Properties

Label 325.6.a.h.1.8
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 181 x^{7} + 688 x^{6} + 10455 x^{5} - 37904 x^{4} - 197375 x^{3} + 702868 x^{2} + \cdots - 366960 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(8.28147\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.28147 q^{2} -14.9935 q^{3} +21.0198 q^{4} -109.175 q^{6} +135.391 q^{7} -79.9521 q^{8} -18.1955 q^{9} +O(q^{10})\) \(q+7.28147 q^{2} -14.9935 q^{3} +21.0198 q^{4} -109.175 q^{6} +135.391 q^{7} -79.9521 q^{8} -18.1955 q^{9} +191.317 q^{11} -315.160 q^{12} +169.000 q^{13} +985.848 q^{14} -1254.80 q^{16} -874.338 q^{17} -132.490 q^{18} +1992.26 q^{19} -2029.99 q^{21} +1393.07 q^{22} -2091.74 q^{23} +1198.76 q^{24} +1230.57 q^{26} +3916.23 q^{27} +2845.90 q^{28} -46.3621 q^{29} -9450.42 q^{31} -6578.33 q^{32} -2868.52 q^{33} -6366.46 q^{34} -382.466 q^{36} -3374.82 q^{37} +14506.6 q^{38} -2533.90 q^{39} -10511.6 q^{41} -14781.3 q^{42} +4056.27 q^{43} +4021.45 q^{44} -15230.9 q^{46} -17035.2 q^{47} +18813.8 q^{48} +1523.82 q^{49} +13109.4 q^{51} +3552.34 q^{52} -23984.5 q^{53} +28515.9 q^{54} -10824.8 q^{56} -29870.9 q^{57} -337.584 q^{58} -10197.8 q^{59} -27440.0 q^{61} -68812.9 q^{62} -2463.52 q^{63} -7746.27 q^{64} -20887.0 q^{66} -317.851 q^{67} -18378.4 q^{68} +31362.5 q^{69} +39664.7 q^{71} +1454.77 q^{72} +4764.06 q^{73} -24573.7 q^{74} +41876.9 q^{76} +25902.7 q^{77} -18450.5 q^{78} -74545.9 q^{79} -54296.4 q^{81} -76539.5 q^{82} -14234.5 q^{83} -42669.9 q^{84} +29535.6 q^{86} +695.130 q^{87} -15296.2 q^{88} -132052. q^{89} +22881.1 q^{91} -43967.9 q^{92} +141695. q^{93} -124041. q^{94} +98632.1 q^{96} +19366.7 q^{97} +11095.6 q^{98} -3481.12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} - 11 q^{3} + 91 q^{4} - 83 q^{6} + 12 q^{7} - 639 q^{8} + 562 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 5 q^{2} - 11 q^{3} + 91 q^{4} - 83 q^{6} + 12 q^{7} - 639 q^{8} + 562 q^{9} - 1422 q^{11} + 1567 q^{12} + 1521 q^{13} - 342 q^{14} - 1061 q^{16} + 648 q^{17} + 418 q^{18} - 408 q^{19} - 3912 q^{21} + 4345 q^{22} + 1839 q^{23} - 8469 q^{24} - 845 q^{26} - 7649 q^{27} - 2836 q^{28} - 8737 q^{29} + 748 q^{31} - 423 q^{32} - 356 q^{33} - 17789 q^{34} + 512 q^{36} - 15486 q^{37} - 3425 q^{38} - 1859 q^{39} - 28676 q^{41} + 6876 q^{42} + 28665 q^{43} - 30599 q^{44} - 12056 q^{46} - 29452 q^{47} + 64759 q^{48} - 40907 q^{49} - 31006 q^{51} + 15379 q^{52} + 75977 q^{53} - 102761 q^{54} - 23002 q^{56} - 38038 q^{57} + 142384 q^{58} - 88142 q^{59} + 28165 q^{61} - 137308 q^{62} + 41492 q^{63} - 100845 q^{64} + 42577 q^{66} - 94754 q^{67} + 89267 q^{68} - 181747 q^{69} - 70562 q^{71} - 263778 q^{72} + 60602 q^{73} - 135676 q^{74} + 46373 q^{76} - 140292 q^{77} - 14027 q^{78} - 164073 q^{79} - 69935 q^{81} - 72887 q^{82} - 22458 q^{83} - 345656 q^{84} - 294920 q^{86} - 87031 q^{87} + 430607 q^{88} - 252698 q^{89} + 2028 q^{91} - 237824 q^{92} + 56556 q^{93} - 501606 q^{94} - 319181 q^{96} + 137986 q^{97} + 378699 q^{98} - 757776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.28147 1.28719 0.643597 0.765365i \(-0.277441\pi\)
0.643597 + 0.765365i \(0.277441\pi\)
\(3\) −14.9935 −0.961832 −0.480916 0.876767i \(-0.659696\pi\)
−0.480916 + 0.876767i \(0.659696\pi\)
\(4\) 21.0198 0.656868
\(5\) 0 0
\(6\) −109.175 −1.23806
\(7\) 135.391 1.04435 0.522175 0.852839i \(-0.325121\pi\)
0.522175 + 0.852839i \(0.325121\pi\)
\(8\) −79.9521 −0.441677
\(9\) −18.1955 −0.0748787
\(10\) 0 0
\(11\) 191.317 0.476731 0.238365 0.971176i \(-0.423388\pi\)
0.238365 + 0.971176i \(0.423388\pi\)
\(12\) −315.160 −0.631797
\(13\) 169.000 0.277350
\(14\) 985.848 1.34428
\(15\) 0 0
\(16\) −1254.80 −1.22539
\(17\) −874.338 −0.733765 −0.366883 0.930267i \(-0.619575\pi\)
−0.366883 + 0.930267i \(0.619575\pi\)
\(18\) −132.490 −0.0963834
\(19\) 1992.26 1.26608 0.633042 0.774118i \(-0.281806\pi\)
0.633042 + 0.774118i \(0.281806\pi\)
\(20\) 0 0
\(21\) −2029.99 −1.00449
\(22\) 1393.07 0.613645
\(23\) −2091.74 −0.824495 −0.412248 0.911072i \(-0.635256\pi\)
−0.412248 + 0.911072i \(0.635256\pi\)
\(24\) 1198.76 0.424819
\(25\) 0 0
\(26\) 1230.57 0.357003
\(27\) 3916.23 1.03385
\(28\) 2845.90 0.686000
\(29\) −46.3621 −0.0102369 −0.00511845 0.999987i \(-0.501629\pi\)
−0.00511845 + 0.999987i \(0.501629\pi\)
\(30\) 0 0
\(31\) −9450.42 −1.76623 −0.883114 0.469158i \(-0.844558\pi\)
−0.883114 + 0.469158i \(0.844558\pi\)
\(32\) −6578.33 −1.13564
\(33\) −2868.52 −0.458535
\(34\) −6366.46 −0.944498
\(35\) 0 0
\(36\) −382.466 −0.0491854
\(37\) −3374.82 −0.405272 −0.202636 0.979254i \(-0.564951\pi\)
−0.202636 + 0.979254i \(0.564951\pi\)
\(38\) 14506.6 1.62969
\(39\) −2533.90 −0.266764
\(40\) 0 0
\(41\) −10511.6 −0.976578 −0.488289 0.872682i \(-0.662379\pi\)
−0.488289 + 0.872682i \(0.662379\pi\)
\(42\) −14781.3 −1.29297
\(43\) 4056.27 0.334546 0.167273 0.985911i \(-0.446504\pi\)
0.167273 + 0.985911i \(0.446504\pi\)
\(44\) 4021.45 0.313149
\(45\) 0 0
\(46\) −15230.9 −1.06129
\(47\) −17035.2 −1.12487 −0.562435 0.826842i \(-0.690135\pi\)
