Properties

Label 325.6.a.h.1.9
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 181 x^{7} + 688 x^{6} + 10455 x^{5} - 37904 x^{4} - 197375 x^{3} + 702868 x^{2} + \cdots - 366960 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(9.23858\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.23858 q^{2} +11.6375 q^{3} +35.8743 q^{4} +95.8765 q^{6} -195.071 q^{7} +31.9185 q^{8} -107.569 q^{9} +O(q^{10})\) \(q+8.23858 q^{2} +11.6375 q^{3} +35.8743 q^{4} +95.8765 q^{6} -195.071 q^{7} +31.9185 q^{8} -107.569 q^{9} +64.5579 q^{11} +417.487 q^{12} +169.000 q^{13} -1607.11 q^{14} -885.013 q^{16} +426.010 q^{17} -886.215 q^{18} -959.570 q^{19} -2270.14 q^{21} +531.866 q^{22} -499.768 q^{23} +371.452 q^{24} +1392.32 q^{26} -4079.74 q^{27} -6998.03 q^{28} +1288.17 q^{29} -6738.17 q^{31} -8312.65 q^{32} +751.292 q^{33} +3509.72 q^{34} -3858.95 q^{36} -6218.21 q^{37} -7905.50 q^{38} +1966.74 q^{39} -6498.90 q^{41} -18702.7 q^{42} -15640.4 q^{43} +2315.97 q^{44} -4117.38 q^{46} -6299.21 q^{47} -10299.3 q^{48} +21245.7 q^{49} +4957.69 q^{51} +6062.75 q^{52} +40397.3 q^{53} -33611.3 q^{54} -6226.38 q^{56} -11167.0 q^{57} +10612.7 q^{58} +25614.1 q^{59} +24197.9 q^{61} -55513.0 q^{62} +20983.6 q^{63} -40164.0 q^{64} +6189.58 q^{66} -39183.3 q^{67} +15282.8 q^{68} -5816.04 q^{69} -32681.2 q^{71} -3433.44 q^{72} +14507.0 q^{73} -51229.3 q^{74} -34423.9 q^{76} -12593.4 q^{77} +16203.1 q^{78} +79037.9 q^{79} -21338.7 q^{81} -53541.7 q^{82} +102366. q^{83} -81439.5 q^{84} -128855. q^{86} +14991.1 q^{87} +2060.59 q^{88} -48103.8 q^{89} -32967.0 q^{91} -17928.8 q^{92} -78415.4 q^{93} -51896.6 q^{94} -96738.4 q^{96} +73361.2 q^{97} +175035. q^{98} -6944.42 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} - 11 q^{3} + 91 q^{4} - 83 q^{6} + 12 q^{7} - 639 q^{8} + 562 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 5 q^{2} - 11 q^{3} + 91 q^{4} - 83 q^{6} + 12 q^{7} - 639 q^{8} + 562 q^{9} - 1422 q^{11} + 1567 q^{12} + 1521 q^{13} - 342 q^{14} - 1061 q^{16} + 648 q^{17} + 418 q^{18} - 408 q^{19} - 3912 q^{21} + 4345 q^{22} + 1839 q^{23} - 8469 q^{24} - 845 q^{26} - 7649 q^{27} - 2836 q^{28} - 8737 q^{29} + 748 q^{31} - 423 q^{32} - 356 q^{33} - 17789 q^{34} + 512 q^{36} - 15486 q^{37} - 3425 q^{38} - 1859 q^{39} - 28676 q^{41} + 6876 q^{42} + 28665 q^{43} - 30599 q^{44} - 12056 q^{46} - 29452 q^{47} + 64759 q^{48} - 40907 q^{49} - 31006 q^{51} + 15379 q^{52} + 75977 q^{53} - 102761 q^{54} - 23002 q^{56} - 38038 q^{57} + 142384 q^{58} - 88142 q^{59} + 28165 q^{61} - 137308 q^{62} + 41492 q^{63} - 100845 q^{64} + 42577 q^{66} - 94754 q^{67} + 89267 q^{68} - 181747 q^{69} - 70562 q^{71} - 263778 q^{72} + 60602 q^{73} - 135676 q^{74} + 46373 q^{76} - 140292 q^{77} - 14027 q^{78} - 164073 q^{79} - 69935 q^{81} - 72887 q^{82} - 22458 q^{83} - 345656 q^{84} - 294920 q^{86} - 87031 q^{87} + 430607 q^{88} - 252698 q^{89} + 2028 q^{91} - 237824 q^{92} + 56556 q^{93} - 501606 q^{94} - 319181 q^{96} + 137986 q^{97} + 378699 q^{98} - 757776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.23858 1.45639 0.728195 0.685370i \(-0.240360\pi\)
0.728195 + 0.685370i \(0.240360\pi\)
\(3\) 11.6375 0.746545 0.373273 0.927722i \(-0.378236\pi\)
0.373273 + 0.927722i \(0.378236\pi\)
\(4\) 35.8743 1.12107
\(5\) 0 0
\(6\) 95.8765 1.08726
\(7\) −195.071 −1.50469 −0.752346 0.658768i \(-0.771078\pi\)
−0.752346 + 0.658768i \(0.771078\pi\)
\(8\) 31.9185 0.176327
\(9\) −107.569 −0.442670
\(10\) 0 0
\(11\) 64.5579 0.160867 0.0804337 0.996760i \(-0.474369\pi\)
0.0804337 + 0.996760i \(0.474369\pi\)
\(12\) 417.487 0.836930
\(13\) 169.000 0.277350
\(14\) −1607.11 −2.19142
\(15\) 0 0
\(16\) −885.013 −0.864271
\(17\) 426.010 0.357518 0.178759 0.983893i \(-0.442792\pi\)
0.178759 + 0.983893i \(0.442792\pi\)
\(18\) −886.215 −0.644700
\(19\) −959.570 −0.609807 −0.304904 0.952383i \(-0.598624\pi\)
−0.304904 + 0.952383i \(0.598624\pi\)
\(20\) 0 0
\(21\) −2270.14 −1.12332
\(22\) 531.866 0.234286
\(23\) −499.768 −0.196992 −0.0984960 0.995137i \(-0.531403\pi\)
−0.0984960 + 0.995137i \(0.531403\pi\)
\(24\) 371.452 0.131636
\(25\) 0 0
\(26\) 1392.32 0.403930
\(27\) −4079.74 −1.07702
\(28\) −6998.03 −1.68687
\(29\) 1288.17 0.284432 0.142216 0.989836i \(-0.454577\pi\)
0.142216 + 0.989836i \(0.454577\pi\)
\(30\) 0 0
\(31\) −6738.17 −1.25932 −0.629662 0.776869i \(-0.716807\pi\)
−0.629662 + 0.776869i \(0.716807\pi\)
\(32\) −8312.65 −1.43504
\(33\) 751.292 0.120095
\(34\) 3509.72 0.520685
\(35\) 0 0
\(36\) −3858.95 −0.496264
\(37\) −6218.21 −0.746726 −0.373363 0.927685i \(-0.621795\pi\)
−0.373363 + 0.927685i \(0.621795\pi\)
\(38\) −7905.50 −0.888117
\(39\) 1966.74 0.207054
\(40\) 0 0
\(41\) −6498.90 −0.603782 −0.301891 0.953342i \(-0.597618\pi\)
−0.301891 + 0.953342i \(0.597618\pi\)
\(42\) −18702.7 −1.63599
\(43\) −15640.4 −1.28996 −0.644980 0.764200i \(-0.723134\pi\)
−0.644980 + 0.764200i \(0.723134\pi\)
\(44\) 2315.97 0.180344
\(45\) 0 0
\(46\) −4117.38 −0.286897
\(47\) −6299.21 −0.415951 −0.207975 0.978134i \(-0.566687\pi\)
