
\(198\) 25347.7 0.0459489
\(199\) −321297. −0.575141 −0.287571 0.957759i \(-0.592848\pi\)
−0.287571 + 0.957759i \(0.592848\pi\)
\(200\) 0 0
\(201\) 4765.69 0.00832023
\(202\) 658185. 1.13493
\(203\) 6277.03 0.0106909
\(204\) 275556. 0.463591
\(205\) 0 0
\(206\) 435156. 0.714459
\(207\) −38060.3 −0.0617371
\(208\) 212061. 0.339863
\(209\) 381154. 0.603580
\(210\) 0 0
\(211\) −165479. −0.255880 −0.127940 0.991782i \(-0.540836\pi\)
−0.127940 + 0.991782i \(0.540836\pi\)
\(212\) 504150. 0.770407
\(213\) 594712. 0.898168
\(214\) 1.29907e6 1.93909
\(215\) 0 0
\(216\) −313111. −0.456629
\(217\) 1.27951e6 1.84456
\(218\) 274435. 0.391109
\(219\) −71429.8 −0.100640
\(220\) 0 0
\(221\) −147763. −0.203510
\(222\) −368445. −0.501753
\(223\) 1.14125e6 1.53680 0.768402 0.639968i \(-0.221052\pi\)
0.768402 + 0.639968i \(0.221052\pi\)
\(224\) −890649. −1.18601
\(225\) 0 0
\(226\) −281185. −0.366202
\(227\) −573565. −0.738785 −0.369393 0.929273i \(-0.620434\pi\)
−0.369393 + 0.929273i \(0.620434\pi\)
\(228\) 627880. 0.799908
\(229\) 1.11647e6 1.40688 0.703440 0.710755i \(-0.251647\pi\)
0.703440 + 0.710755i \(0.251647\pi\)
\(230\) 0 0
\(231\) −388372. −0.478871
\(232\) −3706.75 −0.00452140
\(233\) 1.08552e6 1.30993 0.654967 0.755658i \(-0.272683\pi\)
0.654967 + 0.755658i \(0.272683\pi\)
\(234\) −22390.8 −0.0267319
\(235\) 0 0
\(236\) −214356. −0.250528
\(237\) −1.11770e6 −1.29257
\(238\) 861964. 0.986386
\(239\) 497543. 0.563425 0.281712 0.959499i \(-0.409098\pi\)
0.281712 + 0.959499i \(0.409098\pi\)
\(240\) 0 0
\(241\) −1.68881e6 −1.87300 −0.936499 0.350669i \(-0.885954\pi\)
−0.936499 + 0.350669i \(0.885954\pi\)
\(242\) 906169. 0.994651
\(243\) 137552. 0.149434
\(244\) −576783. −0.620209
\(245\) 0 0
\(246\) 1.14759e6 1.20907
\(247\) −336692. −0.351148
\(248\) −755581. −0.780103
\(249\) 213425. 0.218146
\(250\) 0 0
\(251\) −358692. −0.359366 −0.179683 0.983725i \(-0.557507\pi\)
−0.179683 + 0.983725i \(0.557507\pi\)
\(252\) 51782.6 0.0513668
\(253\) 400187. 0.393062
\(254\) 2.19259e6 2.13242
\(255\) 0 0
\(256\) 1.36997e6 1.30651
\(257\) −715783. −0.676003 −0.338001 0.941146i \(-0.609751\pi\)
−0.338001 + 0.941146i \(0.609751\pi\)
\(258\) 442841. 0.414189
\(259\) −456922. −0.423246
\(260\) 0 0
\(261\) 843.583 0.000766525 0
\(262\) 729933. 0.656946
\(263\) −167988. −0.149757 −0.0748787 0.997193i \(-0.523857\pi\)
−0.0748787 + 0.997193i \(0.523857\pi\)
\(264\) 229344. 0.202524
\(265\) 0 0
\(266\) 1.96407e6 1.70197
\(267\) −1.97991e6 −1.69968
\(268\) 6681.15 0.00568217
\(269\) 1.93165e6 1.62760 0.813800 0.581145i \(-0.197395\pi\)
0.813800 + 0.581145i \(0.197395\pi\)
\(270\) 0 0
\(271\) 2.04198e6 1.68900 0.844499 0.535558i \(-0.179899\pi\)
0.844499 + 0.535558i \(0.179899\pi\)
\(272\) −1.09712e6 −0.899150
\(273\) 343068. 0.278595
\(274\) 527010. 0.424075
\(275\) 0 0
\(276\) 659232. 0.520914
\(277\) −1.05919e6 −0.829416 −0.414708 0.909955i \(-0.636116\pi\)
−0.414708 + 0.909955i \(0.636116\pi\)
\(278\) −2.16156e6 −1.67747
\(279\) 171955. 0.132253
\(280\) 0 0
\(281\) −935578. −0.706829 −0.353414 0.935467i \(-0.614979\pi\)
−0.353414 + 0.935467i \(0.614979\pi\)
\(282\) −1.85981e6 −1.39266
\(283\) 827252. 0.614005 0.307002 0.951709i \(-0.400674\pi\)
0.307002 + 0.951709i \(0.400674\pi\)
\(284\) 833743. 0.613390
\(285\) 0 0
\(286\) 235429. 0.170194
\(287\) 1.42317e6 1.01989
\(288\) −119696. −0.0850353
\(289\) −655390. −0.461589
\(290\) 0 0
\(291\) −290374. −0.201013
\(292\) −100139. −0.0687303
\(293\) −1.77525e6 −1.20806 −0.604032 0.796960i \(-0.706440\pi\)
−0.604032 + 0.796960i \(0.706440\pi\)
\(294\) −166362. −0.112250
\(295\) 0 0
\(296\) 269824. 0.178999
\(297\) −749243. −0.492869
