Properties

Label 325.6.a.h.1.7
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 181 x^{7} + 688 x^{6} + 10455 x^{5} - 37904 x^{4} - 197375 x^{3} + 702868 x^{2} + \cdots - 366960 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(5.30592\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.30592 q^{2} +19.9083 q^{3} -13.4591 q^{4} +85.7235 q^{6} +125.783 q^{7} -195.743 q^{8} +153.341 q^{9} -709.332 q^{11} -267.947 q^{12} +169.000 q^{13} +541.610 q^{14} -412.163 q^{16} -1927.07 q^{17} +660.272 q^{18} -2166.48 q^{19} +2504.12 q^{21} -3054.33 q^{22} -305.642 q^{23} -3896.91 q^{24} +727.700 q^{26} -1784.97 q^{27} -1692.92 q^{28} +4514.28 q^{29} +4078.41 q^{31} +4489.03 q^{32} -14121.6 q^{33} -8297.79 q^{34} -2063.82 q^{36} -12350.6 q^{37} -9328.69 q^{38} +3364.50 q^{39} +14430.4 q^{41} +10782.5 q^{42} +17133.7 q^{43} +9546.95 q^{44} -1316.07 q^{46} -18349.2 q^{47} -8205.47 q^{48} -985.723 q^{49} -38364.6 q^{51} -2274.58 q^{52} -11938.3 q^{53} -7685.93 q^{54} -24621.1 q^{56} -43131.0 q^{57} +19438.1 q^{58} -39854.6 q^{59} +4490.25 q^{61} +17561.3 q^{62} +19287.6 q^{63} +32518.6 q^{64} -60806.5 q^{66} -30488.3 q^{67} +25936.5 q^{68} -6084.82 q^{69} -14561.2 q^{71} -30015.3 q^{72} +59007.3 q^{73} -53180.6 q^{74} +29158.8 q^{76} -89221.7 q^{77} +14487.3 q^{78} -43350.2 q^{79} -72797.4 q^{81} +62136.2 q^{82} -83849.9 q^{83} -33703.1 q^{84} +73776.2 q^{86} +89871.6 q^{87} +138847. q^{88} +124592. q^{89} +21257.3 q^{91} +4113.66 q^{92} +81194.2 q^{93} -79010.1 q^{94} +89369.1 q^{96} +93842.4 q^{97} -4244.44 q^{98} -108769. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} - 11 q^{3} + 91 q^{4} - 83 q^{6} + 12 q^{7} - 639 q^{8} + 562 q^{9} - 1422 q^{11} + 1567 q^{12} + 1521 q^{13} - 342 q^{14} - 1061 q^{16} + 648 q^{17} + 418 q^{18} - 408 q^{19} - 3912 q^{21}+ \cdots - 757776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.30592 0.761186 0.380593 0.924743i \(-0.375720\pi\)
0.380593 + 0.924743i \(0.375720\pi\)
\(3\) 19.9083 1.27712 0.638559 0.769573i \(-0.279531\pi\)
0.638559 + 0.769573i \(0.279531\pi\)
\(4\) −13.4591 −0.420596
\(5\) 0 0
\(6\) 85.7235 0.972125
\(7\) 125.783 0.970232 0.485116 0.874450i \(-0.338777\pi\)
0.485116 + 0.874450i \(0.338777\pi\)
\(8\) −195.743 −1.08134
\(9\) 153.341 0.631031
\(10\) 0 0
\(11\) −709.332 −1.76754 −0.883768 0.467926i \(-0.845001\pi\)
−0.883768 + 0.467926i \(0.845001\pi\)
\(12\) −267.947 −0.537151
\(13\) 169.000 0.277350
\(14\) 541.610 0.738527
\(15\) 0 0
\(16\) −412.163 −0.402503
\(17\) −1927.07 −1.61724 −0.808620 0.588332i \(-0.799785\pi\)
−0.808620 + 0.588332i \(0.799785\pi\)
\(18\) 660.272 0.480332
\(19\) −2166.48 −1.37680 −0.688400 0.725331i \(-0.741687\pi\)
−0.688400 + 0.725331i \(0.741687\pi\)
\(20\) 0 0
\(21\) 2504.12 1.23910
\(22\) −3054.33 −1.34542
\(23\) −305.642 −0.120474 −0.0602371 0.998184i \(-0.519186\pi\)
−0.0602371 + 0.998184i \(0.519186\pi\)
\(24\) −3896.91 −1.38100
\(25\) 0 0
\(26\) 727.700 0.211115