−0.207975 + 0.978134i \(0.566687\pi\)
\(48\) −10299.3 −0.645217
\(49\) 21245.7 1.26410
\(50\) 0 0
\(51\) 4957.69 0.266903
\(52\) 6062.75 0.310929
\(53\) 40397.3 1.97543 0.987717 0.156254i \(-0.0499418\pi\)
0.987717 + 0.156254i \(0.0499418\pi\)
\(54\) −33611.3 −1.56856
\(55\) 0 0
\(56\) −6226.38 −0.265317
\(57\) −11167.0 −0.455249
\(58\) 10612.7 0.414244
\(59\) 25614.1 0.957965 0.478982 0.877824i \(-0.341006\pi\)
0.478982 + 0.877824i \(0.341006\pi\)
\(60\) 0 0
\(61\) 24197.9 0.832632 0.416316 0.909220i \(-0.363321\pi\)
0.416316 + 0.909220i \(0.363321\pi\)
\(62\) −55513.0 −1.83407
\(63\) 20983.6 0.666082
\(64\) −40164.0 −1.22571
\(65\) 0 0
\(66\) 6189.58 0.174905
\(67\) −39183.3 −1.06639 −0.533193 0.845994i \(-0.679008\pi\)
−0.533193 + 0.845994i \(0.679008\pi\)
\(68\) 15282.8 0.400803
\(69\) −5816.04 −0.147064
\(70\) 0 0
\(71\) −32681.2 −0.769401 −0.384700 0.923041i \(-0.625695\pi\)
−0.384700 + 0.923041i \(0.625695\pi\)
\(72\) −3433.44 −0.0780545
\(73\) 14507.0 0.318617 0.159309 0.987229i \(-0.449073\pi\)
0.159309 + 0.987229i \(0.449073\pi\)
\(74\) −51229.3 −1.08752
\(75\) 0 0
\(76\) −34423.9 −0.683637
\(77\) −12593.4 −0.242056
\(78\) 16203.1 0.301552
\(79\) 79037.9 1.42484 0.712422 0.701751i \(-0.247598\pi\)
0.712422 + 0.701751i \(0.247598\pi\)
\(80\) 0 0
\(81\) −21338.7 −0.361373
\(82\) −53541.7 −0.879342
\(83\) 102366. 1.63102 0.815509 0.578744i \(-0.196457\pi\)
0.815509 + 0.578744i \(0.196457\pi\)
\(84\) −81439.5 −1.25932
\(85\) 0 0
\(86\) −128855. −1.87868
\(87\) 14991.1 0.212341
\(88\) 2060.59 0.0283652
\(89\) −48103.8 −0.643731 −0.321866 0.946785i \(-0.604310\pi\)
−0.321866 + 0.946785i \(0.604310\pi\)
\(90\) 0 0
\(91\) −32967.0 −0.417327
\(92\) −17928.8 −0.220842
\(93\) −78415.4 −0.940143
\(94\) −51896.6 −0.605786
\(95\) 0 0
\(96\) −96738.4 −1.07132
\(97\) 73361.2 0.791657 0.395829 0.918324i \(-0.370457\pi\)
0.395829 + 0.918324i \(0.370457\pi\)
\(98\) 175035. 1.84102
\(99\) −6944.42 −0.0712111
\(100\) 0 0
\(101\) 22470.8 0.219187 0.109594 0.993976i \(-0.465045\pi\)
0.109594 + 0.993976i \(0.465045\pi\)
\(102\) 40844.3 0.388715
\(103\) −116368. −1.08078 −0.540392 0.841413i \(-0.681724\pi\)
−0.540392 + 0.841413i \(0.681724\pi\)
\(104\) 5394.23 0.0489042
\(105\) 0 0
\(106\) 332816. 2.87700
\(107\) −33242.7 −0.280697 −0.140348 0.990102i \(-0.544822\pi\)
−0.140348 + 0.990102i \(0.544822\pi\)
\(108\) −146358. −1.20741
\(109\) −87314.5 −0.703915 −0.351957 0.936016i \(-0.614484\pi\)
−0.351957 + 0.936016i \(0.614484\pi\)
\(110\) 0 0
\(111\) −72364.4 −0.557465
\(112\) 172640. 1.30046
\(113\) 211485. 1.55806 0.779029 0.626988i \(-0.215713\pi\)
0.779029 + 0.626988i \(0.215713\pi\)
\(114\) −92000.1 −0.663020
\(115\) 0 0
\(116\) 46212.2 0.318868
\(117\) −18179.1 −0.122775
\(118\) 211024. 1.39517
\(119\) −83102.3 −0.537954
\(120\) 0 0
\(121\) −156883. −0.974122
\(122\) 199356. 1.21264
\(123\) −75630.9 −0.450751
\(124\) −241727. −1.41179
\(125\) 0 0
\(126\) 172875. 0.970075
\(127\) −74724.8 −0.411107 −0.205554 0.978646i \(-0.565900\pi\)
−0.205554 + 0.978646i \(0.565900\pi\)
\(128\) −64890.1 −0.350069
\(129\) −182015. −0.963013
\(130\) 0 0
\(131\) 27550.2 0.140264 0.0701320 0.997538i \(-0.477658\pi\)
0.0701320 + 0.997538i \(0.477658\pi\)
\(132\) 26952.1 0.134635
\(133\) 187184. 0.917572
\(134\) −322815. −1.55307
\(135\) 0 0
\(136\) 13597.6 0.0630399
\(137\) 266022. 1.21092 0.605460 0.795876i \(-0.292989\pi\)
0.605460 + 0.795876i \(0.292989\pi\)
\(138\) −47916.0 −0.214182
\(139\) −263800. −1.15808 −0.579039 0.815300i \(-0.696572\pi\)
−0.579039 + 0.815300i \(0.696572\pi\)
\(140\) 0 0
\(141\) −73307.0 −0.310526
\(142\) −269247. −1.12055
\(143\) 10910.3 0.0446166
\(144\) 95199.8 0.382587
\(145\) 0 0
\(146\) 119517. 0.464031
\(147\) 247247. 0.943708
\(148\) −223074. −0.837133
\(149\) 4746.74 0.0175158 0.00875790 0.999962i \(-0.497212\pi\)
0.00875790 + 0.999962i \(0.497212\pi\)
\(150\) 0 0
\(151\) −94651.9 −0.337821 −0.168911 0.985631i \(-0.554025\pi\)
−0.168911 + 0.985631i \(0.554025\pi\)
\(152\) −30628.1 −0.107525
\(153\) −45825.4 −0.158262
\(154\) −103752. −0.352528
\(155\) 0 0
\(156\) 70555.2 0.232123
\(157\) −264887. −0.857652 −0.428826 0.903387i \(-0.641073\pi\)
−0.428826 + 0.903387i \(0.641073\pi\)
\(158\) 651160. 2.07513
\(159\) 470123. 1.47475
\(160\) 0 0
\(161\) 97490.2 0.296412
\(162\) −175801. −0.526300
\(163\) 121957. 0.359533 0.179766 0.983709i \(-0.442466\pi\)
0.179766 + 0.983709i \(0.442466\pi\)
\(164\) −233143. −0.676883
\(165\) 0 0
\(166\) 843348. 2.37540
\(167\) −465583. −1.29183 −0.645916 0.763408i \(-0.723524\pi\)
−0.645916 + 0.763408i \(0.723524\pi\)
\(168\) −72459.5 −0.198071
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 103220. 0.269943
\(172\) −561087. −1.44614
\(173\) 69307.4 0.176062 0.0880308 0.996118i \(-0.471943\pi\)
0.0880308 + 0.996118i \(0.471943\pi\)
\(174\) 123505. 0.309252
\(175\) 0 0
\(176\) −57134.6 −0.139033
\(177\) 298084. 0.715164
\(178\) −396307. −0.937524
\(179\) 305640. 0.712981 0.356491 0.934299i \(-0.383973\pi\)