\(298\) −118392. −0.0772292
\(299\) −353504. −0.228674
\(300\) 0 0
\(301\) 549184. 0.349383
\(302\) −2.79241e6 −1.76182
\(303\) −1.35529e6 −0.848056
\(304\) −2.49989e6 −1.55145
\(305\) 0 0
\(306\) 115841. 0.0707228
\(307\) 293202. 0.177550 0.0887750 0.996052i \(-0.471705\pi\)
0.0887750 + 0.996052i \(0.471705\pi\)
\(308\) −544470. −0.327037
\(309\) −896043. −0.533866
\(310\) 0 0
\(311\) −2.34227e6 −1.37321 −0.686605 0.727031i \(-0.740900\pi\)
−0.686605 + 0.727031i \(0.740900\pi\)
\(312\) −202590. −0.117824
\(313\) −1.20634e6 −0.695997 −0.347999 0.937495i \(-0.613139\pi\)
−0.347999 + 0.937495i \(0.613139\pi\)
\(314\) 1.71480e6 0.981499
\(315\) 0 0
\(316\) −1.56694e6 −0.882743
\(317\) 2.21969e6 1.24063 0.620316 0.784352i \(-0.287004\pi\)
0.620316 + 0.784352i \(0.287004\pi\)
\(318\) −2.61850e6 −1.45206
\(319\) −8869.88 −0.00488024
\(320\) 0 0
\(321\) −2.67495e6 −1.44895
\(322\) 2.06214e6 1.10835
\(323\) 1.74191e6 0.929008
\(324\) −1.14130e6 −0.604000
\(325\) 0 0
\(326\) 1.49390e6 0.778536
\(327\) −565097. −0.292249
\(328\) −840420. −0.431332
\(329\) −2.30642e6 −1.17476
\(330\) 0 0
\(331\) 1.37355e6 0.689087 0.344544 0.938770i \(-0.388034\pi\)
0.344544 + 0.938770i \(0.388034\pi\)
\(332\) 299207. 0.148980
\(333\) −61406.7 −0.0303462
\(334\) 502171. 0.246312
\(335\) 0 0
\(336\) 2.54723e6 1.23089
\(337\) −428681. −0.205617 −0.102809 0.994701i \(-0.532783\pi\)
−0.102809 + 0.994701i \(0.532783\pi\)
\(338\) −207966. −0.0990149
\(339\) 578996. 0.273638
\(340\) 0 0
\(341\) −1.80803e6 −0.842015
\(342\) 263955. 0.122029
\(343\) 2.06921e6 0.949663
\(344\) −324307. −0.147761
\(345\) 0 0
\(346\) 4.46395e6 2.00461
\(347\) −3.34049e6 −1.48932 −0.744658 0.667446i \(-0.767388\pi\)
−0.744658 + 0.667446i \(0.767388\pi\)
\(348\) −14611.5 −0.00646764
\(349\) −1.65843e6 −0.728840 −0.364420 0.931235i \(-0.618733\pi\)
−0.364420 + 0.931235i \(0.618733\pi\)
\(350\) 0 0
\(351\) 661843. 0.286739
\(352\) 1.25855e6 0.541394
\(353\) −2.62106e6 −1.11954 −0.559771 0.828648i \(-0.689111\pi\)
−0.559771 + 0.828648i \(0.689111\pi\)
\(354\) 1.11335e6 0.472195
\(355\) 0 0
\(356\) −2.77570e6 −1.16077
\(357\) −1.77490e6 −0.737059
\(358\) 4.64364e6 1.91492
\(359\) −818855. −0.335329 −0.167664 0.985844i \(-0.553623\pi\)
−0.167664 + 0.985844i \(0.553623\pi\)
\(360\) 0 0
\(361\) 1.49300e6 0.602966
\(362\) −1.05828e6 −0.424451
\(363\) −1.86592e6 −0.743235
\(364\) 480957. 0.190262
\(365\) 0 0
\(366\) 2.99575e6 1.16897
\(367\) 2.81469e6 1.09085 0.545425 0.838160i \(-0.316368\pi\)
0.545425 + 0.838160i \(0.316368\pi\)
\(368\) −2.62472e6 −1.01033
\(369\) 191263. 0.0731249
\(370\) 0 0
\(371\) −3.24730e6 −1.22486
\(372\) −2.97839e6 −1.11590
\(373\) 4.64910e6 1.73020 0.865101 0.501598i \(-0.167254\pi\)
0.865101 + 0.501598i \(0.167254\pi\)
\(374\) −1.21802e6 −0.450271
\(375\) 0 0
\(376\) 1.36200e6 0.496829
\(377\) 7835.20 0.00283920
\(378\) −3.86081e6 −1.38979
\(379\) −2.33478e6 −0.834924 −0.417462 0.908694i \(-0.637080\pi\)
−0.417462 + 0.908694i \(0.637080\pi\)
\(380\) 0 0
\(381\) −4.51482e6 −1.59341
\(382\) 7.04394e6 2.46977
\(383\) 3.05707e6 1.06490 0.532449 0.846462i \(-0.321272\pi\)
0.532449 + 0.846462i \(0.321272\pi\)
\(384\) −2.31053e6 −0.799621
\(385\) 0 0
\(386\) −66291.6 −0.0226459
\(387\) 73806.0 0.0250504
\(388\) −407083. −0.137279
\(389\) 1.25272e6 0.419741 0.209871 0.977729i \(-0.432696\pi\)
0.209871 + 0.977729i \(0.432696\pi\)
\(390\) 0 0
\(391\) 1.82889e6 0.604986
\(392\) 121833. 0.0400450
\(393\) −1.50303e6 −0.490891
\(394\) −4.13018e6 −1.34038
\(395\) 0 0
\(396\) −73172.4 −0.0234482
\(397\) −5.44444e6 −1.73371 −0.866856 0.498559i \(-0.833863\pi\)
−0.866856 + 0.498559i \(0.833863\pi\)