\(27\) −1784.97 −0.471217
\(28\) −1692.92 −0.408076
\(29\) 4514.28 0.996766 0.498383 0.866957i \(-0.333927\pi\)
0.498383 + 0.866957i \(0.333927\pi\)
\(30\) 0 0
\(31\) 4078.41 0.762231 0.381116 0.924527i \(-0.375540\pi\)
0.381116 + 0.924527i \(0.375540\pi\)
\(32\) 4489.03 0.774958
\(33\) −14121.6 −2.25735
\(34\) −8297.79 −1.23102
\(35\) 0 0
\(36\) −2063.82 −0.265409
\(37\) −12350.6 −1.48314 −0.741572 0.670873i \(-0.765920\pi\)
−0.741572 + 0.670873i \(0.765920\pi\)
\(38\) −9328.69 −1.04800
\(39\) 3364.50 0.354209
\(40\) 0 0
\(41\) 14430.4 1.34066 0.670331 0.742062i \(-0.266152\pi\)
0.670331 + 0.742062i \(0.266152\pi\)
\(42\) 10782.5 0.943187
\(43\) 17133.7 1.41312 0.706561 0.707652i \(-0.250246\pi\)
0.706561 + 0.707652i \(0.250246\pi\)
\(44\) 9546.95 0.743418
\(45\) 0 0
\(46\) −1316.07 −0.0917032
\(47\) −18349.2 −1.21164 −0.605818 0.795603i \(-0.707154\pi\)
−0.605818 + 0.795603i \(0.707154\pi\)
\(48\) −8205.47 −0.514044
\(49\) −985.723 −0.0586496
\(50\) 0 0
\(51\) −38364.6 −2.06541
\(52\) −2274.58 −0.116652
\(53\) −11938.3 −0.583785 −0.291893 0.956451i \(-0.594285\pi\)
−0.291893 + 0.956451i \(0.594285\pi\)
\(54\) −7685.93 −0.358684
\(55\) 0 0
\(56\) −24621.1 −1.04915
\(57\) −43131.0 −1.75834
\(58\) 19438.1 0.758724
\(59\) −39854.6 −1.49056 −0.745278 0.666754i \(-0.767683\pi\)
−0.745278 + 0.666754i \(0.767683\pi\)
\(60\) 0 0
\(61\) 4490.25 0.154506 0.0772530 0.997012i \(-0.475385\pi\)
0.0772530 + 0.997012i \(0.475385\pi\)
\(62\) 17561.3 0.580200
\(63\) 19287.6 0.612247
\(64\) 32518.6 0.992390
\(65\) 0 0
\(66\) −60806.5 −1.71826
\(67\) −30488.3 −0.829749 −0.414874 0.909879i \(-0.636174\pi\)
−0.414874 + 0.909879i \(0.636174\pi\)
\(68\) 25936.5 0.680204
\(69\) −6084.82 −0.153860
\(70\) 0 0
\(71\) −14561.2 −0.342808 −0.171404 0.985201i \(-0.554830\pi\)
−0.171404 + 0.985201i \(0.554830\pi\)
\(72\) −30015.3 −0.682358
\(73\) 59007.3 1.29598 0.647990 0.761649i \(-0.275610\pi\)
0.647990 + 0.761649i \(0.275610\pi\)
\(74\) −53180.6 −1.12895
\(75\) 0 0
\(76\) 29158.8 0.579076
\(77\) −89221.7 −1.71492
\(78\) 14487.3 0.269619
\(79\) −43350.2 −0.781489 −0.390745 0.920499i \(-0.627782\pi\)
−0.390745 + 0.920499i \(0.627782\pi\)
\(80\) 0 0
\(81\) −72797.4 −1.23283
\(82\) 62136.2 1.02049
\(83\) −83849.9 −1.33600 −0.668002 0.744160i \(-0.732850\pi\)
−0.668002 + 0.744160i \(0.732850\pi\)
\(84\) −33703.1 −0.521161
\(85\) 0 0
\(86\) 73776.2 1.07565
\(87\) 89871.6 1.27299
\(88\) 138847. 1.91130
\(89\) 124592. 1.66731 0.833656 0.552284i \(-0.186244\pi\)
0.833656 + 0.552284i \(0.186244\pi\)
\(90\) 0 0
\(91\) 21257.3 0.269094
\(92\) 4113.66 0.0506709
\(93\) 81194.2 0.973459
\(94\) −79010.1 −0.922281
\(95\) 0 0
\(96\) 89369.1 0.989713
\(97\) 93842.4 1.01267 0.506337 0.862335i \(-0.330999\pi\)
0.506337 + 0.862335i \(0.330999\pi\)
\(98\) −4244.44 −0.0446432
\(99\) −108769. −1.11537
\(100\) 0 0
\(101\) −117081. −1.14205 −0.571023 0.820934i \(-0.693453\pi\)
−0.571023 + 0.820934i \(0.693453\pi\)