0.356491 + 0.934299i \(0.383973\pi\)
\(180\) 0 0
\(181\) −284602. −0.645715 −0.322858 0.946448i \(-0.604644\pi\)
−0.322858 + 0.946448i \(0.604644\pi\)
\(182\) −271601. −0.607790
\(183\) 281603. 0.621598
\(184\) −15951.9 −0.0347350
\(185\) 0 0
\(186\) −646032. −1.36921
\(187\) 27502.3 0.0575129
\(188\) −225980. −0.466310
\(189\) 795839. 1.62058
\(190\) 0 0
\(191\) −536766. −1.06464 −0.532319 0.846544i \(-0.678679\pi\)
−0.532319 + 0.846544i \(0.678679\pi\)
\(192\) −467409. −0.915048
\(193\) −931130. −1.79936 −0.899678 0.436555i \(-0.856199\pi\)
−0.899678 + 0.436555i \(0.856199\pi\)
\(194\) 604393. 1.15296
\(195\) 0 0
\(196\) 762175. 1.41715
\(197\) 210297. 0.386071 0.193036 0.981192i \(-0.438167\pi\)
0.193036 + 0.981192i \(0.438167\pi\)
\(198\) −57212.2 −0.103711
\(199\) 853286. 1.52743 0.763716 0.645552i \(-0.223373\pi\)
0.763716 + 0.645552i \(0.223373\pi\)
\(200\) 0 0
\(201\) −455995. −0.796105
\(202\) 185128. 0.319222
\(203\) −251285. −0.427983
\(204\) 177854. 0.299218
\(205\) 0 0
\(206\) −958704. −1.57404
\(207\) 53759.4 0.0872025
\(208\) −149567. −0.239706
\(209\) −61947.8 −0.0980981
\(210\) 0 0
\(211\) −913530. −1.41259 −0.706296 0.707917i \(-0.749635\pi\)
−0.706296 + 0.707917i \(0.749635\pi\)
\(212\) 1.44922e6 2.21460
\(213\) −380328. −0.574393
\(214\) −273873. −0.408804
\(215\) 0 0
\(216\) −130219. −0.189907
\(217\) 1.31442e6 1.89490
\(218\) −719348. −1.02517
\(219\) 168825. 0.237862
\(220\) 0 0
\(221\) 71995.7 0.0991576
\(222\) −596180. −0.811886
\(223\) 412081. 0.554908 0.277454 0.960739i \(-0.410509\pi\)
0.277454 + 0.960739i \(0.410509\pi\)
\(224\) 1.62156e6 2.15930
\(225\) 0 0
\(226\) 1.74234e6 2.26914
\(227\) −864103. −1.11302 −0.556508 0.830843i \(-0.687859\pi\)
−0.556508 + 0.830843i \(0.687859\pi\)
\(228\) −400607. −0.510366
\(229\) −236005. −0.297395 −0.148697 0.988883i \(-0.547508\pi\)
−0.148697 + 0.988883i \(0.547508\pi\)
\(230\) 0 0
\(231\) −146555. −0.180706
\(232\) 41116.5 0.0501529
\(233\) 1.24095e6 1.49749 0.748744 0.662859i \(-0.230657\pi\)
0.748744 + 0.662859i \(0.230657\pi\)
\(234\) −149770. −0.178808
\(235\) 0 0
\(236\) 918888. 1.07395
\(237\) 919803. 1.06371
\(238\) −684645. −0.783471
\(239\) −868458. −0.983454 −0.491727 0.870749i \(-0.663634\pi\)
−0.491727 + 0.870749i \(0.663634\pi\)
\(240\) 0 0
\(241\) −836767. −0.928029 −0.464015 0.885827i \(-0.653592\pi\)
−0.464015 + 0.885827i \(0.653592\pi\)
\(242\) −1.29250e6 −1.41870
\(243\) 743048. 0.807237
\(244\) 868082. 0.933440
\(245\) 0 0
\(246\) −623092. −0.656469
\(247\) −162167. −0.169130
\(248\) −215072. −0.222052
\(249\) 1.19128e6 1.21763
\(250\) 0 0
\(251\) −1.94946e6 −1.95313 −0.976565 0.215224i \(-0.930952\pi\)
−0.976565 + 0.215224i \(0.930952\pi\)
\(252\) 752770. 0.746725
\(253\) −32264.0 −0.0316896
\(254\) −615626. −0.598733
\(255\) 0 0
\(256\) 750647. 0.715873
\(257\) −358481. −0.338558 −0.169279 0.985568i \(-0.554144\pi\)
−0.169279 + 0.985568i \(0.554144\pi\)
\(258\) −1.49954e6 −1.40252
\(259\) 1.21299e6 1.12359
\(260\) 0 0
\(261\) −138567. −0.125909
\(262\) 226975. 0.204279
\(263\) 2.02422e6 1.80454 0.902272 0.431167i \(-0.141898\pi\)
0.902272 + 0.431167i \(0.141898\pi\)
\(264\) 23980.2 0.0211759
\(265\) 0 0
\(266\) 1.54213e6 1.33634
\(267\) −559808. −0.480575
\(268\) −1.40567e6 −1.19549
\(269\) −1.72406e6 −1.45268 −0.726341 0.687334i \(-0.758781\pi\)
−0.726341 + 0.687334i \(0.758781\pi\)
\(270\) 0 0
\(271\) −618168. −0.511309 −0.255654 0.966768i \(-0.582291\pi\)
−0.255654 + 0.966768i \(0.582291\pi\)
\(272\) −377025. −0.308992
\(273\) −383653. −0.311553
\(274\) 2.19164e6 1.76357
\(275\) 0 0
\(276\) −208646. −0.164869
\(277\) 535823. 0.419587 0.209793 0.977746i \(-0.432721\pi\)
0.209793 + 0.977746i \(0.432721\pi\)
\(278\) −2.17334e6 −1.68661
\(279\) 724817. 0.557465
\(280\) 0 0
\(281\) 1.19483e6 0.902695 0.451347 0.892348i \(-0.350944\pi\)
0.451347 + 0.892348i \(0.350944\pi\)
\(282\) −603946. −0.452247
\(283\) −2.59984e6 −1.92966 −0.964830 0.262875i \(-0.915329\pi\)
−0.964830 + 0.262875i \(0.915329\pi\)
\(284\) −1.17242e6 −0.862553
\(285\) 0 0
\(286\) 89885.3 0.0649791
\(287\) 1.26775e6 0.908506
\(288\) 894182. 0.635250
\(289\) −1.23837e6 −0.872181
\(290\) 0 0
\(291\) 853741. 0.591008
\(292\) 520427. 0.357193
\(293\) 2.12976e6 1.44931 0.724654 0.689113i \(-0.242000\pi\)
0.724654 + 0.689113i \(0.242000\pi\)
\(294\) 2.03696e6 1.37441
\(295\) 0 0
\(296\) −198476. −0.131668
\(297\) −263380. −0.173257
\(298\) 39106.4 0.0255098
\(299\) −84460.8 −0.0546358
\(300\) 0 0
\(301\) 3.05098e6 1.94099
\(302\) −779798. −0.492000
\(303\) 261504. 0.163633
\(304\) 849232. 0.527039
\(305\) 0 0
\(306\) −377536. −0.230492
\(307\) 1.52136e6 0.921270 0.460635 0.887590i \(-0.347622\pi\)
0.460635 + 0.887590i \(0.347622\pi\)
\(308\) −451778. −0.271362
\(309\) −1.35423e6 −0.806854
\(310\) 0 0
\(311\) 1.78856e6 1.04858 0.524290 0.851540i \(-0.324331\pi\)
0.524290 + 0.851540i \(0.324331\pi\)
\(312\) 62775.3 0.0365092
\(313\) 451359. 0.260412 0.130206 0.991487i \(-0.458436\pi\)