\(398\) 2.33952e6 0.740318
\(399\) −4.04427e6 −1.27177
\(400\) 0 0
\(401\) −3.75387e6 −1.16578 −0.582892 0.812549i \(-0.698079\pi\)
−0.582892 + 0.812549i \(0.698079\pi\)
\(402\) −34701.2 −0.0107098
\(403\) 1.59712e6 0.489864
\(404\) −1.90001e6 −0.579167
\(405\) 0 0
\(406\) −45706.0 −0.0137613
\(407\) 645663. 0.193206
\(408\) 1.04812e6 0.311718
\(409\) 4.09010e6 1.20900 0.604500 0.796605i \(-0.293373\pi\)
0.604500 + 0.796605i \(0.293373\pi\)
\(410\) 0 0
\(411\) −1.08518e6 −0.316882
\(412\) −1.25619e6 −0.364596
\(413\) 1.38070e6 0.398313
\(414\) 277135. 0.0794677
\(415\) 0 0
\(416\) −1.11174e6 −0.314970
\(417\) 4.45094e6 1.25346
\(418\) −2.77536e6 −0.776925
\(419\) 3.67162e6 1.02170 0.510849 0.859671i \(-0.329331\pi\)
0.510849 + 0.859671i \(0.329331\pi\)
\(420\) 0 0
\(421\) 1.59907e6 0.439705 0.219852 0.975533i \(-0.429442\pi\)
0.219852 + 0.975533i \(0.429442\pi\)
\(422\) 1.20493e6 0.329367
\(423\) −309964. −0.0842288
\(424\) 1.91761e6 0.518020
\(425\) 0 0
\(426\) −4.33037e6 −1.15612
\(427\) 3.71514e6 0.986065
\(428\) −3.75009e6 −0.989536
\(429\) −484779. −0.127175
\(430\) 0 0
\(431\) 6.53931e6 1.69566 0.847830 0.530268i \(-0.177909\pi\)
0.847830 + 0.530268i \(0.177909\pi\)
\(432\) 4.91409e6 1.26688
\(433\) 1.60206e6 0.410639 0.205319 0.978695i \(-0.434177\pi\)
0.205319 + 0.978695i \(0.434177\pi\)
\(434\) −9.31668e6 −2.37431
\(435\) 0 0
\(436\) −792226. −0.199587
\(437\) 4.16729e6 1.04388
\(438\) 520114. 0.129543
\(439\) −4.84652e6 −1.20024 −0.600121 0.799909i \(-0.704881\pi\)
−0.600121 + 0.799909i \(0.704881\pi\)
\(440\) 0 0
\(441\) −27726.7 −0.00678894
\(442\) 1.07593e6 0.261957
\(443\) 580247. 0.140476 0.0702382 0.997530i \(-0.477624\pi\)
0.0702382 + 0.997530i \(0.477624\pi\)
\(444\) 1.06361e6 0.256050
\(445\) 0 0
\(446\) −8.30997e6 −1.97816
\(447\) 243784. 0.0577081
\(448\) 1.04878e6 0.246881
\(449\) 2.04347e6 0.478356 0.239178 0.970976i \(-0.423122\pi\)
0.239178 + 0.970976i \(0.423122\pi\)
\(450\) 0 0
\(451\) −2.01104e6 −0.465565
\(452\) 811711. 0.186877
\(453\) 5.74993e6 1.31649
\(454\) 4.17640e6 0.950960
\(455\) 0 0
\(456\) 2.38824e6 0.537857
\(457\) 1.52332e6 0.341194 0.170597 0.985341i \(-0.445430\pi\)
0.170597 + 0.985341i \(0.445430\pi\)
\(458\) −8.12951e6 −1.81093
\(459\) −3.42411e6 −0.758605
\(460\) 0 0
\(461\) 7.87768e6 1.72642 0.863209 0.504847i \(-0.168451\pi\)
0.863209 + 0.504847i \(0.168451\pi\)
\(462\) 2.82792e6 0.616399
\(463\) 136322. 0.0295539 0.0147770 0.999891i \(-0.495296\pi\)
0.0147770 + 0.999891i \(0.495296\pi\)
\(464\) 58175.3 0.0125442
\(465\) 0 0
\(466\) −7.90420e6 −1.68614
\(467\) 5.56784e6 1.18139 0.590697 0.806894i \(-0.298853\pi\)
0.590697 + 0.806894i \(0.298853\pi\)
\(468\) 64636.8 0.0136416
\(469\) −43034.2 −0.00903404
\(470\) 0 0
\(471\) −3.53100e6 −0.733407
\(472\) −815339. −0.168455
\(473\) −776035. −0.159488
\(474\) 8.13852e6 1.66379
\(475\) 0 0
\(476\) −2.48828e6 −0.503363
\(477\) −436411. −0.0878213
\(478\) −3.62284e6 −0.725237
\(479\) 3.92083e6 0.780799 0.390399 0.920646i \(-0.372337\pi\)
0.390399 + 0.920646i \(0.372337\pi\)
\(480\) 0 0
\(481\) −570345. −0.112402
\(482\) 1.22970e7 2.41091
\(483\) −4.24621e6 −0.828197
\(484\) −2.61588e6 −0.507581
\(485\) 0 0
\(486\) −1.00158e6 −0.192351
\(487\) 8.77882e6 1.67731 0.838656 0.544661i \(-0.183342\pi\)
0.838656 + 0.544661i \(0.183342\pi\)
\(488\) −2.19389e6 −0.417027
\(489\) −3.07614e6 −0.581747
\(490\) 0 0
\(491\) −9.13377e6 −1.70980 −0.854902 0.518789i \(-0.826383\pi\)
−0.854902 + 0.518789i \(0.826383\pi\)
\(492\) −3.31282e6 −0.616999
\(493\) −40536.2 −0.00751148
\(494\) 2.45161e6 0.451996
\(495\) 0 0
\(496\) 1.18584e7 2.16432
\(497\) −5.37026e6 −0.975223
\(498\) −1.55405e6 −0.280796