−0.562435 + 0.826842i \(0.690135\pi\)
\(48\) 18813.8 1.17862
\(49\) 1523.82 0.0906658
\(50\) 0 0
\(51\) 13109.4 0.705759
\(52\) 3552.34 0.182182
\(53\) −23984.5 −1.17285 −0.586424 0.810004i \(-0.699465\pi\)
−0.586424 + 0.810004i \(0.699465\pi\)
\(54\) 28515.9 1.33077
\(55\) 0 0
\(56\) −10824.8 −0.461265
\(57\) −29870.9 −1.21776
\(58\) −337.584 −0.0131769
\(59\) −10197.8 −0.381398 −0.190699 0.981649i \(-0.561075\pi\)
−0.190699 + 0.981649i \(0.561075\pi\)
\(60\) 0 0
\(61\) −27440.0 −0.944191 −0.472095 0.881547i \(-0.656502\pi\)
−0.472095 + 0.881547i \(0.656502\pi\)
\(62\) −68812.9 −2.27348
\(63\) −2463.52 −0.0781995
\(64\) −7746.27 −0.236397
\(65\) 0 0
\(66\) −20887.0 −0.590223
\(67\) −317.851 −0.00865040 −0.00432520 0.999991i \(-0.501377\pi\)
−0.00432520 + 0.999991i \(0.501377\pi\)
\(68\) −18378.4 −0.481987
\(69\) 31362.5 0.793026
\(70\) 0 0
\(71\) 39664.7 0.933809 0.466905 0.884308i \(-0.345369\pi\)
0.466905 + 0.884308i \(0.345369\pi\)
\(72\) 1454.77 0.0330722
\(73\) 4764.06 0.104633 0.0523167 0.998631i \(-0.483339\pi\)
0.0523167 + 0.998631i \(0.483339\pi\)
\(74\) −24573.7 −0.521664
\(75\) 0 0
\(76\) 41876.9 0.831650
\(77\) 25902.7 0.497873
\(78\) −18450.5 −0.343377
\(79\) −74545.9 −1.34387 −0.671933 0.740612i \(-0.734536\pi\)
−0.671933 + 0.740612i \(0.734536\pi\)
\(80\) 0 0
\(81\) −54296.4 −0.919514
\(82\) −76539.5 −1.25705
\(83\) −14234.5 −0.226803 −0.113401 0.993549i \(-0.536175\pi\)
−0.113401 + 0.993549i \(0.536175\pi\)
\(84\) −42669.9 −0.659817
\(85\) 0 0
\(86\) 29535.6 0.430625
\(87\) 695.130 0.00984618
\(88\) −15296.2 −0.210561
\(89\) −132052. −1.76713 −0.883566 0.468307i \(-0.844864\pi\)
−0.883566 + 0.468307i \(0.844864\pi\)
\(90\) 0 0
\(91\) 22881.1 0.289650
\(92\) −43967.9 −0.541585
\(93\) 141695. 1.69882
\(94\) −124041. −1.44793
\(95\) 0 0
\(96\) 98632.1 1.09230
\(97\) 19366.7 0.208990 0.104495 0.994525i \(-0.466677\pi\)
0.104495 + 0.994525i \(0.466677\pi\)
\(98\) 11095.6 0.116704
\(99\) −3481.12 −0.0356970
\(100\) 0 0
\(101\) −90391.7 −0.881709 −0.440855 0.897579i \(-0.645325\pi\)
−0.440855 + 0.897579i \(0.645325\pi\)
\(102\) 95455.5 0.908449
\(103\) 59762.2 0.555051 0.277526 0.960718i \(-0.410486\pi\)
0.277526 + 0.960718i \(0.410486\pi\)
\(104\) −13511.9 −0.122499
\(105\) 0 0
\(106\) −174643. −1.50968
\(107\) 178407. 1.50645 0.753223 0.657766i \(-0.228498\pi\)
0.753223 + 0.657766i \(0.228498\pi\)
\(108\) 82318.3 0.679105
\(109\) −37689.5 −0.303847 −0.151923 0.988392i \(-0.548547\pi\)
−0.151923 + 0.988392i \(0.548547\pi\)
\(110\) 0 0
\(111\) 50600.3 0.389804
\(112\) −169889. −1.27974
\(113\) −38616.5 −0.284497 −0.142248 0.989831i \(-0.545433\pi\)
−0.142248 + 0.989831i \(0.545433\pi\)
\(114\) −217504. −1.56749
\(115\) 0 0
\(116\) −974.522 −0.00672429
\(117\) −3075.04 −0.0207676
\(118\) −74255.3 −0.490933
\(119\) −118378. −0.766307
\(120\) 0 0
\(121\) −124449. −0.772728
\(122\) −199804. −1.21536
\(123\) 157605. 0.939305
\(124\) −198646. −1.16018
\(125\) 0 0
\(126\) −17938.0 −0.100658
\(127\) 301119. 1.65664 0.828320 0.560255i \(-0.189297\pi\)
0.828320 + 0.560255i \(0.189297\pi\)
\(128\) 154102. 0.831351
\(129\) −60817.6 −0.321777
\(130\) 0 0
\(131\) −100245. −0.510371 −0.255186 0.966892i \(-0.582137\pi\)
−0.255186 + 0.966892i \(0.582137\pi\)
\(132\) −60295.6 −0.301197
\(133\) 269735. 1.32223
\(134\) −2314.42 −0.0111347
\(135\) 0 0
\(136\) 69905.2 0.324087
\(137\) 72376.9 0.329457 0.164728 0.986339i \(-0.447325\pi\)
0.164728 + 0.986339i \(0.447325\pi\)
\(138\) 228365. 1.02078
\(139\) 296858. 1.30320 0.651601 0.758562i \(-0.274098\pi\)
0.651601 + 0.758562i \(0.274098\pi\)
\(140\) 0 0
\(141\) 255417. 1.08194
\(142\) 288817. 1.20199
\(143\) 32332.7 0.132221
\(144\) 22831.8 0.0917558
\(145\) 0 0
\(146\) 34689.3 0.134683
\(147\) −22847.4 −0.0872053
\(148\) −70938.0 −0.266210
\(149\) 16259.4 0.0599981 0.0299991 0.999550i \(-0.490450\pi\)
0.0299991 + 0.999550i \(0.490450\pi\)
\(150\) 0 0
\(151\) 383495. 1.36873 0.684364 0.729140i \(-0.260080\pi\)
0.684364 + 0.729140i \(0.260080\pi\)
\(152\) −159285. −0.559200
\(153\) 15909.0 0.0549434
\(154\) 188610. 0.640859
\(155\) 0 0
\(156\) −53262.0 −0.175229
\(157\) 235502. 0.762510 0.381255 0.924470i \(-0.375492\pi\)
0.381255 + 0.924470i \(0.375492\pi\)
\(158\) −542804. −1.72982
\(159\) 359612. 1.12808
\(160\) 0 0
\(161\) −283204. −0.861061
\(162\) −395358. −1.18359
\(163\) 205165. 0.604832 0.302416 0.953176i \(-0.402207\pi\)
0.302416 + 0.953176i \(0.402207\pi\)
\(164\) −220951. −0.641483
\(165\) 0 0
\(166\) −103648. −0.291939
\(167\) 68965.6 0.191356 0.0956778 0.995412i \(-0.469498\pi\)
0.0956778 + 0.995412i \(0.469498\pi\)
\(168\) 162302. 0.443660
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −36250.2 −0.0948027
\(172\) 85261.9 0.219753
\(173\) 613056. 1.55735 0.778673 0.627430i \(-0.215893\pi\)
0.778673 + 0.627430i \(0.215893\pi\)
\(174\) 5061.56 0.0126739
\(175\) 0 0
\(176\) −240066. −0.584182
\(177\) 152901. 0.366841
\(178\) −961530. −2.27464
\(179\) −637734. −1.48767 −0.743836 0.668362i \(-0.766996\pi\)