0.130206 + 0.991487i \(0.458436\pi\)
\(314\) −2.18229e6 −1.24908
\(315\) 0 0
\(316\) 2.83543e6 1.59735
\(317\) 1.39653e6 0.780554 0.390277 0.920697i \(-0.372379\pi\)
0.390277 + 0.920697i \(0.372379\pi\)
\(318\) 3.87315e6 2.14781
\(319\) 83161.6 0.0457558
\(320\) 0 0
\(321\) −386862. −0.209553
\(322\) 803182. 0.431692
\(323\) −408786. −0.218017
\(324\) −765512. −0.405125
\(325\) 0 0
\(326\) 1.00475e6 0.523620
\(327\) −1.01612e6 −0.525504
\(328\) −207435. −0.106463
\(329\) 1.22879e6 0.625878
\(330\) 0 0
\(331\) 1.37630e6 0.690467 0.345233 0.938517i \(-0.387800\pi\)
0.345233 + 0.938517i \(0.387800\pi\)
\(332\) 3.67229e6 1.82849
\(333\) 668885. 0.330553
\(334\) −3.83575e6 −1.88141
\(335\) 0 0
\(336\) 2.00910e6 0.970854
\(337\) 1.93389e6 0.927590 0.463795 0.885943i \(-0.346487\pi\)
0.463795 + 0.885943i \(0.346487\pi\)
\(338\) 235302. 0.112030
\(339\) 2.46115e6 1.16316
\(340\) 0 0
\(341\) −435002. −0.202584
\(342\) 850385. 0.393143
\(343\) −865866. −0.397388
\(344\) −499218. −0.227454
\(345\) 0 0
\(346\) 570995. 0.256414
\(347\) 4.24482e6 1.89250 0.946250 0.323435i \(-0.104838\pi\)
0.946250 + 0.323435i \(0.104838\pi\)
\(348\) 537794. 0.238050
\(349\) −3.06057e6 −1.34505 −0.672525 0.740074i \(-0.734790\pi\)
−0.672525 + 0.740074i \(0.734790\pi\)
\(350\) 0 0
\(351\) −689476. −0.298711
\(352\) −536647. −0.230851
\(353\) −4.53104e6 −1.93536 −0.967679 0.252186i \(-0.918851\pi\)
−0.967679 + 0.252186i \(0.918851\pi\)
\(354\) 2.45579e6 1.04156
\(355\) 0 0
\(356\) −1.72569e6 −0.721668
\(357\) −967102. −0.401607
\(358\) 2.51804e6 1.03838
\(359\) −2.68308e6 −1.09875 −0.549373 0.835577i \(-0.685133\pi\)
−0.549373 + 0.835577i \(0.685133\pi\)
\(360\) 0 0
\(361\) −1.55532e6 −0.628135
\(362\) −2.34472e6 −0.940413
\(363\) −1.82573e6 −0.727226
\(364\) −1.18267e6 −0.467853
\(365\) 0 0
\(366\) 2.32001e6 0.905288
\(367\) 659030. 0.255411 0.127706 0.991812i \(-0.459239\pi\)
0.127706 + 0.991812i \(0.459239\pi\)
\(368\) 442301. 0.170254
\(369\) 699079. 0.267276
\(370\) 0 0
\(371\) −7.88034e6 −2.97242
\(372\) −2.81309e6 −1.05397
\(373\) −1.73787e6 −0.646764 −0.323382 0.946268i \(-0.604820\pi\)
−0.323382 + 0.946268i \(0.604820\pi\)
\(374\) 226580. 0.0837612
\(375\) 0 0
\(376\) −201062. −0.0733432
\(377\) 217701. 0.0788872
\(378\) 6.55659e6 2.36020
\(379\) −4.61878e6 −1.65169 −0.825847 0.563894i \(-0.809303\pi\)
−0.825847 + 0.563894i \(0.809303\pi\)
\(380\) 0 0
\(381\) −869609. −0.306910
\(382\) −4.42219e6 −1.55053
\(383\) 656507. 0.228688 0.114344 0.993441i \(-0.463523\pi\)
0.114344 + 0.993441i \(0.463523\pi\)
\(384\) −755158. −0.261342
\(385\) 0 0
\(386\) −7.67119e6 −2.62056
\(387\) 1.68242e6 0.571026
\(388\) 2.63178e6 0.887504
\(389\) −1.50525e6 −0.504352 −0.252176 0.967681i \(-0.581146\pi\)
−0.252176 + 0.967681i \(0.581146\pi\)
\(390\) 0 0
\(391\) −212906. −0.0704282
\(392\) 678132. 0.222894
\(393\) 320615. 0.104714
\(394\) 1.73255e6 0.562270
\(395\) 0 0
\(396\) −249126. −0.0798327
\(397\) 389426. 0.124008 0.0620038 0.998076i \(-0.480251\pi\)
0.0620038 + 0.998076i \(0.480251\pi\)
\(398\) 7.02987e6 2.22454
\(399\) 2.17836e6 0.685009
\(400\) 0 0
\(401\) 3.45560e6 1.07316 0.536578 0.843851i \(-0.319717\pi\)
0.536578 + 0.843851i \(0.319717\pi\)
\(402\) −3.75676e6 −1.15944
\(403\) −1.13875e6 −0.349274
\(404\) 806125. 0.245725
\(405\) 0 0
\(406\) −2.07023e6 −0.623309
\(407\) −401435. −0.120124
\(408\) 158242. 0.0470622
\(409\) −5.22273e6 −1.54379 −0.771896 0.635748i \(-0.780692\pi\)
−0.771896 + 0.635748i \(0.780692\pi\)
\(410\) 0 0
\(411\) 3.09582e6 0.904007
\(412\) −4.17460e6 −1.21164
\(413\) −4.99658e6 −1.44144
\(414\) 442902. 0.127001
\(415\) 0 0
\(416\) −1.40484e6 −0.398009
\(417\) −3.06997e6 −0.864558
\(418\) −510362. −0.142869
\(419\) −2.19501e6 −0.610805 −0.305402 0.952223i \(-0.598791\pi\)
−0.305402 + 0.952223i \(0.598791\pi\)
\(420\) 0 0
\(421\) −4.06919e6 −1.11893 −0.559465 0.828854i \(-0.688993\pi\)
−0.559465 + 0.828854i \(0.688993\pi\)
\(422\) −7.52619e6 −2.05728
\(423\) 677599. 0.184129
\(424\) 1.28942e6 0.348322
\(425\) 0 0
\(426\) −3.13336e6 −0.836540
\(427\) −4.72031e6 −1.25285
\(428\) −1.19256e6 −0.314681
\(429\) 126968. 0.0333083
\(430\) 0 0
\(431\) −3.69314e6 −0.957641 −0.478821 0.877913i \(-0.658936\pi\)
−0.478821 + 0.877913i \(0.658936\pi\)
\(432\) 3.61062e6 0.930836
\(433\) −7.32688e6 −1.87802 −0.939008 0.343896i \(-0.888253\pi\)
−0.939008 + 0.343896i \(0.888253\pi\)
\(434\) 1.08290e7 2.75971
\(435\) 0 0
\(436\) −3.13234e6 −0.789139
\(437\) 479562. 0.120127
\(438\) 1.39088e6 0.346420
\(439\) −4.33121e6 −1.07263 −0.536313 0.844019i \(-0.680183\pi\)
−0.536313 + 0.844019i \(0.680183\pi\)
\(440\) 0 0
\(441\) −2.28538e6 −0.559579
\(442\) 593143. 0.144412
\(443\) 6.00225e6 1.45313 0.726566 0.687097i \(-0.241115\pi\)
0.726566 + 0.687097i \(0.241115\pi\)
\(444\) −2.59602e6 −0.624958
\(445\) 0 0
\(446\) 3.39497e6 0.808162
\(447\) 55240.2 0.0130763
\(448\) 7.83484e6 1.84432
\(449\) 1.63461e6 0.382647 0.191324 0.981527i \(-0.438722\pi\)
0.191324 + 0.981527i \(0.438722\pi\)
\(450\) 0 0