\(499\) −9.41419e6 −1.69251 −0.846256 0.532777i \(-0.821148\pi\)
−0.846256 + 0.532777i \(0.821148\pi\)
\(500\) 0 0
\(501\) −1.03403e6 −0.184052
\(502\) 2.61180e6 0.462574
\(503\) 5.68086e6 1.00114 0.500569 0.865697i \(-0.333124\pi\)
0.500569 + 0.865697i \(0.333124\pi\)
\(504\) 196963. 0.0345389
\(505\) 0 0
\(506\) −2.91395e6 −0.505947
\(507\) 428229. 0.0739871
\(508\) −6.32945e6 −1.08819
\(509\) 2.85772e6 0.488906 0.244453 0.969661i \(-0.421392\pi\)
0.244453 + 0.969661i \(0.421392\pi\)
\(510\) 0 0
\(511\) 645012. 0.109274
\(512\) −5.04413e6 −0.850377
\(513\) −7.80215e6 −1.30894
\(514\) 5.21195e6 0.870147
\(515\) 0 0
\(516\) −1.27837e6 −0.211365
\(517\) 3.25913e6 0.536260
\(518\) 3.32706e6 0.544799
\(519\) −9.19185e6 −1.49791
\(520\) 0 0
\(521\) 2.64216e6 0.426446 0.213223 0.977004i \(-0.431604\pi\)
0.213223 + 0.977004i \(0.431604\pi\)
\(522\) −6142.52 −0.000986667 0
\(523\) 1.02124e7 1.63258 0.816288 0.577645i \(-0.196028\pi\)
0.816288 + 0.577645i \(0.196028\pi\)
\(524\) −2.10714e6 −0.335247
\(525\) 0 0
\(526\) 1.22320e6 0.192767
\(527\) −8.26286e6 −1.29600
\(528\) −3.59942e6 −0.561885
\(529\) −2.06096e6 −0.320207
\(530\) 0 0
\(531\) 185555. 0.0285586
\(532\) −5.66977e6 −0.868533
\(533\) 1.77645e6 0.270854
\(534\) 1.44167e7 2.18782
\(535\) 0 0
\(536\) 25412.8 0.00382068
\(537\) −9.56186e6 −1.43089
\(538\) −1.40652e7 −2.09504
\(539\) 291533. 0.0432232
\(540\) 0 0
\(541\) −2.02275e6 −0.297132 −0.148566 0.988902i \(-0.547466\pi\)
−0.148566 + 0.988902i \(0.547466\pi\)
\(542\) −1.48686e7 −2.17407
\(543\) 2.17913e6 0.317163
\(544\) 5.75169e6 0.833293
\(545\) 0 0
\(546\) −2.49804e6 −0.358606
\(547\) 2.12905e6 0.304241 0.152120 0.988362i \(-0.451390\pi\)
0.152120 + 0.988362i \(0.451390\pi\)
\(548\) −1.52135e6 −0.216410
\(549\) 499285. 0.0706998
\(550\) 0 0
\(551\) −92365.4 −0.0129608
\(552\) 2.50750e6 0.350262
\(553\) 1.00929e7 1.40347
\(554\) 7.71242e6 1.06762
\(555\) 0 0
\(556\) 6.23989e6 0.856032
\(557\) −8.58830e6 −1.17292 −0.586461 0.809977i \(-0.699479\pi\)
−0.586461 + 0.809977i \(0.699479\pi\)
\(558\) −1.25209e6 −0.170235
\(559\) 685510. 0.0927863
\(560\) 0 0
\(561\) 2.50805e6 0.336457
\(562\) 6.81238e6 0.909826
\(563\) 1.02986e7 1.36933 0.684664 0.728859i \(-0.259949\pi\)
0.684664 + 0.728859i \(0.259949\pi\)
\(564\) 5.36880e6 0.710689
\(565\) 0 0
\(566\) −6.02361e6 −0.790343
\(567\) 7.35126e6 0.960294
\(568\) 3.17127e6 0.412442
\(569\) 4.16791e6 0.539681 0.269841 0.962905i \(-0.413029\pi\)
0.269841 + 0.962905i \(0.413029\pi\)
\(570\) 0 0
\(571\) 7.69686e6 0.987923 0.493962 0.869484i \(-0.335548\pi\)
0.493962 + 0.869484i \(0.335548\pi\)
\(572\) −679625. −0.0868519
\(573\) −1.45044e7 −1.84549
\(574\) −1.03628e7 −1.31280
\(575\) 0 0
\(576\) 140947. 0.0177011
\(577\) −1.42934e7 −1.78729 −0.893645 0.448775i \(-0.851860\pi\)
−0.893645 + 0.448775i \(0.851860\pi\)
\(578\) 4.77220e6 0.594154
\(579\) 136503. 0.0169217
\(580\) 0 0
\(581\) −1.92723e6 −0.236861
\(582\) 2.11435e6 0.258743
\(583\) 4.58866e6 0.559133
\(584\) −380897. −0.0462141
\(585\) 0 0
\(586\) 1.29264e7 1.55501
\(587\) −1.52860e7 −1.83104 −0.915522 0.402268i \(-0.868222\pi\)
−0.915522 + 0.402268i \(0.868222\pi\)
\(588\) 480247. 0.0572824
\(589\) −1.88277e7 −2.23619
\(590\) 0 0
\(591\) 8.50457e6 1.00157
\(592\) −4.23473e6 −0.496617
\(593\) −8.42604e6 −0.983981 −0.491991 0.870601i \(-0.663731\pi\)
−0.491991 + 0.870601i \(0.663731\pi\)
\(594\) 5.45559e6 0.634418
\(595\) 0 0
\(596\) 341768. 0.0394109
\(597\) −4.81737e6 −0.553189
\(598\) 2.57403e6 0.294348
\(599\) −1.40447e6 −0.159936 −0.0799680 0.996797i \(-0.525482\pi\)
−0.0799680 + 0.996797i \(0.525482\pi\)
\(600\) 0 0