−0.743836 + 0.668362i \(0.766996\pi\)
\(180\) 0 0
\(181\) 145338. 0.329749 0.164875 0.986315i \(-0.447278\pi\)
0.164875 + 0.986315i \(0.447278\pi\)
\(182\) 166608. 0.372836
\(183\) 411421. 0.908153
\(184\) 167239. 0.364161
\(185\) 0 0
\(186\) 1.03175e6 2.18671
\(187\) −167276. −0.349808
\(188\) −358076. −0.738891
\(189\) 530224. 1.07970
\(190\) 0 0
\(191\) −967379. −1.91873 −0.959364 0.282173i \(-0.908945\pi\)
−0.959364 + 0.282173i \(0.908945\pi\)
\(192\) 116143. 0.227375
\(193\) −9104.15 −0.0175932 −0.00879662 0.999961i \(-0.502800\pi\)
−0.00879662 + 0.999961i \(0.502800\pi\)
\(194\) 141018. 0.269011
\(195\) 0 0
\(196\) 32030.4 0.0595555
\(197\) −567218. −1.04132 −0.520660 0.853764i \(-0.674314\pi\)
−0.520660 + 0.853764i \(0.674314\pi\)
\(198\) −25347.7 −0.0459489
\(199\) −321297. −0.575141 −0.287571 0.957759i \(-0.592848\pi\)
−0.287571 + 0.957759i \(0.592848\pi\)
\(200\) 0 0
\(201\) 4765.69 0.00832023
\(202\) −658185. −1.13493
\(203\) −6277.03 −0.0106909
\(204\) 275556. 0.463591
\(205\) 0 0
\(206\) 435156. 0.714459
\(207\) 38060.3 0.0617371
\(208\) −212061. −0.339863
\(209\) 381154. 0.603580
\(210\) 0 0
\(211\) −165479. −0.255880 −0.127940 0.991782i \(-0.540836\pi\)
−0.127940 + 0.991782i \(0.540836\pi\)
\(212\) −504150. −0.770407
\(213\) −594712. −0.898168
\(214\) 1.29907e6 1.93909
\(215\) 0 0
\(216\) −313111. −0.456629
\(217\) −1.27951e6 −1.84456
\(218\) −274435. −0.391109
\(219\) −71429.8 −0.100640
\(220\) 0 0
\(221\) −147763. −0.203510
\(222\) 368445. 0.501753
\(223\) −1.14125e6 −1.53680 −0.768402 0.639968i \(-0.778948\pi\)
−0.768402 + 0.639968i \(0.778948\pi\)
\(224\) −890649. −1.18601
\(225\) 0 0
\(226\) −281185. −0.366202
\(227\) 573565. 0.738785 0.369393 0.929273i \(-0.379566\pi\)
0.369393 + 0.929273i \(0.379566\pi\)
\(228\) −627880. −0.799908
\(229\) 1.11647e6 1.40688 0.703440 0.710755i \(-0.251647\pi\)
0.703440 + 0.710755i \(0.251647\pi\)
\(230\) 0 0
\(231\) −388372. −0.478871
\(232\) 3706.75 0.00452140
\(233\) −1.08552e6 −1.30993 −0.654967 0.755658i \(-0.727317\pi\)
−0.654967 + 0.755658i \(0.727317\pi\)
\(234\) −22390.8 −0.0267319
\(235\) 0 0
\(236\) −214356. −0.250528
\(237\) 1.11770e6 1.29257
\(238\) −861964. −0.986386
\(239\) 497543. 0.563425 0.281712 0.959499i \(-0.409098\pi\)
0.281712 + 0.959499i \(0.409098\pi\)
\(240\) 0 0
\(241\) −1.68881e6 −1.87300 −0.936499 0.350669i \(-0.885954\pi\)
−0.936499 + 0.350669i \(0.885954\pi\)
\(242\) −906169. −0.994651
\(243\) −137552. −0.149434
\(244\) −576783. −0.620209
\(245\) 0 0
\(246\) 1.14759e6 1.20907
\(247\) 336692. 0.351148
\(248\) 755581. 0.780103
\(249\) 213425. 0.218146
\(250\) 0 0
\(251\) −358692. −0.359366 −0.179683 0.983725i \(-0.557507\pi\)
−0.179683 + 0.983725i \(0.557507\pi\)
\(252\) −51782.6 −0.0513668
\(253\) −400187. −0.393062
\(254\) 2.19259e6 2.13242
\(255\) 0 0
\(256\) 1.36997e6 1.30651
\(257\) 715783. 0.676003 0.338001 0.941146i \(-0.390249\pi\)
0.338001 + 0.941146i \(0.390249\pi\)
\(258\) −442841. −0.414189
\(259\) −456922. −0.423246
\(260\) 0 0
\(261\) 843.583 0.000766525 0
\(262\) −729933. −0.656946
\(263\) 167988. 0.149757 0.0748787 0.997193i \(-0.476143\pi\)
0.0748787 + 0.997193i \(0.476143\pi\)
\(264\) 229344. 0.202524
\(265\) 0 0
\(266\) 1.96407e6 1.70197
\(267\) 1.97991e6 1.69968
\(268\) −6681.15 −0.00568217
\(269\) 1.93165e6 1.62760 0.813800 0.581145i \(-0.197395\pi\)
0.813800 + 0.581145i \(0.197395\pi\)
\(270\) 0 0
\(271\) 2.04198e6 1.68900 0.844499 0.535558i \(-0.179899\pi\)
0.844499 + 0.535558i \(0.179899\pi\)
\(272\) 1.09712e6 0.899150
\(273\) −343068. −0.278595
\(274\) 527010. 0.424075
\(275\) 0 0
\(276\) 659232. 0.520914
\(277\) 1.05919e6 0.829416 0.414708 0.909955i \(-0.363884\pi\)
0.414708 + 0.909955i \(0.363884\pi\)
\(278\) 2.16156e6 1.67747
\(279\) 171955. 0.132253
\(280\) 0 0
\(281\) −935578. −0.706829 −0.353414 0.935467i \(-0.614979\pi\)
−0.353414 + 0.935467i \(0.614979\pi\)
\(282\) 1.85981e6 1.39266
\(283\) −827252. −0.614005 −0.307002 0.951709i \(-0.599326\pi\)
−0.307002 + 0.951709i \(0.599326\pi\)
\(284\) 833743. 0.613390
\(285\) 0 0
\(286\) 235429. 0.170194
\(287\) −1.42317e6 −1.01989
\(288\) 119696. 0.0850353
\(289\) −655390. −0.461589
\(290\) 0 0
\(291\) −290374. −0.201013
\(292\) 100139. 0.0687303
\(293\) 1.77525e6 1.20806 0.604032 0.796960i \(-0.293560\pi\)
0.604032 + 0.796960i \(0.293560\pi\)
\(294\) −166362. −0.112250
\(295\) 0 0
\(296\) 269824. 0.178999
\(297\) 749243. 0.492869
\(298\) 118392. 0.0772292
\(299\) −353504. −0.228674
\(300\) 0 0
\(301\) 549184. 0.349383
\(302\) 2.79241e6 1.76182
\(303\) 1.35529e6 0.848056
\(304\) −2.49989e6 −1.55145
\(305\) 0 0
\(306\) 115841. 0.0707228
\(307\) −293202. −0.177550 −0.0887750 0.996052i \(-0.528295\pi\)
−0.0887750 + 0.996052i \(0.528295\pi\)
\(308\) 544470. 0.327037
\(309\) −896043. −0.533866
\(310\) 0 0
\(311\) −2.34227e6 −1.37321 −0.686605 0.727031i \(-0.740900\pi\)
−0.686605 + 0.727031i \(0.740900\pi\)
\(312\) 202590. 0.117824
\(313\) 1.20634e6 0.695997 0.347999 0.937495i \(-0.386861\pi\)