\(451\) −419556. −0.0971288
\(452\) 7.58687e6 1.74669
\(453\) −1.10151e6 −0.252199
\(454\) −7.11899e6 −1.62098
\(455\) 0 0
\(456\) −356434. −0.0802725
\(457\) −8.14010e6 −1.82322 −0.911610 0.411056i \(-0.865160\pi\)
−0.911610 + 0.411056i \(0.865160\pi\)
\(458\) −1.94435e6 −0.433123
\(459\) −1.73801e6 −0.385053
\(460\) 0 0
\(461\) 1.30948e6 0.286977 0.143489 0.989652i \(-0.454168\pi\)
0.143489 + 0.989652i \(0.454168\pi\)
\(462\) −1.20741e6 −0.263178
\(463\) −1.54820e6 −0.335641 −0.167820 0.985818i \(-0.553673\pi\)
−0.167820 + 0.985818i \(0.553673\pi\)
\(464\) −1.14005e6 −0.245826
\(465\) 0 0
\(466\) 1.02236e7 2.18093
\(467\) 6.32397e6 1.34183 0.670915 0.741534i \(-0.265902\pi\)
0.670915 + 0.741534i \(0.265902\pi\)
\(468\) −652163. −0.137639
\(469\) 7.64353e6 1.60458
\(470\) 0 0
\(471\) −3.08262e6 −0.640276
\(472\) 817566. 0.168915
\(473\) −1.00971e6 −0.207512
\(474\) 7.57787e6 1.54918
\(475\) 0 0
\(476\) −2.98123e6 −0.603085
\(477\) −4.34549e6 −0.874465
\(478\) −7.15486e6 −1.43229
\(479\) −803117. −0.159934 −0.0799669 0.996798i \(-0.525481\pi\)
−0.0799669 + 0.996798i \(0.525481\pi\)
\(480\) 0 0
\(481\) −1.05088e6 −0.207104
\(482\) −6.89377e6 −1.35157
\(483\) 1.13454e6 0.221285
\(484\) −5.62807e6 −1.09206
\(485\) 0 0
\(486\) 6.12166e6 1.17565
\(487\) −6.13178e6 −1.17156 −0.585779 0.810471i \(-0.699211\pi\)
−0.585779 + 0.810471i \(0.699211\pi\)
\(488\) 772362. 0.146815
\(489\) 1.41928e6 0.268407
\(490\) 0 0
\(491\) −236451. −0.0442626 −0.0221313 0.999755i \(-0.507045\pi\)
−0.0221313 + 0.999755i \(0.507045\pi\)
\(492\) −2.71320e6 −0.505324
\(493\) 548774. 0.101689
\(494\) −1.33603e6 −0.246319
\(495\) 0 0
\(496\) 5.96337e6 1.08840
\(497\) 6.37517e6 1.15771
\(498\) 9.81445e6 1.77334
\(499\) −1.81339e6 −0.326018 −0.163009 0.986625i \(-0.552120\pi\)
−0.163009 + 0.986625i \(0.552120\pi\)
\(500\) 0 0
\(501\) −5.41822e6 −0.964412
\(502\) −1.60608e7 −2.84452
\(503\) −4.69515e6 −0.827427 −0.413713 0.910407i \(-0.635768\pi\)
−0.413713 + 0.910407i \(0.635768\pi\)
\(504\) 669765. 0.117448
\(505\) 0 0
\(506\) −265809. −0.0461524
\(507\) 332378. 0.0574266
\(508\) −2.68070e6 −0.460881
\(509\) 7.10737e6 1.21595 0.607973 0.793958i \(-0.291983\pi\)
0.607973 + 0.793958i \(0.291983\pi\)
\(510\) 0 0
\(511\) −2.82989e6 −0.479421
\(512\) 8.26075e6 1.39266
\(513\) 3.91480e6 0.656774
\(514\) −2.95338e6 −0.493073
\(515\) 0 0
\(516\) −6.52965e6 −1.07961
\(517\) −406664. −0.0669128
\(518\) 9.99335e6 1.63639
\(519\) 806564. 0.131438
\(520\) 0 0
\(521\) 9.92332e6 1.60163 0.800816 0.598911i \(-0.204400\pi\)
0.800816 + 0.598911i \(0.204400\pi\)
\(522\) −1.14160e6 −0.183373
\(523\) −1.66096e6 −0.265525 −0.132763 0.991148i \(-0.542385\pi\)
−0.132763 + 0.991148i \(0.542385\pi\)
\(524\) 988343. 0.157246
\(525\) 0 0
\(526\) 1.66767e7 2.62812
\(527\) −2.87053e6 −0.450231
\(528\) −664904. −0.103794
\(529\) −6.18658e6 −0.961194
\(530\) 0 0
\(531\) −2.75528e6 −0.424062
\(532\) 6.71510e6 1.02866
\(533\) −1.09831e6 −0.167459
\(534\) −4.61202e6 −0.699904
\(535\) 0 0
\(536\) −1.25067e6 −0.188032
\(537\) 3.55689e6 0.532273
\(538\) −1.42038e7 −2.11567
\(539\) 1.37158e6 0.203352
\(540\) 0 0
\(541\) 8.08498e6 1.18764 0.593822 0.804597i \(-0.297619\pi\)
0.593822 + 0.804597i \(0.297619\pi\)
\(542\) −5.09283e6 −0.744665
\(543\) −3.31205e6 −0.482056
\(544\) −3.54127e6 −0.513053
\(545\) 0 0
\(546\) −3.16076e6 −0.453743
\(547\) −2.35716e6 −0.336838 −0.168419 0.985715i \(-0.553866\pi\)
−0.168419 + 0.985715i \(0.553866\pi\)
\(548\) 9.54333e6 1.35753
\(549\) −2.60294e6 −0.368581
\(550\) 0 0
\(551\) −1.23609e6 −0.173449
\(552\) −185640. −0.0259312
\(553\) −1.54180e7 −2.14395
\(554\) 4.41442e6 0.611082
\(555\) 0 0
\(556\) −9.46363e6 −1.29829
\(557\) 3.10870e6 0.424562 0.212281 0.977209i \(-0.431911\pi\)
0.212281 + 0.977209i \(0.431911\pi\)
\(558\) 5.97146e6 0.811886
\(559\) −2.64322e6 −0.357770
\(560\) 0 0
\(561\) 320058. 0.0429360
\(562\) 9.84372e6 1.31468
\(563\) −174928. −0.0232589 −0.0116295 0.999932i \(-0.503702\pi\)
−0.0116295 + 0.999932i \(0.503702\pi\)
\(564\) −2.62984e6 −0.348122
\(565\) 0 0
\(566\) −2.14190e7 −2.81034
\(567\) 4.16257e6 0.543756
\(568\) −1.04314e6 −0.135666
\(569\) −7.95974e6 −1.03067 −0.515333 0.856990i \(-0.672332\pi\)
−0.515333 + 0.856990i \(0.672332\pi\)
\(570\) 0 0
\(571\) 3.22926e6 0.414488 0.207244 0.978289i \(-0.433551\pi\)
0.207244 + 0.978289i \(0.433551\pi\)
\(572\) 391399. 0.0500183
\(573\) −6.24661e6 −0.794800
\(574\) 1.04444e7 1.32314
\(575\) 0 0
\(576\) 4.32040e6 0.542585
\(577\) −1.13083e7 −1.41403 −0.707014 0.707200i \(-0.749958\pi\)
−0.707014 + 0.707200i \(0.749958\pi\)
\(578\) −1.02024e7 −1.27024
\(579\) −1.08360e7 −1.34330
\(580\) 0 0
\(581\) −1.99686e7 −2.45418
\(582\) 7.03361e6 0.860738
\(583\) 2.60796e6 0.317783
\(584\) 463041. 0.0561807
\(585\) 0 0
\(586\) 1.75462e7 2.11076
\(587\) 9.47132e6 1.13453 0.567264 0.823536i \(-0.308002\pi\)
0.567264 + 0.823536i \(0.308002\pi\)
\(588\) 8.86980e6 1.05796
\(589\) 6.46574e6 0.767945
\(590\) 0 0
\(591\) 2.44733e6 0.288220
\(592\) 5.50320e6 0.645373