\(601\) 3.45723e6 0.390429 0.195214 0.980761i \(-0.437460\pi\)
0.195214 + 0.980761i \(0.437460\pi\)
\(602\) −3.99887e6 −0.449723
\(603\) −5783.46 −0.000647731 0
\(604\) 8.06098e6 0.899075
\(605\) 0 0
\(606\) 9.86848e6 1.09161
\(607\) −1.56253e7 −1.72130 −0.860652 0.509194i \(-0.829944\pi\)
−0.860652 + 0.509194i \(0.829944\pi\)
\(608\) 1.31058e7 1.43782
\(609\) 94114.5 0.0102828
\(610\) 0 0
\(611\) −2.87895e6 −0.311983
\(612\) −334405. −0.0360906
\(613\) −3.97422e6 −0.427170 −0.213585 0.976924i \(-0.568514\pi\)
−0.213585 + 0.976924i \(0.568514\pi\)
\(614\) −2.13494e6 −0.228541
\(615\) 0 0
\(616\) −2.07098e6 −0.219899
\(617\) −5.17583e6 −0.547353 −0.273676 0.961822i \(-0.588240\pi\)
−0.273676 + 0.961822i \(0.588240\pi\)
\(618\) 6.52451e6 0.687189
\(619\) 2.06480e6 0.216597 0.108298 0.994118i \(-0.465460\pi\)
0.108298 + 0.994118i \(0.465460\pi\)
\(620\) 0 0
\(621\) −8.19174e6 −0.852407
\(622\) 1.70552e7 1.76759
\(623\) 1.78787e7 1.84550
\(624\) 3.17954e6 0.326891
\(625\) 0 0
\(626\) 8.78390e6 0.895883
\(627\) 5.71483e6 0.580543
\(628\) −4.95020e6 −0.500869
\(629\) 2.95074e6 0.297374
\(630\) 0 0
\(631\) −1.72030e7 −1.72001 −0.860003 0.510289i \(-0.829539\pi\)
−0.860003 + 0.510289i \(0.829539\pi\)
\(632\) −5.96010e6 −0.593555
\(633\) −2.48110e6 −0.246113
\(634\) −1.61626e7 −1.59693
\(635\) 0 0
\(636\) 7.55896e6 0.741002
\(637\) −257526. −0.0251462
\(638\) 64585.8 0.00628182
\(639\) −721720. −0.0699224
\(640\) 0 0
\(641\) −7.98432e6 −0.767526 −0.383763 0.923432i \(-0.625372\pi\)
−0.383763 + 0.923432i \(0.625372\pi\)
\(642\) 1.94775e7 1.86508
\(643\) −5.66314e6 −0.540169 −0.270085 0.962837i \(-0.587052\pi\)
−0.270085 + 0.962837i \(0.587052\pi\)
\(644\) −5.95288e6 −0.565604
\(645\) 0 0
\(646\) −1.26837e7 −1.19581
\(647\) −3.74193e6 −0.351427 −0.175713 0.984441i \(-0.556223\pi\)
−0.175713 + 0.984441i \(0.556223\pi\)
\(648\) −4.34111e6 −0.406128
\(649\) −1.95103e6 −0.181824
\(650\) 0 0
\(651\) 1.91842e7 1.77416
\(652\) −4.31253e6 −0.397295
\(653\) 1.41967e7 1.30288 0.651438 0.758702i \(-0.274166\pi\)
0.651438 + 0.758702i \(0.274166\pi\)
\(654\) 4.11474e6 0.376182
\(655\) 0 0
\(656\) 1.31899e7 1.19669
\(657\) 86684.6 0.00783481
\(658\) 1.67941e7 1.51214
\(659\) −7.43083e6 −0.666536 −0.333268 0.942832i \(-0.608151\pi\)
−0.333268 + 0.942832i \(0.608151\pi\)
\(660\) 0 0
\(661\) 1.44503e7 1.28639 0.643194 0.765703i \(-0.277609\pi\)
0.643194 + 0.765703i \(0.277609\pi\)
\(662\) −1.00015e7 −0.886989
\(663\) −2.21548e6 −0.195742
\(664\) 1.13808e6 0.100174
\(665\) 0 0
\(666\) 447131. 0.0390615
\(667\) −96977.5 −0.00844027
\(668\) −1.44964e6 −0.125695
\(669\) 1.71113e7 1.47815
\(670\) 0 0
\(671\) −5.24975e6 −0.450125
\(672\) −1.33539e7 −1.14074
\(673\) −8.38558e6 −0.713667 −0.356834 0.934168i \(-0.616144\pi\)
−0.356834 + 0.934168i \(0.616144\pi\)
\(674\) 3.12143e6 0.264669
\(675\) 0 0
\(676\) 600346. 0.0505283
\(677\) 1.53211e7 1.28475 0.642376 0.766390i \(-0.277949\pi\)
0.642376 + 0.766390i \(0.277949\pi\)
\(678\) −4.21594e6 −0.352225
\(679\) 2.62208e6 0.218259
\(680\) 0 0
\(681\) −8.59974e6 −0.710587
\(682\) 1.31651e7 1.08384
\(683\) 1.08140e7 0.887021 0.443510 0.896269i \(-0.353733\pi\)
0.443510 + 0.896269i \(0.353733\pi\)
\(684\) −761972. −0.0622729
\(685\) 0 0
\(686\) −1.50669e7 −1.22240
\(687\) 1.67397e7 1.35318
\(688\) 5.08981e6 0.409950
\(689\) −4.05339e6 −0.325290
\(690\) 0 0
\(691\) 2.25890e7 1.79971 0.899853 0.436193i \(-0.143673\pi\)
0.899853 + 0.436193i \(0.143673\pi\)
\(692\) −1.28863e7 −1.02297
\(693\) 471314. 0.0372801
\(694\) 2.43237e7 1.91704
\(695\) 0 0
\(696\) −55577.1 −0.00434883
\(697\) −9.19065e6 −0.716579
\(698\) 1.20758e7 0.938159
\(699\) 1.62758e7 1.25994
\(700\) 0 0