0.347999 + 0.937495i \(0.386861\pi\)
\(314\) 1.71480e6 0.981499
\(315\) 0 0
\(316\) −1.56694e6 −0.882743
\(317\) −2.21969e6 −1.24063 −0.620316 0.784352i \(-0.712996\pi\)
−0.620316 + 0.784352i \(0.712996\pi\)
\(318\) 2.61850e6 1.45206
\(319\) −8869.88 −0.00488024
\(320\) 0 0
\(321\) −2.67495e6 −1.44895
\(322\) −2.06214e6 −1.10835
\(323\) −1.74191e6 −0.929008
\(324\) −1.14130e6 −0.604000
\(325\) 0 0
\(326\) 1.49390e6 0.778536
\(327\) 565097. 0.292249
\(328\) 840420. 0.431332
\(329\) −2.30642e6 −1.17476
\(330\) 0 0
\(331\) 1.37355e6 0.689087 0.344544 0.938770i \(-0.388034\pi\)
0.344544 + 0.938770i \(0.388034\pi\)
\(332\) −299207. −0.148980
\(333\) 61406.7 0.0303462
\(334\) 502171. 0.246312
\(335\) 0 0
\(336\) 2.54723e6 1.23089
\(337\) 428681. 0.205617 0.102809 0.994701i \(-0.467217\pi\)
0.102809 + 0.994701i \(0.467217\pi\)
\(338\) 207966. 0.0990149
\(339\) 578996. 0.273638
\(340\) 0 0
\(341\) −1.80803e6 −0.842015
\(342\) −263955. −0.122029
\(343\) −2.06921e6 −0.949663
\(344\) −324307. −0.147761
\(345\) 0 0
\(346\) 4.46395e6 2.00461
\(347\) 3.34049e6 1.48932 0.744658 0.667446i \(-0.232612\pi\)
0.744658 + 0.667446i \(0.232612\pi\)
\(348\) 14611.5 0.00646764
\(349\) −1.65843e6 −0.728840 −0.364420 0.931235i \(-0.618733\pi\)
−0.364420 + 0.931235i \(0.618733\pi\)
\(350\) 0 0
\(351\) 661843. 0.286739
\(352\) −1.25855e6 −0.541394
\(353\) 2.62106e6 1.11954 0.559771 0.828648i \(-0.310889\pi\)
0.559771 + 0.828648i \(0.310889\pi\)
\(354\) 1.11335e6 0.472195
\(355\) 0 0
\(356\) −2.77570e6 −1.16077
\(357\) 1.77490e6 0.737059
\(358\) −4.64364e6 −1.91492
\(359\) −818855. −0.335329 −0.167664 0.985844i \(-0.553623\pi\)
−0.167664 + 0.985844i \(0.553623\pi\)
\(360\) 0 0
\(361\) 1.49300e6 0.602966
\(362\) 1.05828e6 0.424451
\(363\) 1.86592e6 0.743235
\(364\) 480957. 0.190262
\(365\) 0 0
\(366\) 2.99575e6 1.16897
\(367\) −2.81469e6 −1.09085 −0.545425 0.838160i \(-0.683632\pi\)
−0.545425 + 0.838160i \(0.683632\pi\)
\(368\) 2.62472e6 1.01033
\(369\) 191263. 0.0731249
\(370\) 0 0
\(371\) −3.24730e6 −1.22486
\(372\) 2.97839e6 1.11590
\(373\) −4.64910e6 −1.73020 −0.865101 0.501598i \(-0.832746\pi\)
−0.865101 + 0.501598i \(0.832746\pi\)
\(374\) −1.21802e6 −0.450271
\(375\) 0 0
\(376\) 1.36200e6 0.496829
\(377\) −7835.20 −0.00283920
\(378\) 3.86081e6 1.38979
\(379\) −2.33478e6 −0.834924 −0.417462 0.908694i \(-0.637080\pi\)
−0.417462 + 0.908694i \(0.637080\pi\)
\(380\) 0 0
\(381\) −4.51482e6 −1.59341
\(382\) −7.04394e6 −2.46977
\(383\) −3.05707e6 −1.06490 −0.532449 0.846462i \(-0.678728\pi\)
−0.532449 + 0.846462i \(0.678728\pi\)
\(384\) −2.31053e6 −0.799621
\(385\) 0 0
\(386\) −66291.6 −0.0226459
\(387\) −73806.0 −0.0250504
\(388\) 407083. 0.137279
\(389\) 1.25272e6 0.419741 0.209871 0.977729i \(-0.432696\pi\)
0.209871 + 0.977729i \(0.432696\pi\)
\(390\) 0 0
\(391\) 1.82889e6 0.604986
\(392\) −121833. −0.0400450
\(393\) 1.50303e6 0.490891
\(394\) −4.13018e6 −1.34038
\(395\) 0 0
\(396\) −73172.4 −0.0234482
\(397\) 5.44444e6 1.73371 0.866856 0.498559i \(-0.166137\pi\)
0.866856 + 0.498559i \(0.166137\pi\)
\(398\) −2.33952e6 −0.740318
\(399\) −4.04427e6 −1.27177
\(400\) 0 0
\(401\) −3.75387e6 −1.16578 −0.582892 0.812549i \(-0.698079\pi\)
−0.582892 + 0.812549i \(0.698079\pi\)
\(402\) 34701.2 0.0107098
\(403\) −1.59712e6 −0.489864
\(404\) −1.90001e6 −0.579167
\(405\) 0 0
\(406\) −45706.0 −0.0137613
\(407\) −645663. −0.193206
\(408\) −1.04812e6 −0.311718
\(409\) 4.09010e6 1.20900 0.604500 0.796605i \(-0.293373\pi\)
0.604500 + 0.796605i \(0.293373\pi\)
\(410\) 0 0
\(411\) −1.08518e6 −0.316882
\(412\) 1.25619e6 0.364596
\(413\) −1.38070e6 −0.398313
\(414\) 277135. 0.0794677
\(415\) 0 0
\(416\) −1.11174e6 −0.314970
\(417\) −4.45094e6 −1.25346
\(418\) 2.77536e6 0.776925
\(419\) 3.67162e6 1.02170 0.510849 0.859671i \(-0.329331\pi\)
0.510849 + 0.859671i \(0.329331\pi\)
\(420\) 0 0
\(421\) 1.59907e6 0.439705 0.219852 0.975533i \(-0.429442\pi\)
0.219852 + 0.975533i \(0.429442\pi\)
\(422\) −1.20493e6 −0.329367
\(423\) 309964. 0.0842288
\(424\) 1.91761e6 0.518020
\(425\) 0 0
\(426\) −4.33037e6 −1.15612
\(427\) −3.71514e6 −0.986065
\(428\) 3.75009e6 0.989536
\(429\) −484779. −0.127175
\(430\) 0 0
\(431\) 6.53931e6 1.69566 0.847830 0.530268i \(-0.177909\pi\)
0.847830 + 0.530268i \(0.177909\pi\)
\(432\) −4.91409e6 −1.26688
\(433\) −1.60206e6 −0.410639 −0.205319 0.978695i \(-0.565823\pi\)
−0.205319 + 0.978695i \(0.565823\pi\)
\(434\) −9.31668e6 −2.37431
\(435\) 0 0
\(436\) −792226. −0.199587
\(437\) −4.16729e6 −1.04388
\(438\) −520114. −0.129543
\(439\) −4.84652e6 −1.20024 −0.600121 0.799909i \(-0.704881\pi\)
−0.600121 + 0.799909i \(0.704881\pi\)
\(440\) 0 0
\(441\) −27726.7 −0.00678894
\(442\) −1.07593e6 −0.261957
\(443\) −580247. −0.140476 −0.0702382 0.997530i \(-0.522376\pi\)
−0.0702382 + 0.997530i \(0.522376\pi\)
\(444\) 1.06361e6 0.256050
\(445\) 0 0
\(446\) −8.30997e6 −1.97816
\(447\) −243784. −0.0577081
\(448\) −1.04878e6 −0.246881
\(449\) 2.04347e6 0.478356 0.239178 0.970976i \(-0.423122\pi\)