\(102\) −165195. −1.57216
\(103\) 116464. 1.08168 0.540842 0.841124i \(-0.318106\pi\)
0.540842 + 0.841124i \(0.318106\pi\)
\(104\) −33080.6 −0.299909
\(105\) 0 0
\(106\) −51405.4 −0.444369
\(107\) 43117.6 0.364079 0.182039 0.983291i \(-0.441730\pi\)
0.182039 + 0.983291i \(0.441730\pi\)
\(108\) 24024.0 0.198192
\(109\) 32460.7 0.261693 0.130846 0.991403i \(-0.458231\pi\)
0.130846 + 0.991403i \(0.458231\pi\)
\(110\) 0 0
\(111\) −245879. −1.89415
\(112\) −51843.0 −0.390522
\(113\) 73976.7 0.545003 0.272501 0.962155i \(-0.412149\pi\)
0.272501 + 0.962155i \(0.412149\pi\)
\(114\) −185718. −1.33842
\(115\) 0 0
\(116\) −60757.9 −0.419236
\(117\) 25914.5 0.175017
\(118\) −171611. −1.13459
\(119\) −242392. −1.56910
\(120\) 0 0
\(121\) 342101. 2.12418
\(122\) 19334.6 0.117608
\(123\) 287285. 1.71218
\(124\) −54891.6 −0.320591
\(125\) 0 0
\(126\) 83050.7 0.466034
\(127\) −250540. −1.37838 −0.689189 0.724582i \(-0.742033\pi\)
−0.689189 + 0.724582i \(0.742033\pi\)
\(128\) −3626.46 −0.0195640
\(129\) 341103. 1.80472
\(130\) 0 0
\(131\) 98431.4 0.501136 0.250568 0.968099i \(-0.419383\pi\)
0.250568 + 0.968099i \(0.419383\pi\)
\(132\) 190064. 0.949433
\(133\) −272506. −1.33582
\(134\) −131280. −0.631593
\(135\) 0 0
\(136\) 377210. 1.74878
\(137\) −302938. −1.37896 −0.689480 0.724305i \(-0.742161\pi\)
−0.689480 + 0.724305i \(0.742161\pi\)
\(138\) −26200.7 −0.117116
\(139\) −215720. −0.947006 −0.473503 0.880792i \(-0.657011\pi\)
−0.473503 + 0.880792i \(0.657011\pi\)
\(140\) 0 0
\(141\) −365301. −1.54740
\(142\) −62699.3 −0.260941
\(143\) −119877. −0.490226
\(144\) −63201.4 −0.253992
\(145\) 0 0
\(146\) 254080. 0.986482
\(147\) −19624.1 −0.0749024
\(148\) 166227. 0.623804
\(149\) −193167. −0.712798 −0.356399 0.934334i \(-0.615996\pi\)
−0.356399 + 0.934334i \(0.615996\pi\)
\(150\) 0 0
\(151\) −54010.3 −0.192768 −0.0963839 0.995344i \(-0.530728\pi\)
−0.0963839 + 0.995344i \(0.530728\pi\)
\(152\) 424074. 1.48879
\(153\) −295497. −1.02053
\(154\) −384181. −1.30537
\(155\) 0 0
\(156\) −45283.1 −0.148979
\(157\) 386541. 1.25155 0.625773 0.780006i \(-0.284784\pi\)
0.625773 + 0.780006i \(0.284784\pi\)
\(158\) −186662. −0.594859
\(159\) −237671. −0.745563
\(160\) 0 0
\(161\) −38444.5 −0.116888
\(162\) −313460. −0.938414
\(163\) 106816. 0.314896 0.157448 0.987527i \(-0.449673\pi\)
0.157448 + 0.987527i \(0.449673\pi\)
\(164\) −194220. −0.563877
\(165\) 0 0
\(166\) −361051. −1.01695
\(167\) −371554. −1.03093 −0.515467 0.856909i \(-0.672381\pi\)
−0.515467 + 0.856909i \(0.672381\pi\)
\(168\) −490164. −1.33989
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −332209. −0.868803
\(172\) −230603. −0.594353
\(173\) 274680. 0.697769 0.348884 0.937166i \(-0.386561\pi\)
0.348884 + 0.937166i \(0.386561\pi\)
\(174\) 386980. 0.968981
\(175\) 0 0
\(176\) 292361. 0.711439
\(177\) −793437. −1.90362
\(178\) 536485. 1.26913
\(179\) 317330. 0.740251 0.370125 0.928982i \(-0.379315\pi\)