\(593\) −5.00001e6 −0.583894 −0.291947 0.956434i \(-0.594303\pi\)
−0.291947 + 0.956434i \(0.594303\pi\)
\(594\) −2.16988e6 −0.252330
\(595\) 0 0
\(596\) 170286. 0.0196365
\(597\) 9.93011e6 1.14030
\(598\) −695837. −0.0795710
\(599\) 9.49229e6 1.08095 0.540473 0.841361i \(-0.318245\pi\)
0.540473 + 0.841361i \(0.318245\pi\)
\(600\) 0 0
\(601\) 7.36100e6 0.831286 0.415643 0.909528i \(-0.363557\pi\)
0.415643 + 0.909528i \(0.363557\pi\)
\(602\) 2.51358e7 2.82684
\(603\) 4.21490e6 0.472057
\(604\) −3.39557e6 −0.378722
\(605\) 0 0
\(606\) 2.15442e6 0.238314
\(607\) 1.14445e7 1.26074 0.630370 0.776295i \(-0.282903\pi\)
0.630370 + 0.776295i \(0.282903\pi\)
\(608\) 7.97657e6 0.875099
\(609\) −2.92432e6 −0.319508
\(610\) 0 0
\(611\) −1.06457e6 −0.115364
\(612\) −1.64395e6 −0.177423
\(613\) 1.01622e7 1.09229 0.546144 0.837691i \(-0.316095\pi\)
0.546144 + 0.837691i \(0.316095\pi\)
\(614\) 1.25339e7 1.34173
\(615\) 0 0
\(616\) −401962. −0.0426809
\(617\) −1.19269e7 −1.26129 −0.630644 0.776072i \(-0.717209\pi\)
−0.630644 + 0.776072i \(0.717209\pi\)
\(618\) −1.11569e7 −1.17509
\(619\) 6.13819e6 0.643893 0.321946 0.946758i \(-0.395663\pi\)
0.321946 + 0.946758i \(0.395663\pi\)
\(620\) 0 0
\(621\) 2.03892e6 0.212164
\(622\) 1.47352e7 1.52714
\(623\) 9.38366e6 0.968617
\(624\) −1.74059e6 −0.178951
\(625\) 0 0
\(626\) 3.71856e6 0.379262
\(627\) −720917. −0.0732347
\(628\) −9.50262e6 −0.961489
\(629\) −2.64902e6 −0.266968
\(630\) 0 0
\(631\) 9.80829e6 0.980663 0.490332 0.871536i \(-0.336876\pi\)
0.490332 + 0.871536i \(0.336876\pi\)
\(632\) 2.52277e6 0.251238
\(633\) −1.06312e7 −1.05456
\(634\) 1.15055e7 1.13679
\(635\) 0 0
\(636\) 1.68653e7 1.65330
\(637\) 3.59053e6 0.350598
\(638\) 685134. 0.0666383
\(639\) 3.51548e6 0.340591
\(640\) 0 0
\(641\) 1.57763e6 0.151657 0.0758283 0.997121i \(-0.475840\pi\)
0.0758283 + 0.997121i \(0.475840\pi\)
\(642\) −3.18719e6 −0.305190
\(643\) 1.87484e7 1.78829 0.894144 0.447779i \(-0.147785\pi\)
0.894144 + 0.447779i \(0.147785\pi\)
\(644\) 3.49739e6 0.332299
\(645\) 0 0
\(646\) −3.36782e6 −0.317518
\(647\) 1.32643e7 1.24573 0.622863 0.782331i \(-0.285969\pi\)
0.622863 + 0.782331i \(0.285969\pi\)
\(648\) −681101. −0.0637198
\(649\) 1.65360e6 0.154105
\(650\) 0 0
\(651\) 1.52966e7 1.41463
\(652\) 4.37513e6 0.403062
\(653\) 7.19177e6 0.660013 0.330007 0.943979i \(-0.392949\pi\)
0.330007 + 0.943979i \(0.392949\pi\)
\(654\) −8.37141e6 −0.765339
\(655\) 0 0
\(656\) 5.75161e6 0.521831
\(657\) −1.56050e6 −0.141042
\(658\) 1.01235e7 0.911522
\(659\) −2.13493e6 −0.191501 −0.0957503 0.995405i \(-0.530525\pi\)
−0.0957503 + 0.995405i \(0.530525\pi\)
\(660\) 0 0
\(661\) −3.54104e6 −0.315230 −0.157615 0.987501i \(-0.550380\pi\)
−0.157615 + 0.987501i \(0.550380\pi\)
\(662\) 1.13388e7 1.00559
\(663\) 837850. 0.0740256
\(664\) 3.26736e6 0.287592
\(665\) 0 0
\(666\) 5.51067e6 0.481414
\(667\) −643786. −0.0560308
\(668\) −1.67025e7 −1.44824
\(669\) 4.79559e6 0.414264
\(670\) 0 0
\(671\) 1.56217e6 0.133943
\(672\) 1.88709e7 1.61201
\(673\) −1.59930e7 −1.36110 −0.680551 0.732700i \(-0.738260\pi\)
−0.680551 + 0.732700i \(0.738260\pi\)
\(674\) 1.59325e7 1.35093
\(675\) 0 0
\(676\) 1.02461e6 0.0862362
\(677\) −6.51782e6 −0.546551 −0.273275 0.961936i \(-0.588107\pi\)
−0.273275 + 0.961936i \(0.588107\pi\)
\(678\) 2.02764e7 1.69401
\(679\) −1.43107e7 −1.19120
\(680\) 0 0
\(681\) −1.00560e7 −0.830916
\(682\) −3.58380e6 −0.295041
\(683\) −2.30581e7 −1.89135 −0.945673 0.325118i \(-0.894596\pi\)
−0.945673 + 0.325118i \(0.894596\pi\)
\(684\) 3.70293e6 0.302626
\(685\) 0 0
\(686\) −7.13351e6 −0.578752
\(687\) −2.74651e6 −0.222019
\(688\) 1.38419e7 1.11487
\(689\) 6.82714e6 0.547887
\(690\) 0 0
\(691\) 1.77699e7 1.41576 0.707880 0.706333i \(-0.249652\pi\)
0.707880 + 0.706333i \(0.249652\pi\)
\(692\) 2.48635e6 0.197377
\(693\) 1.35466e6 0.107151
\(694\) 3.49713e7 2.75622
\(695\) 0 0
\(696\) 478493. 0.0374414
\(697\) −2.76860e6 −0.215863
\(698\) −2.52148e7 −1.95892
\(699\) 1.44415e7 1.11794
\(700\) 0 0
\(701\) −7.07397e6 −0.543711 −0.271856 0.962338i \(-0.587637\pi\)
−0.271856 + 0.962338i \(0.587637\pi\)
\(702\) −5.68031e6 −0.435040
\(703\) 5.96681e6 0.455359
\(704\) −2.59291e6 −0.197177
\(705\) 0 0
\(706\) −3.73294e7 −2.81863
\(707\) −4.38341e6 −0.329810
\(708\) 1.06936e7 0.801750
\(709\) −8.17421e6 −0.610703 −0.305352 0.952240i \(-0.598774\pi\)
−0.305352 + 0.952240i \(0.598774\pi\)
\(710\) 0 0
\(711\) −8.50201e6 −0.630736
\(712\) −1.53540e6 −0.113507
\(713\) 3.36752e6 0.248077
\(714\) −7.96755e6 −0.584897
\(715\) 0 0
\(716\) 1.09646e7 0.799303
\(717\) −1.01067e7 −0.734193
\(718\) −2.21048e7 −1.60020
\(719\) −5.47393e6 −0.394891 −0.197446 0.980314i \(-0.563265\pi\)
−0.197446 + 0.980314i \(0.563265\pi\)
\(720\) 0 0
\(721\) 2.26999e7 1.62625
\(722\) −1.28137e7 −0.914810
\(723\) −9.73786e6 −0.692816
\(724\) −1.02099e7 −0.723893
\(725\) 0 0
\(726\) −1.50414e7 −1.05912
\(727\) −1.55536e7 −1.09143 −0.545714 0.837972i \(-0.683741\pi\)
−0.545714 + 0.837972i \(0.683741\pi\)