0.239178 + 0.970976i \(0.423122\pi\)
\(450\) 0 0
\(451\) −2.01104e6 −0.465565
\(452\) −811711. −0.186877
\(453\) −5.74993e6 −1.31649
\(454\) 4.17640e6 0.950960
\(455\) 0 0
\(456\) 2.38824e6 0.537857
\(457\) −1.52332e6 −0.341194 −0.170597 0.985341i \(-0.554570\pi\)
−0.170597 + 0.985341i \(0.554570\pi\)
\(458\) 8.12951e6 1.81093
\(459\) −3.42411e6 −0.758605
\(460\) 0 0
\(461\) 7.87768e6 1.72642 0.863209 0.504847i \(-0.168451\pi\)
0.863209 + 0.504847i \(0.168451\pi\)
\(462\) −2.82792e6 −0.616399
\(463\) −136322. −0.0295539 −0.0147770 0.999891i \(-0.504704\pi\)
−0.0147770 + 0.999891i \(0.504704\pi\)
\(464\) 58175.3 0.0125442
\(465\) 0 0
\(466\) −7.90420e6 −1.68614
\(467\) −5.56784e6 −1.18139 −0.590697 0.806894i \(-0.701147\pi\)
−0.590697 + 0.806894i \(0.701147\pi\)
\(468\) −64636.8 −0.0136416
\(469\) −43034.2 −0.00903404
\(470\) 0 0
\(471\) −3.53100e6 −0.733407
\(472\) 815339. 0.168455
\(473\) 776035. 0.159488
\(474\) 8.13852e6 1.66379
\(475\) 0 0
\(476\) −2.48828e6 −0.503363
\(477\) 436411. 0.0878213
\(478\) 3.62284e6 0.725237
\(479\) 3.92083e6 0.780799 0.390399 0.920646i \(-0.372337\pi\)
0.390399 + 0.920646i \(0.372337\pi\)
\(480\) 0 0
\(481\) −570345. −0.112402
\(482\) −1.22970e7 −2.41091
\(483\) 4.24621e6 0.828197
\(484\) −2.61588e6 −0.507581
\(485\) 0 0
\(486\) −1.00158e6 −0.192351
\(487\) −8.77882e6 −1.67731 −0.838656 0.544661i \(-0.816658\pi\)
−0.838656 + 0.544661i \(0.816658\pi\)
\(488\) 2.19389e6 0.417027
\(489\) −3.07614e6 −0.581747
\(490\) 0 0
\(491\) −9.13377e6 −1.70980 −0.854902 0.518789i \(-0.826383\pi\)
−0.854902 + 0.518789i \(0.826383\pi\)
\(492\) 3.31282e6 0.616999
\(493\) 40536.2 0.00751148
\(494\) 2.45161e6 0.451996
\(495\) 0 0
\(496\) 1.18584e7 2.16432
\(497\) 5.37026e6 0.975223
\(498\) 1.55405e6 0.280796
\(499\) −9.41419e6 −1.69251 −0.846256 0.532777i \(-0.821148\pi\)
−0.846256 + 0.532777i \(0.821148\pi\)
\(500\) 0 0
\(501\) −1.03403e6 −0.184052
\(502\) −2.61180e6 −0.462574
\(503\) −5.68086e6 −1.00114 −0.500569 0.865697i \(-0.666876\pi\)
−0.500569 + 0.865697i \(0.666876\pi\)
\(504\) 196963. 0.0345389
\(505\) 0 0
\(506\) −2.91395e6 −0.505947
\(507\) −428229. −0.0739871
\(508\) 6.32945e6 1.08819
\(509\) 2.85772e6 0.488906 0.244453 0.969661i \(-0.421392\pi\)
0.244453 + 0.969661i \(0.421392\pi\)
\(510\) 0 0
\(511\) 645012. 0.109274
\(512\) 5.04413e6 0.850377
\(513\) 7.80215e6 1.30894
\(514\) 5.21195e6 0.870147
\(515\) 0 0
\(516\) −1.27837e6 −0.211365
\(517\) −3.25913e6 −0.536260
\(518\) −3.32706e6 −0.544799
\(519\) −9.19185e6 −1.49791
\(520\) 0 0
\(521\) 2.64216e6 0.426446 0.213223 0.977004i \(-0.431604\pi\)
0.213223 + 0.977004i \(0.431604\pi\)
\(522\) 6142.52 0.000986667 0
\(523\) −1.02124e7 −1.63258 −0.816288 0.577645i \(-0.803972\pi\)
−0.816288 + 0.577645i \(0.803972\pi\)
\(524\) −2.10714e6 −0.335247
\(525\) 0 0
\(526\) 1.22320e6 0.192767
\(527\) 8.26286e6 1.29600
\(528\) 3.59942e6 0.561885
\(529\) −2.06096e6 −0.320207
\(530\) 0 0
\(531\) 185555. 0.0285586
\(532\) 5.66977e6 0.868533
\(533\) −1.77645e6 −0.270854
\(534\) 1.44167e7 2.18782
\(535\) 0 0
\(536\) 25412.8 0.00382068
\(537\) 9.56186e6 1.43089
\(538\) 1.40652e7 2.09504
\(539\) 291533. 0.0432232
\(540\) 0 0
\(541\) −2.02275e6 −0.297132 −0.148566 0.988902i \(-0.547466\pi\)
−0.148566 + 0.988902i \(0.547466\pi\)
\(542\) 1.48686e7 2.17407
\(543\) −2.17913e6 −0.317163
\(544\) 5.75169e6 0.833293
\(545\) 0 0
\(546\) −2.49804e6 −0.358606
\(547\) −2.12905e6 −0.304241 −0.152120 0.988362i \(-0.548610\pi\)
−0.152120 + 0.988362i \(0.548610\pi\)
\(548\) 1.52135e6 0.216410
\(549\) 499285. 0.0706998
\(550\) 0 0
\(551\) −92365.4 −0.0129608
\(552\) −2.50750e6 −0.350262
\(553\) −1.00929e7 −1.40347
\(554\) 7.71242e6 1.06762
\(555\) 0 0
\(556\) 6.23989e6 0.856032
\(557\) 8.58830e6 1.17292 0.586461 0.809977i \(-0.300521\pi\)
0.586461 + 0.809977i \(0.300521\pi\)
\(558\) 1.25209e6 0.170235
\(559\) 685510. 0.0927863
\(560\) 0 0
\(561\) 2.50805e6 0.336457
\(562\) −6.81238e6 −0.909826
\(563\) −1.02986e7 −1.36933 −0.684664 0.728859i \(-0.740051\pi\)
−0.684664 + 0.728859i \(0.740051\pi\)
\(564\) 5.36880e6 0.710689
\(565\) 0 0
\(566\) −6.02361e6 −0.790343
\(567\) −7.35126e6 −0.960294
\(568\) −3.17127e6 −0.412442
\(569\) 4.16791e6 0.539681 0.269841 0.962905i \(-0.413029\pi\)
0.269841 + 0.962905i \(0.413029\pi\)
\(570\) 0 0
\(571\) 7.69686e6 0.987923 0.493962 0.869484i \(-0.335548\pi\)
0.493962 + 0.869484i \(0.335548\pi\)
\(572\) 679625. 0.0868519
\(573\) 1.45044e7 1.84549
\(574\) −1.03628e7 −1.31280
\(575\) 0 0
\(576\) 140947. 0.0177011
\(577\) 1.42934e7 1.78729 0.893645 0.448775i \(-0.148140\pi\)
0.893645 + 0.448775i \(0.148140\pi\)
\(578\) −4.77220e6 −0.594154
\(579\) 136503. 0.0169217
\(580\) 0 0
\(581\) −1.92723e6 −0.236861
\(582\) −2.11435e6 −0.258743
\(583\) −4.58866e6 −0.559133
\(584\) −380897. −0.0462141
\(585\) 0 0
\(586\) 1.29264e7 1.55501
\(587\) 1.52860e7 1.83104 0.915522 0.402268i \(-0.131778\pi\)
0.915522 + 0.402268i \(0.131778\pi\)
\(588\) −480247. −0.0572824
\(589\) −1.88277e7 −2.23619
\(590\) 0 0
\(591\) 8.50457e6 1.00157