0.370125 + 0.928982i \(0.379315\pi\)
\(180\) 0 0
\(181\) −241524. −0.547979 −0.273989 0.961733i \(-0.588343\pi\)
−0.273989 + 0.961733i \(0.588343\pi\)
\(182\) 91532.1 0.204831
\(183\) 89393.2 0.197322
\(184\) 59827.3 0.130273
\(185\) 0 0
\(186\) 349616. 0.740984
\(187\) 1.36693e6 2.85853
\(188\) 246963. 0.509609
\(189\) −224518. −0.457190
\(190\) 0 0
\(191\) 208827. 0.414193 0.207096 0.978321i \(-0.433599\pi\)
0.207096 + 0.978321i \(0.433599\pi\)
\(192\) 647391. 1.26740
\(193\) −410293. −0.792868 −0.396434 0.918063i \(-0.629752\pi\)
−0.396434 + 0.918063i \(0.629752\pi\)
\(194\) 404078. 0.770834
\(195\) 0 0
\(196\) 13266.9 0.0246678
\(197\) 466919. 0.857187 0.428594 0.903497i \(-0.359009\pi\)
0.428594 + 0.903497i \(0.359009\pi\)
\(198\) −468352. −0.849004
\(199\) 655337. 1.17309 0.586546 0.809916i \(-0.300487\pi\)
0.586546 + 0.809916i \(0.300487\pi\)
\(200\) 0 0
\(201\) −606971. −1.05969
\(202\) −504142. −0.869309
\(203\) 567818. 0.967094
\(204\) 516352. 0.868701
\(205\) 0 0
\(206\) 501486. 0.823362
\(207\) −46867.3 −0.0760229
\(208\) −69655.6 −0.111634
\(209\) 1.53676e6 2.43354
\(210\) 0 0
\(211\) −508536. −0.786350 −0.393175 0.919464i \(-0.628623\pi\)
−0.393175 + 0.919464i \(0.628623\pi\)
\(212\) 160679. 0.245538
\(213\) −289889. −0.437806
\(214\) 185661. 0.277132
\(215\) 0 0
\(216\) 349395. 0.509545
\(217\) 512993. 0.739541
\(218\) 139773. 0.199197
\(219\) 1.17473e6 1.65512
\(220\) 0 0
\(221\) −325674. −0.448542
\(222\) −1.05874e6 −1.44180
\(223\) 97604.2 0.131434 0.0657168 0.997838i \(-0.479067\pi\)
0.0657168 + 0.997838i \(0.479067\pi\)
\(224\) 564643. 0.751889
\(225\) 0 0
\(226\) 318538. 0.414849
\(227\) −363749. −0.468530 −0.234265 0.972173i \(-0.575268\pi\)
−0.234265 + 0.972173i \(0.575268\pi\)
\(228\) 580502. 0.739549
\(229\) 549995. 0.693059 0.346530 0.938039i \(-0.387360\pi\)
0.346530 + 0.938039i \(0.387360\pi\)
\(230\) 0 0
\(231\) −1.77625e6 −2.19016
\(232\) −883638. −1.07784
\(233\) −444960. −0.536947 −0.268473 0.963287i \(-0.586519\pi\)
−0.268473 + 0.963287i \(0.586519\pi\)
\(234\) 111586. 0.133220
\(235\) 0 0
\(236\) 536406. 0.626922
\(237\) −863028. −0.998054
\(238\) −1.04372e6 −1.19438
\(239\) 1.06065e6 1.20110 0.600549 0.799588i \(-0.294949\pi\)
0.600549 + 0.799588i \(0.294949\pi\)
\(240\) 0 0
\(241\) 642027. 0.712051 0.356025 0.934476i \(-0.384132\pi\)
0.356025 + 0.934476i \(0.384132\pi\)
\(242\) 1.47306e6 1.61690
\(243\) −1.01553e6 −1.10325
\(244\) −60434.5 −0.0649846
\(245\) 0 0
\(246\) 1.23703e6 1.30329
\(247\) −366135. −0.381856
\(248\) −798320. −0.824229
\(249\) −1.66931e6 −1.70623
\(250\) 0 0
\(251\) 386423. 0.387149 0.193575 0.981086i \(-0.437992\pi\)
0.193575 + 0.981086i \(0.437992\pi\)
\(252\) −259593. −0.257508
\(253\) 216802. 0.212942
\(254\) −1.07881e6 −1.04920
\(255\) 0 0
\(256\) −1.05621e6 −1.00728
\(257\) 432043. 0.408032 0.204016 0.978968i \(-0.434601\pi\)
0.204016 + 0.978968i \(0.434601\pi\)
\(258\) 1.46876e6 1.37373