\(728\) −1.05226e6 −0.0735858
\(729\) 1.38325e7 0.964012
\(730\) 0 0
\(731\) −6.66296e6 −0.461183
\(732\) 1.01023e7 0.696855
\(733\) 1.49050e7 1.02464 0.512320 0.858795i \(-0.328786\pi\)
0.512320 + 0.858795i \(0.328786\pi\)
\(734\) 5.42948e6 0.371979
\(735\) 0 0
\(736\) 4.15439e6 0.282692
\(737\) −2.52959e6 −0.171547
\(738\) 5.75942e6 0.389258
\(739\) 1.31574e6 0.0886256 0.0443128 0.999018i \(-0.485890\pi\)
0.0443128 + 0.999018i \(0.485890\pi\)
\(740\) 0 0
\(741\) −1.88722e6 −0.126263
\(742\) −6.49229e7 −4.32900
\(743\) 1.76450e7 1.17260 0.586300 0.810094i \(-0.300584\pi\)
0.586300 + 0.810094i \(0.300584\pi\)
\(744\) −2.50290e6 −0.165772
\(745\) 0 0
\(746\) −1.43176e7 −0.941941
\(747\) −1.10113e7 −0.722003
\(748\) 986626. 0.0644761
\(749\) 6.48469e6 0.422362
\(750\) 0 0
\(751\) −1.08240e7 −0.700308 −0.350154 0.936692i \(-0.613871\pi\)
−0.350154 + 0.936692i \(0.613871\pi\)
\(752\) 5.57489e6 0.359494
\(753\) −2.26869e7 −1.45810
\(754\) 1.79355e6 0.114891
\(755\) 0 0
\(756\) 2.85502e7 1.81679
\(757\) −2.74661e7 −1.74204 −0.871018 0.491251i \(-0.836540\pi\)
−0.871018 + 0.491251i \(0.836540\pi\)
\(758\) −3.80522e7 −2.40551
\(759\) −375472. −0.0236577
\(760\) 0 0
\(761\) 3.08096e6 0.192852 0.0964261 0.995340i \(-0.469259\pi\)
0.0964261 + 0.995340i \(0.469259\pi\)
\(762\) −7.16435e6 −0.446981
\(763\) 1.70325e7 1.05918
\(764\) −1.92561e7 −1.19353
\(765\) 0 0
\(766\) 5.40869e6 0.333058
\(767\) 4.32879e6 0.265692
\(768\) 8.73565e6 0.534432
\(769\) 3.97374e6 0.242317 0.121159 0.992633i \(-0.461339\pi\)
0.121159 + 0.992633i \(0.461339\pi\)
\(770\) 0 0
\(771\) −4.17182e6 −0.252749
\(772\) −3.34036e7 −2.01721
\(773\) 1.29080e6 0.0776978 0.0388489 0.999245i \(-0.487631\pi\)
0.0388489 + 0.999245i \(0.487631\pi\)
\(774\) 1.38607e7 0.831637
\(775\) 0 0
\(776\) 2.34158e6 0.139590
\(777\) 1.41162e7 0.838813
\(778\) −1.24011e7 −0.734533
\(779\) 6.23615e6 0.368191
\(780\) 0 0
\(781\) −2.10983e6 −0.123771
\(782\) −1.75405e6 −0.102571
\(783\) −5.25540e6 −0.306339
\(784\) −1.88027e7 −1.09252
\(785\) 0 0
\(786\) 2.64142e6 0.152504
\(787\) 2.52309e7 1.45210 0.726050 0.687642i \(-0.241354\pi\)
0.726050 + 0.687642i \(0.241354\pi\)
\(788\) 7.54425e6 0.432813
\(789\) 2.35568e7 1.34717
\(790\) 0 0
\(791\) −4.12546e7 −2.34440
\(792\) −221656. −0.0125564
\(793\) 4.08944e6 0.230931
\(794\) 3.20832e6 0.180603
\(795\) 0 0
\(796\) 3.06110e7 1.71236
\(797\) 2.89490e7 1.61431 0.807155 0.590339i \(-0.201006\pi\)
0.807155 + 0.590339i \(0.201006\pi\)
\(798\) 1.79466e7 0.997641
\(799\) −2.68353e6 −0.148710
\(800\) 0 0
\(801\) 5.17447e6 0.284960
\(802\) 2.84693e7 1.56293
\(803\) 936540. 0.0512551
\(804\) −1.63585e7 −0.892490
\(805\) 0 0
\(806\) −9.38169e6 −0.508679
\(807\) −2.00637e7 −1.08449
\(808\) 717236. 0.0386486
\(809\) −1.89823e7 −1.01971 −0.509855 0.860260i \(-0.670301\pi\)
−0.509855 + 0.860260i \(0.670301\pi\)
\(810\) 0 0
\(811\) −2.83661e7 −1.51442 −0.757212 0.653169i \(-0.773439\pi\)
−0.757212 + 0.653169i \(0.773439\pi\)
\(812\) −9.01466e6 −0.479799
\(813\) −7.19392e6 −0.381715
\(814\) −3.30725e6 −0.174947
\(815\) 0 0
\(816\) −4.38762e6 −0.230677
\(817\) 1.50080e7 0.786627
\(818\) −4.30279e7 −2.24836
\(819\) 3.54622e6 0.184738
\(820\) 0 0
\(821\) 3.27149e7 1.69390 0.846951 0.531671i \(-0.178436\pi\)
0.846951 + 0.531671i \(0.178436\pi\)
\(822\) 2.55052e7 1.31659
\(823\) −1.40256e7 −0.721809 −0.360904 0.932603i \(-0.617532\pi\)
−0.360904 + 0.932603i \(0.617532\pi\)
\(824\) −3.71428e6 −0.190571
\(825\) 0 0
\(826\) −4.11647e7 −2.09930
\(827\) −2.33094e7 −1.18513 −0.592566 0.805522i \(-0.701885\pi\)
−0.592566 + 0.805522i \(0.701885\pi\)
\(828\) 1.92858e6 0.0977602
\(829\) 2.47785e7 1.25224 0.626122 0.779725i \(-0.284641\pi\)
0.626122 + 0.779725i \(0.284641\pi\)
\(830\) 0 0
\(831\) 6.23563e6 0.313241
\(832\) −6.78772e6 −0.339951
\(833\) 9.05089e6 0.451938
\(834\) −2.52922e7 −1.25913
\(835\) 0 0
\(836\) −2.22233e6 −0.109975
\(837\) 2.74900e7 1.35632
\(838\) −1.80838e7 −0.889569
\(839\) −2.58285e7 −1.26676 −0.633380 0.773841i \(-0.718333\pi\)
−0.633380 + 0.773841i \(0.718333\pi\)
\(840\) 0 0
\(841\) −1.88518e7 −0.919098
\(842\) −3.35244e7 −1.62960
\(843\) 1.39048e7 0.673903
\(844\) −3.27722e7 −1.58361
\(845\) 0 0
\(846\) 5.58245e6 0.268163
\(847\) 3.06034e7 1.46575
\(848\) −3.57521e7 −1.70731
\(849\) −3.02556e7 −1.44058
\(850\) 0 0
\(851\) 3.10766e6 0.147099
\(852\) −1.36440e7 −0.643935
\(853\) 1.49617e7 0.704060 0.352030 0.935989i \(-0.385492\pi\)
0.352030 + 0.935989i \(0.385492\pi\)
\(854\) −3.88887e7 −1.82465
\(855\) 0 0
\(856\) −1.06106e6 −0.0494943
\(857\) 7.36028e6 0.342328 0.171164 0.985243i \(-0.445247\pi\)
0.171164 + 0.985243i \(0.445247\pi\)
\(858\) 1.04604e6 0.0485099
\(859\) 2.71276e7 1.25438 0.627190 0.778866i \(-0.284205\pi\)
0.627190 + 0.778866i \(0.284205\pi\)
\(860\) 0 0
\(861\) 1.47534e7 0.678241
\(862\) −3.04263e7 −1.39470
\(863\) 3.14458e7 1.43726 0.718630 0.695393i \(-0.244770\pi\)
0.718630 + 0.695393i \(0.244770\pi\)
\(864\) 3.39135e7 1.54557
\(865\) 0 0
\(866\) −6.03631e7 −2.73512