\(701\) 1.06616e7 0.819461 0.409731 0.912207i \(-0.365623\pi\)
0.409731 + 0.912207i \(0.365623\pi\)
\(702\) −4.81919e6 −0.369089
\(703\) 6.72353e6 0.513108
\(704\) −1.48200e6 −0.112698
\(705\) 0 0
\(706\) 1.90852e7 1.44107
\(707\) 1.22383e7 0.920812
\(708\) −3.21395e6 −0.240966
\(709\) −1.17029e7 −0.874333 −0.437166 0.899381i \(-0.644018\pi\)
−0.437166 + 0.899381i \(0.644018\pi\)
\(710\) 0 0
\(711\) 1.35640e6 0.100627
\(712\) −1.05578e7 −0.780501
\(713\) −1.97678e7 −1.45625
\(714\) 1.29238e7 0.948738
\(715\) 0 0
\(716\) −1.34050e7 −0.977204
\(717\) 7.45990e6 0.541920
\(718\) 5.96247e6 0.431633
\(719\) 2.34149e6 0.168915 0.0844577 0.996427i \(-0.473084\pi\)
0.0844577 + 0.996427i \(0.473084\pi\)
\(720\) 0 0
\(721\) 8.09128e6 0.579668
\(722\) −1.08713e7 −0.776135
\(723\) −2.53211e7 −1.80151
\(724\) 3.05498e6 0.216602
\(725\) 0 0
\(726\) 1.35866e7 0.956687
\(727\) −6.10487e6 −0.428391 −0.214195 0.976791i \(-0.568713\pi\)
−0.214195 + 0.976791i \(0.568713\pi\)
\(728\) 1.82940e6 0.127932
\(729\) 1.52564e7 1.06325
\(730\) 0 0
\(731\) −3.54655e6 −0.245478
\(732\) −8.64799e6 −0.596537
\(733\) 1.79993e7 1.23736 0.618681 0.785642i \(-0.287667\pi\)
0.618681 + 0.785642i \(0.287667\pi\)
\(734\) −2.04951e7 −1.40414
\(735\) 0 0
\(736\) 1.37602e7 0.936330
\(737\) 60810.4 0.00412391
\(738\) −1.39268e6 −0.0941260
\(739\) 2.02603e7 1.36469 0.682346 0.731030i \(-0.260960\pi\)
0.682346 + 0.731030i \(0.260960\pi\)
\(740\) 0 0
\(741\) −5.04819e6 −0.337746
\(742\) 2.36451e7 1.57664
\(743\) −2.77445e7 −1.84376 −0.921881 0.387472i \(-0.873348\pi\)
−0.921881 + 0.387472i \(0.873348\pi\)
\(744\) −1.13288e7 −0.750328
\(745\) 0 0
\(746\) −3.38523e7 −2.22711
\(747\) −259005. −0.0169827
\(748\) 3.51611e6 0.229778
\(749\) 2.41548e7 1.57326
\(750\) 0 0
\(751\) −2.16593e7 −1.40134 −0.700672 0.713483i \(-0.747117\pi\)
−0.700672 + 0.713483i \(0.747117\pi\)
\(752\) −2.13758e7 −1.37841
\(753\) −5.37804e6 −0.345650
\(754\) −57051.7 −0.00365461
\(755\) 0 0
\(756\) 1.11452e7 0.709223
\(757\) −2.34452e7 −1.48701 −0.743505 0.668731i \(-0.766838\pi\)
−0.743505 + 0.668731i \(0.766838\pi\)
\(758\) 1.70006e7 1.07471
\(759\) 6.00019e6 0.378060
\(760\) 0 0
\(761\) −2.00518e7 −1.25514 −0.627569 0.778561i \(-0.715950\pi\)
−0.627569 + 0.778561i \(0.715950\pi\)
\(762\) 3.28745e7 2.05103
\(763\) 5.10284e6 0.317322
\(764\) −2.03341e7 −1.26035
\(765\) 0 0
\(766\) −2.22599e7 −1.37073
\(767\) 1.72344e6 0.105781
\(768\) 2.05407e7 1.25664
\(769\) 2.69938e7 1.64607 0.823034 0.567992i \(-0.192280\pi\)
0.823034 + 0.567992i \(0.192280\pi\)
\(770\) 0 0
\(771\) −1.07321e7 −0.650201
\(772\) 191367. 0.0115564
\(773\) −1.55609e7 −0.936668 −0.468334 0.883552i \(-0.655146\pi\)
−0.468334 + 0.883552i \(0.655146\pi\)
\(774\) −537416. −0.0322447
\(775\) 0 0
\(776\) −1.54841e6 −0.0923061
\(777\) −6.85085e6 −0.407091
\(778\) −9.12167e6 −0.540288
\(779\) −2.09418e7 −1.23643
\(780\) 0 0
\(781\) 7.58855e6 0.445175
\(782\) −1.33170e7 −0.778734
\(783\) 181565. 0.0105834
\(784\) −1.91209e6 −0.111101
\(785\) 0 0
\(786\) 1.09442e7 0.631872
\(787\) 2.60132e7 1.49712 0.748560 0.663067i \(-0.230745\pi\)
0.748560 + 0.663067i \(0.230745\pi\)
\(788\) 1.19228e7 0.684010
\(789\) −2.51872e6 −0.144041
\(790\) 0 0
\(791\) −5.22834e6 −0.297114
\(792\) −278323. −0.0157665
\(793\) 4.63736e6 0.261871
\(794\) 3.96435e7 2.23162
\(795\) 0 0
\(796\) −6.75360e6 −0.377792
\(797\) 1.36342e7 0.760296 0.380148 0.924926i \(-0.375873\pi\)
0.380148 + 0.924926i \(0.375873\pi\)
\(798\) 2.94482e7 1.63701
\(799\) 1.48945e7 0.825390
\(800\) 0 0
\(801\) 2.40275e6 0.132320
\(802\) 2.73337e7 1.50059
\(803\) −911448. −0.0498819
\(804\) 100174. 0.00546530
\(805\) 0 0