\(259\) −1.55349e6 −1.43899
\(260\) 0 0
\(261\) 692222. 0.628990
\(262\) 423837. 0.381457
\(263\) 120603. 0.107515 0.0537575 0.998554i \(-0.482880\pi\)
0.0537575 + 0.998554i \(0.482880\pi\)
\(264\) 2.76421e6 2.44096
\(265\) 0 0
\(266\) −1.17339e6 −1.01680
\(267\) 2.48043e6 2.12935
\(268\) 410344. 0.348989
\(269\) −2.20375e6 −1.85687 −0.928436 0.371494i \(-0.878846\pi\)
−0.928436 + 0.371494i \(0.878846\pi\)
\(270\) 0 0
\(271\) 599069. 0.495511 0.247756 0.968823i \(-0.420307\pi\)
0.247756 + 0.968823i \(0.420307\pi\)
\(272\) 794266. 0.650944
\(273\) 423196. 0.343665
\(274\) −1.30442e6 −1.04965
\(275\) 0 0
\(276\) 81896.0 0.0647127
\(277\) 67945.4 0.0532060 0.0266030 0.999646i \(-0.491531\pi\)
0.0266030 + 0.999646i \(0.491531\pi\)
\(278\) −928871. −0.720847
\(279\) 625386. 0.480991
\(280\) 0 0
\(281\) 79333.1 0.0599361 0.0299681 0.999551i \(-0.490459\pi\)
0.0299681 + 0.999551i \(0.490459\pi\)
\(282\) −1.57296e6 −1.17786
\(283\) −810998. −0.601941 −0.300970 0.953633i \(-0.597311\pi\)
−0.300970 + 0.953633i \(0.597311\pi\)
\(284\) 195980. 0.144184
\(285\) 0 0
\(286\) −516181. −0.373153
\(287\) 1.81510e6 1.30075
\(288\) 688351. 0.489022
\(289\) 2.29373e6 1.61546
\(290\) 0 0
\(291\) 1.86824e6 1.29331
\(292\) −794183. −0.545084
\(293\) −2.31923e6 −1.57825 −0.789123 0.614236i \(-0.789464\pi\)
−0.789123 + 0.614236i \(0.789464\pi\)
\(294\) −84499.7 −0.0570147
\(295\) 0 0
\(296\) 2.41754e6 1.60378
\(297\) 1.26614e6 0.832893
\(298\) −831760. −0.542572
\(299\) −51653.5 −0.0334135
\(300\) 0 0
\(301\) 2.15512e6 1.37106
\(302\) −232564. −0.146732
\(303\) −2.33089e6 −1.45853
\(304\) 892944. 0.554167
\(305\) 0 0
\(306\) −1.27239e6 −0.776812
\(307\) −804892. −0.487407 −0.243703 0.969850i \(-0.578362\pi\)
−0.243703 + 0.969850i \(0.578362\pi\)
\(308\) 1.20084e6 0.721288
\(309\) 2.31861e6 1.38144
\(310\) 0 0
\(311\) −2.49761e6 −1.46428 −0.732139 0.681156i \(-0.761478\pi\)
−0.732139 + 0.681156i \(0.761478\pi\)
\(312\) −658578. −0.383019
\(313\) 146716. 0.0846480 0.0423240 0.999104i \(-0.486524\pi\)
0.0423240 + 0.999104i \(0.486524\pi\)
\(314\) 1.66441e6 0.952659
\(315\) 0 0
\(316\) 583453. 0.328691
\(317\) 2.37920e6 1.32979 0.664896 0.746936i \(-0.268476\pi\)
0.664896 + 0.746936i \(0.268476\pi\)
\(318\) −1.02339e6 −0.567512
\(319\) −3.20212e6 −1.76182
\(320\) 0 0
\(321\) 858399. 0.464972
\(322\) −165539. −0.0889734
\(323\) 4.17495e6 2.22662
\(324\) 979785. 0.518523
\(325\) 0 0
\(326\) 459941. 0.239695
\(327\) 646237. 0.334212
\(328\) −2.82466e6 −1.44971
\(329\) −2.30801e6 −1.17557
\(330\) 0 0
\(331\) 2.55669e6 1.28265 0.641324 0.767270i \(-0.278385\pi\)
0.641324 + 0.767270i \(0.278385\pi\)
\(332\) 1.12854e6 0.561917
\(333\) −1.89385e6 −0.935910
\(334\) −1.59988e6 −0.784732
\(335\) 0 0
\(336\) −1.03211e6 −0.498742
\(337\) 2.38453e6 1.14374 0.571871 0.820344i \(-0.306218\pi\)
0.571871 + 0.820344i \(0.306218\pi\)
\(338\) 122981. 0.0585528
\(339\) 1.47275e6 0.696033
\(340\) 0 0