\(592\) 4.23473e6 0.496617
\(593\) 8.42604e6 0.983981 0.491991 0.870601i \(-0.336269\pi\)
0.491991 + 0.870601i \(0.336269\pi\)
\(594\) 5.45559e6 0.634418
\(595\) 0 0
\(596\) 341768. 0.0394109
\(597\) 4.81737e6 0.553189
\(598\) −2.57403e6 −0.294348
\(599\) −1.40447e6 −0.159936 −0.0799680 0.996797i \(-0.525482\pi\)
−0.0799680 + 0.996797i \(0.525482\pi\)
\(600\) 0 0
\(601\) 3.45723e6 0.390429 0.195214 0.980761i \(-0.437460\pi\)
0.195214 + 0.980761i \(0.437460\pi\)
\(602\) 3.99887e6 0.449723
\(603\) 5783.46 0.000647731 0
\(604\) 8.06098e6 0.899075
\(605\) 0 0
\(606\) 9.86848e6 1.09161
\(607\) 1.56253e7 1.72130 0.860652 0.509194i \(-0.170056\pi\)
0.860652 + 0.509194i \(0.170056\pi\)
\(608\) −1.31058e7 −1.43782
\(609\) 94114.5 0.0102828
\(610\) 0 0
\(611\) −2.87895e6 −0.311983
\(612\) 334405. 0.0360906
\(613\) 3.97422e6 0.427170 0.213585 0.976924i \(-0.431486\pi\)
0.213585 + 0.976924i \(0.431486\pi\)
\(614\) −2.13494e6 −0.228541
\(615\) 0 0
\(616\) −2.07098e6 −0.219899
\(617\) 5.17583e6 0.547353 0.273676 0.961822i \(-0.411760\pi\)
0.273676 + 0.961822i \(0.411760\pi\)
\(618\) −6.52451e6 −0.687189
\(619\) 2.06480e6 0.216597 0.108298 0.994118i \(-0.465460\pi\)
0.108298 + 0.994118i \(0.465460\pi\)
\(620\) 0 0
\(621\) −8.19174e6 −0.852407
\(622\) −1.70552e7 −1.76759
\(623\) −1.78787e7 −1.84550
\(624\) 3.17954e6 0.326891
\(625\) 0 0
\(626\) 8.78390e6 0.895883
\(627\) −5.71483e6 −0.580543
\(628\) 4.95020e6 0.500869
\(629\) 2.95074e6 0.297374
\(630\) 0 0
\(631\) −1.72030e7 −1.72001 −0.860003 0.510289i \(-0.829539\pi\)
−0.860003 + 0.510289i \(0.829539\pi\)
\(632\) 5.96010e6 0.593555
\(633\) 2.48110e6 0.246113
\(634\) −1.61626e7 −1.59693
\(635\) 0 0
\(636\) 7.55896e6 0.741002
\(637\) 257526. 0.0251462
\(638\) −64585.8 −0.00628182
\(639\) −721720. −0.0699224
\(640\) 0 0
\(641\) −7.98432e6 −0.767526 −0.383763 0.923432i \(-0.625372\pi\)
−0.383763 + 0.923432i \(0.625372\pi\)
\(642\) −1.94775e7 −1.86508
\(643\) 5.66314e6 0.540169 0.270085 0.962837i \(-0.412948\pi\)
0.270085 + 0.962837i \(0.412948\pi\)
\(644\) −5.95288e6 −0.565604
\(645\) 0 0
\(646\) −1.26837e7 −1.19581
\(647\) 3.74193e6 0.351427 0.175713 0.984441i \(-0.443777\pi\)
0.175713 + 0.984441i \(0.443777\pi\)
\(648\) 4.34111e6 0.406128
\(649\) −1.95103e6 −0.181824
\(650\) 0 0
\(651\) 1.91842e7 1.77416
\(652\) 4.31253e6 0.397295
\(653\) −1.41967e7 −1.30288 −0.651438 0.758702i \(-0.725834\pi\)
−0.651438 + 0.758702i \(0.725834\pi\)
\(654\) 4.11474e6 0.376182
\(655\) 0 0
\(656\) 1.31899e7 1.19669
\(657\) −86684.6 −0.00783481
\(658\) −1.67941e7 −1.51214
\(659\) −7.43083e6 −0.666536 −0.333268 0.942832i \(-0.608151\pi\)
−0.333268 + 0.942832i \(0.608151\pi\)
\(660\) 0 0
\(661\) 1.44503e7 1.28639 0.643194 0.765703i \(-0.277609\pi\)
0.643194 + 0.765703i \(0.277609\pi\)
\(662\) 1.00015e7 0.886989
\(663\) 2.21548e6 0.195742
\(664\) 1.13808e6 0.100174
\(665\) 0 0
\(666\) 447131. 0.0390615
\(667\) 96977.5 0.00844027
\(668\) 1.44964e6 0.125695
\(669\) 1.71113e7 1.47815
\(670\) 0 0
\(671\) −5.24975e6 −0.450125
\(672\) 1.33539e7 1.14074
\(673\) 8.38558e6 0.713667 0.356834 0.934168i \(-0.383856\pi\)
0.356834 + 0.934168i \(0.383856\pi\)
\(674\) 3.12143e6 0.264669
\(675\) 0 0
\(676\) 600346. 0.0505283
\(677\) −1.53211e7 −1.28475 −0.642376 0.766390i \(-0.722051\pi\)
−0.642376 + 0.766390i \(0.722051\pi\)
\(678\) 4.21594e6 0.352225
\(679\) 2.62208e6 0.218259
\(680\) 0 0
\(681\) −8.59974e6 −0.710587
\(682\) −1.31651e7 −1.08384
\(683\) −1.08140e7 −0.887021 −0.443510 0.896269i \(-0.646267\pi\)
−0.443510 + 0.896269i \(0.646267\pi\)
\(684\) −761972. −0.0622729
\(685\) 0 0
\(686\) −1.50669e7 −1.22240
\(687\) −1.67397e7 −1.35318
\(688\) −5.08981e6 −0.409950
\(689\) −4.05339e6 −0.325290
\(690\) 0 0
\(691\) 2.25890e7 1.79971 0.899853 0.436193i \(-0.143673\pi\)
0.899853 + 0.436193i \(0.143673\pi\)
\(692\) 1.28863e7 1.02297
\(693\) −471314. −0.0372801
\(694\) 2.43237e7 1.91704
\(695\) 0 0
\(696\) −55577.1 −0.00434883
\(697\) 9.19065e6 0.716579
\(698\) −1.20758e7 −0.938159
\(699\) 1.62758e7 1.25994
\(700\) 0 0
\(701\) 1.06616e7 0.819461 0.409731 0.912207i \(-0.365623\pi\)
0.409731 + 0.912207i \(0.365623\pi\)
\(702\) 4.81919e6 0.369089
\(703\) −6.72353e6 −0.513108
\(704\) −1.48200e6 −0.112698
\(705\) 0 0
\(706\) 1.90852e7 1.44107
\(707\) −1.22383e7 −0.920812
\(708\) 3.21395e6 0.240966
\(709\) −1.17029e7 −0.874333 −0.437166 0.899381i \(-0.644018\pi\)
−0.437166 + 0.899381i \(0.644018\pi\)
\(710\) 0 0
\(711\) 1.35640e6 0.100627
\(712\) 1.05578e7 0.780501
\(713\) 1.97678e7 1.45625
\(714\) 1.29238e7 0.948738
\(715\) 0 0
\(716\) −1.34050e7 −0.977204
\(717\) −7.45990e6 −0.541920
\(718\) −5.96247e6 −0.431633
\(719\) 2.34149e6 0.168915 0.0844577 0.996427i \(-0.473084\pi\)
0.0844577 + 0.996427i \(0.473084\pi\)
\(720\) 0 0
\(721\) 8.09128e6 0.579668
\(722\) 1.08713e7 0.776135
\(723\) 2.53211e7 1.80151
\(724\) 3.05498e6 0.216602
\(725\) 0 0
\(726\) 1.35866e7 0.956687
\(727\) 6.10487e6 0.428391 0.214195 0.976791i \(-0.431287\pi\)
0.214195 + 0.976791i \(0.431287\pi\)