\(806\) −1.16294e7 −0.630550
\(807\) 2.89621e7 1.56548
\(808\) −7.22701e6 −0.389431
\(809\) −7.65343e6 −0.411135 −0.205568 0.978643i \(-0.565904\pi\)
−0.205568 + 0.978643i \(0.565904\pi\)
\(810\) 0 0
\(811\) 1.95683e7 1.04472 0.522360 0.852725i \(-0.325052\pi\)
0.522360 + 0.852725i \(0.325052\pi\)
\(812\) 131942. 0.00702251
\(813\) 3.06164e7 1.62453
\(814\) −4.70137e6 −0.248693
\(815\) 0 0
\(816\) −1.64497e7 −0.864832
\(817\) −8.08115e6 −0.423563
\(818\) −2.97820e7 −1.55622
\(819\) −416334. −0.0216886
\(820\) 0 0
\(821\) −2.71975e7 −1.40822 −0.704112 0.710089i \(-0.748654\pi\)
−0.704112 + 0.710089i \(0.748654\pi\)
\(822\) 7.90172e6 0.407889
\(823\) −3.39792e7 −1.74870 −0.874348 0.485300i \(-0.838710\pi\)
−0.874348 + 0.485300i \(0.838710\pi\)
\(824\) −4.77811e6 −0.245153
\(825\) 0 0
\(826\) −1.00535e7 −0.512706
\(827\) 2.56121e7 1.30221 0.651105 0.758988i \(-0.274306\pi\)
0.651105 + 0.758988i \(0.274306\pi\)
\(828\) −800020. −0.0405532
\(829\) 1.33798e7 0.676180 0.338090 0.941114i \(-0.390219\pi\)
0.338090 + 0.941114i \(0.390219\pi\)
\(830\) 0 0
\(831\) −1.58809e7 −0.797759
\(832\) 1.30912e6 0.0655648
\(833\) 1.33233e6 0.0665274
\(834\) −3.24094e7 −1.61345
\(835\) 0 0
\(836\) 8.01178e6 0.396473
\(837\) 3.70100e7 1.82602
\(838\) −2.67348e7 −1.31512
\(839\) −1.59865e7 −0.784056 −0.392028 0.919953i \(-0.628226\pi\)
−0.392028 + 0.919953i \(0.628226\pi\)
\(840\) 0 0
\(841\) −2.05090e7 −0.999895
\(842\) −1.16435e7 −0.565985
\(843\) −1.40276e7 −0.679851
\(844\) −3.47832e6 −0.168079
\(845\) 0 0
\(846\) 2.25699e6 0.108419
\(847\) 1.68493e7 0.806998
\(848\) −3.00958e7 −1.43720
\(849\) 1.24034e7 0.590570
\(850\) 0 0
\(851\) 7.05925e6 0.334145
\(852\) 1.25007e7 0.589978
\(853\) −2.04688e7 −0.963209 −0.481605 0.876389i \(-0.659946\pi\)
−0.481605 + 0.876389i \(0.659946\pi\)
\(854\) −2.70517e7 −1.26926
\(855\) 0 0
\(856\) −1.42640e7 −0.665362
\(857\) −1.31659e7 −0.612349 −0.306175 0.951975i \(-0.599049\pi\)
−0.306175 + 0.951975i \(0.599049\pi\)
\(858\) 3.52990e6 0.163698
\(859\) −3.58429e7 −1.65737 −0.828686 0.559713i \(-0.810911\pi\)
−0.828686 + 0.559713i \(0.810911\pi\)
\(860\) 0 0
\(861\) 2.13383e7 0.980962
\(862\) −4.76158e7 −2.18264
\(863\) −9.29285e6 −0.424739 −0.212369 0.977189i \(-0.568118\pi\)
−0.212369 + 0.977189i \(0.568118\pi\)
\(864\) −2.57623e7 −1.17409
\(865\) 0 0
\(866\) −1.16654e7 −0.528572
\(867\) −9.82658e6 −0.443971
\(868\) 2.68949e7 1.21163
\(869\) −1.42619e7 −0.640662
\(870\) 0 0
\(871\) −53716.8 −0.00239919
\(872\) −3.01336e6 −0.134202
\(873\) 352387. 0.0156489
\(874\) −3.03440e7 −1.34368
\(875\) 0 0
\(876\) −1.50144e6 −0.0661070
\(877\) 3.01018e7 1.32158 0.660791 0.750570i \(-0.270221\pi\)
0.660791 + 0.750570i \(0.270221\pi\)
\(878\) 3.52898e7 1.54494
\(879\) −2.66171e7 −1.16195
\(880\) 0 0
\(881\) 4.75023e6 0.206193 0.103097 0.994671i \(-0.467125\pi\)
0.103097 + 0.994671i \(0.467125\pi\)
\(882\) 201891. 0.00873868
\(883\) −2.31803e7 −1.00050 −0.500250 0.865881i \(-0.666758\pi\)
−0.500250 + 0.865881i \(0.666758\pi\)
\(884\) −3.10595e6 −0.133679
\(885\) 0 0
\(886\) −4.22505e6 −0.180820
\(887\) −3.60486e7 −1.53844 −0.769219 0.638986i \(-0.779354\pi\)
−0.769219 + 0.638986i \(0.779354\pi\)
\(888\) 4.04560e6 0.172167
\(889\) 4.07689e7 1.73011
\(890\) 0 0
\(891\) −1.03879e7 −0.438361
\(892\) 2.39888e7 1.00948
\(893\) 3.39385e7 1.42418
\(894\) −1.77511e6 −0.0742816
\(895\) 0 0
\(896\) 2.08641e7 0.868221
\(897\) −5.30026e6 −0.219946
\(898\) −1.48794e7 −0.615737
\(899\) 438142. 0.0180807
\(900\) 0 0
\(901\) 2.09706e7 0.860595
\(902\) 1.46433e7 0.599272
\(903\) 8.23418e6 0.336048
\(904\) 3.08747e6 0.125656
\(905\) 0 0
\(906\) −4.18679e7 −1.69457