\(341\) −2.89295e6 −1.34727
\(342\) −1.43047e6 −0.661321
\(343\) −2.23802e6 −1.02714
\(344\) −3.35380e6 −1.52806
\(345\) 0 0
\(346\) 1.18275e6 0.531132
\(347\) −427794. −0.190727 −0.0953633 0.995443i \(-0.530401\pi\)
−0.0953633 + 0.995443i \(0.530401\pi\)
\(348\) −1.20959e6 −0.535413
\(349\) −3.91198e6 −1.71922 −0.859612 0.510947i \(-0.829295\pi\)
−0.859612 + 0.510947i \(0.829295\pi\)
\(350\) 0 0
\(351\) −301660. −0.130692
\(352\) −3.18422e6 −1.36977
\(353\) 1.85968e6 0.794330 0.397165 0.917747i \(-0.369994\pi\)
0.397165 + 0.917747i \(0.369994\pi\)
\(354\) −3.41648e6 −1.44901
\(355\) 0 0
\(356\) −1.67690e6 −0.701264
\(357\) −4.82560e6 −2.00392
\(358\) 1.36640e6 0.563468
\(359\) 693152. 0.283852 0.141926 0.989877i \(-0.454670\pi\)
0.141926 + 0.989877i \(0.454670\pi\)
\(360\) 0 0
\(361\) 2.21754e6 0.895578
\(362\) −1.03998e6 −0.417114
\(363\) 6.81066e6 2.71283
\(364\) −286103. −0.113180
\(365\) 0 0
\(366\) 384920. 0.150199
\(367\) 2.25998e6 0.875870 0.437935 0.899007i \(-0.355710\pi\)
0.437935 + 0.899007i \(0.355710\pi\)
\(368\) 125975. 0.0484912
\(369\) 2.21277e6 0.846000
\(370\) 0 0
\(371\) −1.50163e6 −0.566407
\(372\) −1.09280e6 −0.409433
\(373\) 802038. 0.298485 0.149243 0.988801i \(-0.452316\pi\)
0.149243 + 0.988801i \(0.452316\pi\)
\(374\) 5.88589e6 2.17587
\(375\) 0 0
\(376\) 3.59173e6 1.31019
\(377\) 762913. 0.276453
\(378\) −966756. −0.348007
\(379\) 1.44664e6 0.517325 0.258662 0.965968i \(-0.416718\pi\)
0.258662 + 0.965968i \(0.416718\pi\)
\(380\) 0 0
\(381\) −4.98783e6 −1.76035
\(382\) 899191. 0.315278
\(383\) 3.55257e6 1.23750 0.618751 0.785587i \(-0.287639\pi\)
0.618751 + 0.785587i \(0.287639\pi\)
\(384\) −72196.7 −0.0249856
\(385\) 0 0
\(386\) −1.76669e6 −0.603520
\(387\) 2.62729e6 0.891724
\(388\) −1.26303e6 −0.425927
\(389\) −5.57943e6 −1.86946 −0.934730 0.355359i \(-0.884358\pi\)
−0.934730 + 0.355359i \(0.884358\pi\)
\(390\) 0 0
\(391\) 588993. 0.194836
\(392\) 192948. 0.0634200
\(393\) 1.95960e6 0.640009
\(394\) 2.01051e6 0.652479
\(395\) 0 0
\(396\) 1.46393e6 0.469120
\(397\) −3.43746e6 −1.09462 −0.547308 0.836931i \(-0.684347\pi\)
−0.547308 + 0.836931i \(0.684347\pi\)
\(398\) 2.82183e6 0.892942
\(399\) −5.42513e6 −1.70599
\(400\) 0 0
\(401\) −4.49645e6 −1.39640 −0.698199 0.715904i \(-0.746015\pi\)
−0.698199 + 0.715904i \(0.746015\pi\)
\(402\) −2.61357e6 −0.806619
\(403\) 689251. 0.211405
\(404\) 1.57580e6 0.480340
\(405\) 0 0
\(406\) 2.44498e6 0.736139
\(407\) 8.76068e6 2.62151
\(408\) 7.50961e6 2.23340
\(409\) −4.00809e6 −1.18476 −0.592379 0.805659i \(-0.701811\pi\)
−0.592379 + 0.805659i \(0.701811\pi\)
\(410\) 0 0
\(411\) −6.03097e6 −1.76109
\(412\) −1.56750e6 −0.454952
\(413\) −5.01302e6 −1.44619
\(414\) −201807. −0.0578676
\(415\) 0 0
\(416\) 758647. 0.214935
\(417\) −4.29461e6 −1.20944
\(418\) 6.61714e6 1.85238
\(419\) −30427.3 −0.00846697 −0.00423349 0.999991i \(-0.501348\pi\)
−0.00423349 + 0.999991i \(0.501348\pi\)
\(420\) 0 0