\(728\) −1.82940e6 −0.127932
\(729\) 1.52564e7 1.06325
\(730\) 0 0
\(731\) −3.54655e6 −0.245478
\(732\) 8.64799e6 0.596537
\(733\) −1.79993e7 −1.23736 −0.618681 0.785642i \(-0.712333\pi\)
−0.618681 + 0.785642i \(0.712333\pi\)
\(734\) −2.04951e7 −1.40414
\(735\) 0 0
\(736\) 1.37602e7 0.936330
\(737\) −60810.4 −0.00412391
\(738\) 1.39268e6 0.0941260
\(739\) 2.02603e7 1.36469 0.682346 0.731030i \(-0.260960\pi\)
0.682346 + 0.731030i \(0.260960\pi\)
\(740\) 0 0
\(741\) −5.04819e6 −0.337746
\(742\) −2.36451e7 −1.57664
\(743\) 2.77445e7 1.84376 0.921881 0.387472i \(-0.126652\pi\)
0.921881 + 0.387472i \(0.126652\pi\)
\(744\) −1.13288e7 −0.750328
\(745\) 0 0
\(746\) −3.38523e7 −2.22711
\(747\) 259005. 0.0169827
\(748\) −3.51611e6 −0.229778
\(749\) 2.41548e7 1.57326
\(750\) 0 0
\(751\) −2.16593e7 −1.40134 −0.700672 0.713483i \(-0.747117\pi\)
−0.700672 + 0.713483i \(0.747117\pi\)
\(752\) 2.13758e7 1.37841
\(753\) 5.37804e6 0.345650
\(754\) −57051.7 −0.00365461
\(755\) 0 0
\(756\) 1.11452e7 0.709223
\(757\) 2.34452e7 1.48701 0.743505 0.668731i \(-0.233162\pi\)
0.743505 + 0.668731i \(0.233162\pi\)
\(758\) −1.70006e7 −1.07471
\(759\) 6.00019e6 0.378060
\(760\) 0 0
\(761\) −2.00518e7 −1.25514 −0.627569 0.778561i \(-0.715950\pi\)
−0.627569 + 0.778561i \(0.715950\pi\)
\(762\) −3.28745e7 −2.05103
\(763\) −5.10284e6 −0.317322
\(764\) −2.03341e7 −1.26035
\(765\) 0 0
\(766\) −2.22599e7 −1.37073
\(767\) −1.72344e6 −0.105781
\(768\) −2.05407e7 −1.25664
\(769\) 2.69938e7 1.64607 0.823034 0.567992i \(-0.192280\pi\)
0.823034 + 0.567992i \(0.192280\pi\)
\(770\) 0 0
\(771\) −1.07321e7 −0.650201
\(772\) −191367. −0.0115564
\(773\) 1.55609e7 0.936668 0.468334 0.883552i \(-0.344854\pi\)
0.468334 + 0.883552i \(0.344854\pi\)
\(774\) −537416. −0.0322447
\(775\) 0 0
\(776\) −1.54841e6 −0.0923061
\(777\) 6.85085e6 0.407091
\(778\) 9.12167e6 0.540288
\(779\) −2.09418e7 −1.23643
\(780\) 0 0
\(781\) 7.58855e6 0.445175
\(782\) 1.33170e7 0.778734
\(783\) −181565. −0.0105834
\(784\) −1.91209e6 −0.111101
\(785\) 0 0
\(786\) 1.09442e7 0.631872
\(787\) −2.60132e7 −1.49712 −0.748560 0.663067i \(-0.769255\pi\)
−0.748560 + 0.663067i \(0.769255\pi\)
\(788\) −1.19228e7 −0.684010
\(789\) −2.51872e6 −0.144041
\(790\) 0 0
\(791\) −5.22834e6 −0.297114
\(792\) 278323. 0.0157665
\(793\) −4.63736e6 −0.261871
\(794\) 3.96435e7 2.23162
\(795\) 0 0
\(796\) −6.75360e6 −0.377792
\(797\) −1.36342e7 −0.760296 −0.380148 0.924926i \(-0.624127\pi\)
−0.380148 + 0.924926i \(0.624127\pi\)
\(798\) −2.94482e7 −1.63701
\(799\) 1.48945e7 0.825390
\(800\) 0 0
\(801\) 2.40275e6 0.132320
\(802\) −2.73337e7 −1.50059
\(803\) 911448. 0.0498819
\(804\) 100174. 0.00546530
\(805\) 0 0
\(806\) −1.16294e7 −0.630550
\(807\) −2.89621e7 −1.56548
\(808\) 7.22701e6 0.389431
\(809\) −7.65343e6 −0.411135 −0.205568 0.978643i \(-0.565904\pi\)
−0.205568 + 0.978643i \(0.565904\pi\)
\(810\) 0 0
\(811\) 1.95683e7 1.04472 0.522360 0.852725i \(-0.325052\pi\)
0.522360 + 0.852725i \(0.325052\pi\)
\(812\) −131942. −0.00702251
\(813\) −3.06164e7 −1.62453
\(814\) −4.70137e6 −0.248693
\(815\) 0 0
\(816\) −1.64497e7 −0.864832
\(817\) 8.08115e6 0.423563
\(818\) 2.97820e7 1.55622
\(819\) −416334. −0.0216886
\(820\) 0 0
\(821\) −2.71975e7 −1.40822 −0.704112 0.710089i \(-0.748654\pi\)
−0.704112 + 0.710089i \(0.748654\pi\)
\(822\) −7.90172e6 −0.407889
\(823\) 3.39792e7 1.74870 0.874348 0.485300i \(-0.161290\pi\)
0.874348 + 0.485300i \(0.161290\pi\)
\(824\) −4.77811e6 −0.245153
\(825\) 0 0
\(826\) −1.00535e7 −0.512706
\(827\) −2.56121e7 −1.30221 −0.651105 0.758988i \(-0.725694\pi\)
−0.651105 + 0.758988i \(0.725694\pi\)
\(828\) 800020. 0.0405532
\(829\) 1.33798e7 0.676180 0.338090 0.941114i \(-0.390219\pi\)
0.338090 + 0.941114i \(0.390219\pi\)
\(830\) 0 0
\(831\) −1.58809e7 −0.797759
\(832\) −1.30912e6 −0.0655648
\(833\) −1.33233e6 −0.0665274
\(834\) −3.24094e7 −1.61345
\(835\) 0 0
\(836\) 8.01178e6 0.396473
\(837\) −3.70100e7 −1.82602
\(838\) 2.67348e7 1.31512
\(839\) −1.59865e7 −0.784056 −0.392028 0.919953i \(-0.628226\pi\)
−0.392028 + 0.919953i \(0.628226\pi\)
\(840\) 0 0
\(841\) −2.05090e7 −0.999895
\(842\) 1.16435e7 0.565985
\(843\) 1.40276e7 0.679851
\(844\) −3.47832e6 −0.168079
\(845\) 0 0
\(846\) 2.25699e6 0.108419
\(847\) −1.68493e7 −0.806998
\(848\) 3.00958e7 1.43720
\(849\) 1.24034e7 0.590570
\(850\) 0 0
\(851\) 7.05925e6 0.334145
\(852\) −1.25007e7 −0.589978
\(853\) 2.04688e7 0.963209 0.481605 0.876389i \(-0.340054\pi\)
0.481605 + 0.876389i \(0.340054\pi\)
\(854\) −2.70517e7 −1.26926
\(855\) 0 0
\(856\) −1.42640e7 −0.665362
\(857\) 1.31659e7 0.612349 0.306175 0.951975i \(-0.400951\pi\)
0.306175 + 0.951975i \(0.400951\pi\)
\(858\) −3.52990e6 −0.163698
\(859\) −3.58429e7 −1.65737 −0.828686 0.559713i \(-0.810911\pi\)
−0.828686 + 0.559713i \(0.810911\pi\)
\(860\) 0 0
\(861\) 2.13383e7 0.980962
\(862\) 4.76158e7 2.18264
\(863\) 9.29285e6 0.424739 0.212369 0.977189i \(-0.431882\pi\)
0.212369 + 0.977189i \(0.431882\pi\)
\(864\) −2.57623e7 −1.17409
\(865\) 0 0