\(907\) −3.74734e7 −1.51253 −0.756266 0.654264i \(-0.772979\pi\)
−0.756266 + 0.654264i \(0.772979\pi\)
\(908\) −1.20562e7 −0.485284
\(909\) 1.64473e6 0.0660212
\(910\) 0 0
\(911\) 2.58798e7 1.03315 0.516577 0.856241i \(-0.327206\pi\)
0.516577 + 0.856241i \(0.327206\pi\)
\(912\) −3.74821e7 −1.49223
\(913\) 2.72332e6 0.108124
\(914\) −1.10920e7 −0.439182
\(915\) 0 0
\(916\) 2.34679e7 0.924134
\(917\) 1.35724e7 0.533006
\(918\) 2.49325e7 0.976472
\(919\) 1.10504e6 0.0431606 0.0215803 0.999767i \(-0.493130\pi\)
0.0215803 + 0.999767i \(0.493130\pi\)
\(920\) 0 0
\(921\) 4.39611e6 0.170773
\(922\) −5.73611e7 −2.22224
\(923\) −6.70333e6 −0.258992
\(924\) −8.16350e6 −0.314555
\(925\) 0 0
\(926\) −992628. −0.0380416
\(927\) 1.08740e6 0.0415615
\(928\) −304985. −0.0116254
\(929\) −2.92574e6 −0.111224 −0.0556118 0.998452i \(-0.517711\pi\)
−0.0556118 + 0.998452i \(0.517711\pi\)
\(930\) 0 0
\(931\) 3.03585e6 0.114790
\(932\) 2.28175e7 0.860453
\(933\) −3.51189e7 −1.32080
\(934\) −4.05421e7 −1.52068
\(935\) 0 0
\(936\) 245856. 0.00917258
\(937\) 2.45270e7 0.912632 0.456316 0.889818i \(-0.349169\pi\)
0.456316 + 0.889818i \(0.349169\pi\)
\(938\) 313352. 0.0116286
\(939\) −1.80872e7 −0.669432
\(940\) 0 0
\(941\) 919876. 0.0338653 0.0169327 0.999857i \(-0.494610\pi\)
0.0169327 + 0.999857i \(0.494610\pi\)
\(942\) 2.57108e7 0.944037
\(943\) −2.19874e7 −0.805184
\(944\) 1.27963e7 0.467362
\(945\) 0 0
\(946\) 5.65068e6 0.205292
\(947\) 9.61521e6 0.348405 0.174202 0.984710i \(-0.444265\pi\)
0.174202 + 0.984710i \(0.444265\pi\)
\(948\) −2.34939e7 −0.849051
\(949\) 805126. 0.0290201
\(950\) 0 0
\(951\) 3.32808e7 1.19328
\(952\) −9.46455e6 −0.338460
\(953\) 2.43193e7 0.867399 0.433699 0.901058i \(-0.357208\pi\)
0.433699 + 0.901058i \(0.357208\pi\)
\(954\) 3.17772e6 0.113043
\(955\) 0 0
\(956\) 1.04582e7 0.370096
\(957\) −132990. −0.00469397
\(958\) −2.85494e7 −1.00504
\(959\) 9.79921e6 0.344068
\(960\) 0 0
\(961\) 6.06813e7 2.11956
\(962\) 4.15295e6 0.144683
\(963\) 3.24622e6 0.112801
\(964\) −3.54984e7 −1.23031
\(965\) 0 0
\(966\) 3.09186e7 1.06605
\(967\) −2.12248e7 −0.729922 −0.364961 0.931023i \(-0.618918\pi\)
−0.364961 + 0.931023i \(0.618918\pi\)
\(968\) −9.94993e6 −0.341296
\(969\) 2.61173e7 0.893549
\(970\) 0 0
\(971\) −3.64590e7 −1.24096 −0.620479 0.784223i \(-0.713062\pi\)
−0.620479 + 0.784223i \(0.713062\pi\)
\(972\) 2.89131e6 0.0981587
\(973\) −4.01920e7 −1.36100
\(974\) −6.39227e7 −2.15903
\(975\) 0 0
\(976\) 3.44318e7 1.15700
\(977\) −1.86618e7 −0.625487 −0.312743 0.949838i \(-0.601248\pi\)
−0.312743 + 0.949838i \(0.601248\pi\)
\(978\) 2.23988e7 0.748821
\(979\) −2.52638e7 −0.842445
\(980\) 0 0
\(981\) 685781. 0.0227516
\(982\) 6.65073e7 2.20085
\(983\) 4.07152e6 0.134392 0.0671959 0.997740i \(-0.478595\pi\)
0.0671959 + 0.997740i \(0.478595\pi\)
\(984\) −1.26008e7 −0.414869
\(985\) 0 0
\(986\) 295163. 0.00966873
\(987\) −3.45812e7 −1.12992
\(988\) −7.07720e6 −0.230658
\(989\) −8.48466e6 −0.275832
\(990\) 0 0
\(991\) 3.55164e7 1.14880 0.574401 0.818574i \(-0.305235\pi\)
0.574401 + 0.818574i \(0.305235\pi\)
\(992\) −6.21680e7 −2.00580
\(993\) 2.05943e7 0.662786
\(994\) 3.91033e7 1.25530
\(995\) 0 0
\(996\) 4.48616e6 0.143293
\(997\) 2.88979e7 0.920721 0.460360 0.887732i \(-0.347720\pi\)
0.460360 + 0.887732i \(0.347720\pi\)
\(998\) 6.85491e7 2.17859
\(999\) −1.32166e7 −0.418992
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.i.1.2 yes 9
5.2 odd 4 325.6.b.h.274.5 18
5.3 odd 4 325.6.b.h.274.14 18
5.4 even 2 325.6.a.h.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.8 9 5.4 even 2
325.6.a.i.1.2 yes 9 1.1 even 1 trivial
325.6.b.h.274.5 18 5.2 odd 4
325.6.b.h.274.14 18 5.3 odd 4