\(421\) 1.28719e6 0.353946 0.176973 0.984216i \(-0.443369\pi\)
0.176973 + 0.984216i \(0.443369\pi\)
\(422\) −2.18972e6 −0.598559
\(423\) −2.81367e6 −0.764580
\(424\) 2.33684e6 0.631269
\(425\) 0 0
\(426\) −1.24824e6 −0.333252
\(427\) 564795. 0.149907
\(428\) −580323. −0.153130
\(429\) −2.38655e6 −0.626077
\(430\) 0 0
\(431\) −3.27469e6 −0.849137 −0.424568 0.905396i \(-0.639574\pi\)
−0.424568 + 0.905396i \(0.639574\pi\)
\(432\) 735699. 0.189666
\(433\) −2.56449e6 −0.657327 −0.328664 0.944447i \(-0.606598\pi\)
−0.328664 + 0.944447i \(0.606598\pi\)
\(434\) 2.20891e6 0.562928
\(435\) 0 0
\(436\) −436890. −0.110067
\(437\) 662168. 0.165869
\(438\) 5.05831e6 1.25985
\(439\) 973053. 0.240977 0.120488 0.992715i \(-0.461554\pi\)
0.120488 + 0.992715i \(0.461554\pi\)
\(440\) 0 0
\(441\) −151151. −0.0370097
\(442\) −1.40233e6 −0.341424
\(443\) 1.98241e6 0.479936 0.239968 0.970781i \(-0.422863\pi\)
0.239968 + 0.970781i \(0.422863\pi\)
\(444\) 3.30931e6 0.796672
\(445\) 0 0
\(446\) 420276. 0.100045
\(447\) −3.84562e6 −0.910327
\(448\) 4.09028e6 0.962849
\(449\) 1.98450e6 0.464552 0.232276 0.972650i \(-0.425383\pi\)
0.232276 + 0.972650i \(0.425383\pi\)
\(450\) 0 0
\(451\) −1.02360e7 −2.36967
\(452\) −995657. −0.229226
\(453\) −1.07525e6 −0.246187
\(454\) −1.56627e6 −0.356639
\(455\) 0 0
\(456\) 8.44258e6 1.90136
\(457\) −6.95085e6 −1.55685 −0.778427 0.627736i \(-0.783982\pi\)
−0.778427 + 0.627736i \(0.783982\pi\)
\(458\) 2.36824e6 0.527547
\(459\) 3.43975e6 0.762071
\(460\) 0 0
\(461\) −2.63571e6 −0.577625 −0.288812 0.957386i \(-0.593260\pi\)
−0.288812 + 0.957386i \(0.593260\pi\)
\(462\) −7.64840e6 −1.66712
\(463\) −6.75578e6 −1.46461 −0.732306 0.680975i \(-0.761556\pi\)
−0.732306 + 0.680975i \(0.761556\pi\)
\(464\) −1.86062e6 −0.401202
\(465\) 0 0
\(466\) −1.91596e6 −0.408716
\(467\) −7.34426e6 −1.55832 −0.779159 0.626826i \(-0.784354\pi\)
−0.779159 + 0.626826i \(0.784354\pi\)
\(468\) −348786. −0.0736112
\(469\) −3.83490e6 −0.805049
\(470\) 0 0
\(471\) 7.69538e6 1.59837
\(472\) 7.80126e6 1.61179
\(473\) −1.21535e7 −2.49774
\(474\) −3.71613e6 −0.759705
\(475\) 0 0
\(476\) 3.26236e6 0.659956
\(477\) −1.83063e6 −0.368387
\(478\) 4.56708e6 0.914259
\(479\) −6.14073e6 −1.22287 −0.611436 0.791294i \(-0.709408\pi\)
−0.611436 + 0.791294i \(0.709408\pi\)
\(480\) 0 0
\(481\) −2.08725e6 −0.411350
\(482\) 2.76452e6 0.542003
\(483\) −765365. −0.149280
\(484\) −4.60437e6 −0.893422
\(485\) 0 0
\(486\) −4.37277e6 −0.839781
\(487\) 1.73635e6 0.331752 0.165876 0.986147i \(-0.446955\pi\)
0.165876 + 0.986147i \(0.446955\pi\)
\(488\) −878934. −0.167073
\(489\) 2.12653e6 0.402160
\(490\) 0 0
\(491\) −1.66007e6 −0.310759 −0.155380 0.987855i \(-0.549660\pi\)
−0.155380 + 0.987855i \(0.549660\pi\)
\(492\) −3.86659e6 −0.720138
\(493\) −8.69931e6 −1.61201
\(494\) −1.57655e6 −0.290663
\(495\) 0 0
\(496\) −1.68097e6 −0.306801
\(497\) −1.83155e6 −0.332603
\(498\) −7.18791e6 −1.29876