\(867\) −1.44115e7 −0.651123
\(868\) 4.71539e7 2.12431
\(869\) 5.10252e6 0.229211
\(870\) 0 0
\(871\) −6.62198e6 −0.295762
\(872\) −2.78695e6 −0.124119
\(873\) −7.89138e6 −0.350443
\(874\) 3.95091e6 0.174952
\(875\) 0 0
\(876\) 6.05646e6 0.266661
\(877\) 3.94061e7 1.73007 0.865037 0.501708i \(-0.167295\pi\)
0.865037 + 0.501708i \(0.167295\pi\)
\(878\) −3.56831e7 −1.56216
\(879\) 2.47850e7 1.08197
\(880\) 0 0
\(881\) −2.67060e7 −1.15923 −0.579614 0.814891i \(-0.696797\pi\)
−0.579614 + 0.814891i \(0.696797\pi\)
\(882\) −1.88283e7 −0.814965
\(883\) 4.33871e7 1.87266 0.936330 0.351120i \(-0.114199\pi\)
0.936330 + 0.351120i \(0.114199\pi\)
\(884\) 2.58279e6 0.111163
\(885\) 0 0
\(886\) 4.94501e7 2.11633
\(887\) −3.25024e7 −1.38710 −0.693549 0.720410i \(-0.743954\pi\)
−0.693549 + 0.720410i \(0.743954\pi\)
\(888\) −2.30976e6 −0.0982959
\(889\) 1.45766e7 0.618590
\(890\) 0 0
\(891\) −1.37758e6 −0.0581332
\(892\) 1.47831e7 0.622091
\(893\) 6.04453e6 0.253650
\(894\) 455101. 0.0190443
\(895\) 0 0
\(896\) 1.26582e7 0.526746
\(897\) −982911. −0.0407881
\(898\) 1.34669e7 0.557283
\(899\) −8.67991e6 −0.358192
\(900\) 0 0
\(901\) 1.72097e7 0.706253
\(902\) −3.45654e6 −0.141457
\(903\) 3.55058e7 1.44904
\(904\) 6.75029e6 0.274727
\(905\) 0 0
\(906\) −9.07489e6 −0.367300
\(907\) −3.43395e7 −1.38604 −0.693020 0.720918i \(-0.743720\pi\)
−0.693020 + 0.720918i \(0.743720\pi\)
\(908\) −3.09991e7 −1.24777
\(909\) −2.41716e6 −0.0970277
\(910\) 0 0
\(911\) 3.18788e7 1.27264 0.636320 0.771425i \(-0.280456\pi\)
0.636320 + 0.771425i \(0.280456\pi\)
\(912\) 9.88293e6 0.393458
\(913\) 6.60851e6 0.262378
\(914\) −6.70629e7 −2.65532
\(915\) 0 0
\(916\) −8.46652e6 −0.333401
\(917\) −5.37425e6 −0.211054
\(918\) −1.43188e7 −0.560788
\(919\) −2.12110e7 −0.828460 −0.414230 0.910172i \(-0.635949\pi\)
−0.414230 + 0.910172i \(0.635949\pi\)
\(920\) 0 0
\(921\) 1.77049e7 0.687770
\(922\) 1.07883e7 0.417951
\(923\) −5.52313e6 −0.213393
\(924\) −5.25757e6 −0.202584
\(925\) 0 0
\(926\) −1.27550e7 −0.488823
\(927\) 1.25175e7 0.478431
\(928\) −1.07081e7 −0.408172
\(929\) 1.66040e6 0.0631210 0.0315605 0.999502i \(-0.489952\pi\)
0.0315605 + 0.999502i \(0.489952\pi\)
\(930\) 0 0
\(931\) −2.03867e7 −0.770857
\(932\) 4.45181e7 1.67879
\(933\) 2.08143e7 0.782813
\(934\) 5.21005e7 1.95423
\(935\) 0 0
\(936\) −580251. −0.0216484
\(937\) −6.93039e6 −0.257875 −0.128937 0.991653i \(-0.541157\pi\)
−0.128937 + 0.991653i \(0.541157\pi\)
\(938\) 6.29719e7 2.33690
\(939\) 5.25269e6 0.194410
\(940\) 0 0
\(941\) −1.29119e7 −0.475352 −0.237676 0.971344i \(-0.576386\pi\)
−0.237676 + 0.971344i \(0.576386\pi\)
\(942\) −2.53964e7 −0.932492
\(943\) 3.24794e6 0.118940
\(944\) −2.26688e7 −0.827941
\(945\) 0 0
\(946\) −8.31858e6 −0.302219
\(947\) −2.15320e7 −0.780207 −0.390104 0.920771i \(-0.627561\pi\)
−0.390104 + 0.920771i \(0.627561\pi\)
\(948\) 3.29973e7 1.19250
\(949\) 2.45168e6 0.0883686
\(950\) 0 0
\(951\) 1.62521e7 0.582719
\(952\) −2.65250e6 −0.0948557
\(953\) 3.37555e7 1.20396 0.601980 0.798511i \(-0.294379\pi\)
0.601980 + 0.798511i \(0.294379\pi\)
\(954\) −3.58007e7 −1.27356
\(955\) 0 0
\(956\) −3.11553e7 −1.10252
\(957\) 967793. 0.0341588
\(958\) −6.61655e6 −0.232926
\(959\) −5.18931e7 −1.82206
\(960\) 0 0
\(961\) 1.67737e7 0.585897
\(962\) −8.65774e6 −0.301625
\(963\) 3.57588e6 0.124256
\(964\) −3.00184e7 −1.04039
\(965\) 0 0
\(966\) 9.34702e6 0.322278
\(967\) −2.32723e6 −0.0800336 −0.0400168 0.999199i \(-0.512741\pi\)
−0.0400168 + 0.999199i \(0.512741\pi\)
\(968\) −5.00748e6 −0.171764
\(969\) −4.75725e6 −0.162760
\(970\) 0 0
\(971\) 2.32618e7 0.791762 0.395881 0.918302i \(-0.370439\pi\)
0.395881 + 0.918302i \(0.370439\pi\)
\(972\) 2.66563e7 0.904970
\(973\) 5.14597e7 1.74255
\(974\) −5.05172e7 −1.70625
\(975\) 0 0
\(976\) −2.14155e7 −0.719619
\(977\) 1.85849e7 0.622908 0.311454 0.950261i \(-0.399184\pi\)
0.311454 + 0.950261i \(0.399184\pi\)
\(978\) 1.16928e7 0.390906
\(979\) −3.10548e6 −0.103555
\(980\) 0 0
\(981\) 9.39232e6 0.311602
\(982\) −1.94802e6 −0.0644636
\(983\) 1.42083e6 0.0468986 0.0234493 0.999725i \(-0.492535\pi\)
0.0234493 + 0.999725i \(0.492535\pi\)
\(984\) −2.41403e6 −0.0794794
\(985\) 0 0
\(986\) 4.52112e6 0.148100
\(987\) 1.43001e7 0.467246
\(988\) −5.81763e6 −0.189607
\(989\) 7.81656e6 0.254112
\(990\) 0 0
\(991\) −2.86425e6 −0.0926462 −0.0463231 0.998927i \(-0.514750\pi\)
−0.0463231 + 0.998927i \(0.514750\pi\)
\(992\) 5.60120e7 1.80718
\(993\) 1.60167e7 0.515465
\(994\) 5.25223e7 1.68608
\(995\) 0 0
\(996\) 4.27363e7 1.36505
\(997\) 4.95795e7 1.57966 0.789831 0.613325i \(-0.210168\pi\)
0.789831 + 0.613325i \(0.210168\pi\)
\(998\) −1.49398e7 −0.474809
\(999\) 2.53687e7 0.804238
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.h.1.9 9
5.2 odd 4 325.6.b.h.274.17 18
5.3 odd 4 325.6.b.h.274.2 18
5.4 even 2 325.6.a.i.1.1 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.9 9 1.1 even 1 trivial
325.6.a.i.1.1 yes 9 5.4 even 2
325.6.b.h.274.2 18 5.3 odd 4
325.6.b.h.274.17 18 5.2 odd 4