\(866\) −1.16654e7 −0.528572
\(867\) 9.82658e6 0.443971
\(868\) −2.68949e7 −1.21163
\(869\) −1.42619e7 −0.640662
\(870\) 0 0
\(871\) −53716.8 −0.00239919
\(872\) 3.01336e6 0.134202
\(873\) −352387. −0.0156489
\(874\) −3.03440e7 −1.34368
\(875\) 0 0
\(876\) −1.50144e6 −0.0661070
\(877\) −3.01018e7 −1.32158 −0.660791 0.750570i \(-0.729779\pi\)
−0.660791 + 0.750570i \(0.729779\pi\)
\(878\) −3.52898e7 −1.54494
\(879\) −2.66171e7 −1.16195
\(880\) 0 0
\(881\) 4.75023e6 0.206193 0.103097 0.994671i \(-0.467125\pi\)
0.103097 + 0.994671i \(0.467125\pi\)
\(882\) −201891. −0.00873868
\(883\) 2.31803e7 1.00050 0.500250 0.865881i \(-0.333242\pi\)
0.500250 + 0.865881i \(0.333242\pi\)
\(884\) −3.10595e6 −0.133679
\(885\) 0 0
\(886\) −4.22505e6 −0.180820
\(887\) 3.60486e7 1.53844 0.769219 0.638986i \(-0.220646\pi\)
0.769219 + 0.638986i \(0.220646\pi\)
\(888\) −4.04560e6 −0.172167
\(889\) 4.07689e7 1.73011
\(890\) 0 0
\(891\) −1.03879e7 −0.438361
\(892\) −2.39888e7 −1.00948
\(893\) −3.39385e7 −1.42418
\(894\) −1.77511e6 −0.0742816
\(895\) 0 0
\(896\) 2.08641e7 0.868221
\(897\) 5.30026e6 0.219946
\(898\) 1.48794e7 0.615737
\(899\) 438142. 0.0180807
\(900\) 0 0
\(901\) 2.09706e7 0.860595
\(902\) −1.46433e7 −0.599272
\(903\) −8.23418e6 −0.336048
\(904\) 3.08747e6 0.125656
\(905\) 0 0
\(906\) −4.18679e7 −1.69457
\(907\) 3.74734e7 1.51253 0.756266 0.654264i \(-0.227021\pi\)
0.756266 + 0.654264i \(0.227021\pi\)
\(908\) 1.20562e7 0.485284
\(909\) 1.64473e6 0.0660212
\(910\) 0 0
\(911\) 2.58798e7 1.03315 0.516577 0.856241i \(-0.327206\pi\)
0.516577 + 0.856241i \(0.327206\pi\)
\(912\) 3.74821e7 1.49223
\(913\) −2.72332e6 −0.108124
\(914\) −1.10920e7 −0.439182
\(915\) 0 0
\(916\) 2.34679e7 0.924134
\(917\) −1.35724e7 −0.533006
\(918\) −2.49325e7 −0.976472
\(919\) 1.10504e6 0.0431606 0.0215803 0.999767i \(-0.493130\pi\)
0.0215803 + 0.999767i \(0.493130\pi\)
\(920\) 0 0
\(921\) 4.39611e6 0.170773
\(922\) 5.73611e7 2.22224
\(923\) 6.70333e6 0.258992
\(924\) −8.16350e6 −0.314555
\(925\) 0 0
\(926\) −992628. −0.0380416
\(927\) −1.08740e6 −0.0415615
\(928\) 304985. 0.0116254
\(929\) −2.92574e6 −0.111224 −0.0556118 0.998452i \(-0.517711\pi\)
−0.0556118 + 0.998452i \(0.517711\pi\)
\(930\) 0 0
\(931\) 3.03585e6 0.114790
\(932\) −2.28175e7 −0.860453
\(933\) 3.51189e7 1.32080
\(934\) −4.05421e7 −1.52068
\(935\) 0 0
\(936\) 245856. 0.00917258
\(937\) −2.45270e7 −0.912632 −0.456316 0.889818i \(-0.650831\pi\)
−0.456316 + 0.889818i \(0.650831\pi\)
\(938\) −313352. −0.0116286
\(939\) −1.80872e7 −0.669432
\(940\) 0 0
\(941\) 919876. 0.0338653 0.0169327 0.999857i \(-0.494610\pi\)
0.0169327 + 0.999857i \(0.494610\pi\)
\(942\) −2.57108e7 −0.944037
\(943\) 2.19874e7 0.805184
\(944\) 1.27963e7 0.467362
\(945\) 0 0
\(946\) 5.65068e6 0.205292
\(947\) −9.61521e6 −0.348405 −0.174202 0.984710i \(-0.555735\pi\)
−0.174202 + 0.984710i \(0.555735\pi\)
\(948\) 2.34939e7 0.849051
\(949\) 805126. 0.0290201
\(950\) 0 0
\(951\) 3.32808e7 1.19328
\(952\) 9.46455e6 0.338460
\(953\) −2.43193e7 −0.867399 −0.433699 0.901058i \(-0.642792\pi\)
−0.433699 + 0.901058i \(0.642792\pi\)
\(954\) 3.17772e6 0.113043
\(955\) 0 0
\(956\) 1.04582e7 0.370096
\(957\) 132990. 0.00469397
\(958\) 2.85494e7 1.00504
\(959\) 9.79921e6 0.344068
\(960\) 0 0
\(961\) 6.06813e7 2.11956
\(962\) −4.15295e6 −0.144683
\(963\) −3.24622e6 −0.112801
\(964\) −3.54984e7 −1.23031
\(965\) 0 0
\(966\) 3.09186e7 1.06605
\(967\) 2.12248e7 0.729922 0.364961 0.931023i \(-0.381082\pi\)
0.364961 + 0.931023i \(0.381082\pi\)
\(968\) 9.94993e6 0.341296
\(969\) 2.61173e7 0.893549
\(970\) 0 0
\(971\) −3.64590e7 −1.24096 −0.620479 0.784223i \(-0.713062\pi\)
−0.620479 + 0.784223i \(0.713062\pi\)
\(972\) −2.89131e6 −0.0981587
\(973\) 4.01920e7 1.36100
\(974\) −6.39227e7 −2.15903
\(975\) 0 0
\(976\) 3.44318e7 1.15700
\(977\) 1.86618e7 0.625487 0.312743 0.949838i \(-0.398752\pi\)
0.312743 + 0.949838i \(0.398752\pi\)
\(978\) −2.23988e7 −0.748821
\(979\) −2.52638e7 −0.842445
\(980\) 0 0
\(981\) 685781. 0.0227516
\(982\) −6.65073e7 −2.20085
\(983\) −4.07152e6 −0.134392 −0.0671959 0.997740i \(-0.521405\pi\)
−0.0671959 + 0.997740i \(0.521405\pi\)
\(984\) −1.26008e7 −0.414869
\(985\) 0 0
\(986\) 295163. 0.00966873
\(987\) 3.45812e7 1.12992
\(988\) 7.07720e6 0.230658
\(989\) −8.48466e6 −0.275832
\(990\) 0 0
\(991\) 3.55164e7 1.14880 0.574401 0.818574i \(-0.305235\pi\)
0.574401 + 0.818574i \(0.305235\pi\)
\(992\) 6.21680e7 2.00580
\(993\) −2.05943e7 −0.662786
\(994\) 3.91033e7 1.25530
\(995\) 0 0
\(996\) 4.48616e6 0.143293
\(997\) −2.88979e7 −0.920721 −0.460360 0.887732i \(-0.652280\pi\)
−0.460360 + 0.887732i \(0.652280\pi\)
\(998\) −6.85491e7 −2.17859
\(999\) −1.32166e7 −0.418992
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.h.1.8 9
5.2 odd 4 325.6.b.h.274.14 18
5.3 odd 4 325.6.b.h.274.5 18
5.4 even 2 325.6.a.i.1.2 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.8 9 1.1 even 1 trivial
325.6.a.i.1.2 yes 9 5.4 even 2
325.6.b.h.274.5 18 5.3 odd 4
325.6.b.h.274.14 18 5.2 odd 4