\(499\) 7.82789e6 1.40732 0.703660 0.710536i \(-0.251548\pi\)
0.703660 + 0.710536i \(0.251548\pi\)
\(500\) 0 0
\(501\) −7.39701e6 −1.31662
\(502\) 1.66390e6 0.294692
\(503\) −4.93710e6 −0.870066 −0.435033 0.900415i \(-0.643263\pi\)
−0.435033 + 0.900415i \(0.643263\pi\)
\(504\) −3.77541e6 −0.662045
\(505\) 0 0
\(506\) 933531. 0.162089
\(507\) 568601. 0.0982399
\(508\) 3.37204e6 0.579740
\(509\) −8.26567e6 −1.41411 −0.707056 0.707158i \(-0.749977\pi\)
−0.707056 + 0.707158i \(0.749977\pi\)
\(510\) 0 0
\(511\) 7.42209e6 1.25740
\(512\) −4.43192e6 −0.747165
\(513\) 3.86710e6 0.648772
\(514\) 1.86034e6 0.310588
\(515\) 0 0
\(516\) −4.59092e6 −0.759059
\(517\) 1.30157e7 2.14161
\(518\) −6.68920e6 −1.09534
\(519\) 5.46841e6 0.891133
\(520\) 0 0
\(521\) 7.91723e6 1.27785 0.638924 0.769270i \(-0.279380\pi\)
0.638924 + 0.769270i \(0.279380\pi\)
\(522\) 2.98065e6 0.478779
\(523\) 6.02805e6 0.963657 0.481829 0.876265i \(-0.339973\pi\)
0.481829 + 0.876265i \(0.339973\pi\)
\(524\) −1.32479e6 −0.210776
\(525\) 0 0
\(526\) 519307. 0.0818389
\(527\) −7.85937e6 −1.23271
\(528\) 5.82041e6 0.908592
\(529\) −6.34293e6 −0.985486
\(530\) 0 0
\(531\) −6.11132e6 −0.940587
\(532\) 3.66767e6 0.561838
\(533\) 2.43874e6 0.371833
\(534\) 1.06805e7 1.62083
\(535\) 0 0
\(536\) 5.96788e6 0.897239
\(537\) 6.31750e6 0.945388
\(538\) −9.48917e6 −1.41342
\(539\) 699205. 0.103665
\(540\) 0 0
\(541\) 9.65945e6 1.41892 0.709462 0.704744i \(-0.248938\pi\)
0.709462 + 0.704744i \(0.248938\pi\)
\(542\) 2.57954e6 0.377176
\(543\) −4.80833e6 −0.699834
\(544\) −8.65067e6 −1.25329
\(545\) 0 0
\(546\) 1.82225e6 0.261593
\(547\) −1.23221e7 −1.76083 −0.880415 0.474203i \(-0.842736\pi\)
−0.880415 + 0.474203i \(0.842736\pi\)
\(548\) 4.07726e6 0.579985
\(549\) 688537. 0.0974981
\(550\) 0 0
\(551\) −9.78009e6 −1.37235
\(552\) 1.19106e6 0.166374
\(553\) −5.45270e6 −0.758226
\(554\) 292567. 0.0404997
\(555\) 0 0
\(556\) 2.90338e6 0.398307
\(557\) 6.45087e6 0.881009 0.440504 0.897750i \(-0.354800\pi\)
0.440504 + 0.897750i \(0.354800\pi\)
\(558\) 2.69286e6 0.366124
\(559\) 2.89559e6 0.391929
\(560\) 0 0
\(561\) 2.72133e7 3.65068
\(562\) 341602. 0.0456226
\(563\) 5.38104e6 0.715476 0.357738 0.933822i \(-0.383548\pi\)
0.357738 + 0.933822i \(0.383548\pi\)
\(564\) 4.91661e6 0.650831
\(565\) 0 0
\(566\) −3.49209e6 −0.458189
\(567\) −9.15665e6 −1.19613
\(568\) 2.85025e6 0.370691
\(569\) −1.19810e6 −0.155136 −0.0775680 0.996987i \(-0.524715\pi\)
−0.0775680 + 0.996987i \(0.524715\pi\)
\(570\) 0 0
\(571\) −5.65494e6 −0.725834 −0.362917 0.931821i \(-0.618219\pi\)
−0.362917 + 0.931821i \(0.618219\pi\)
\(572\) 1.61343e6 0.206187
\(573\) 4.15739e6 0.528973
\(574\) 7.81566e6 0.990116
\(575\) 0 0
\(576\) 4.98643e6 0.626229
\(577\) 5.03350e6 0.629405 0.314703 0.949190i \(-0.398095\pi\)
0.314703 + 0.949190i \(0.398095\pi\)
\(578\) 9.87661e6 1.22967
\(579\) −8.16823e6 −1.01259
\(580\) 0 0
\(581\) −1.05469e7 −1.29623
\(582\) 8.04451e6 0.984446
\(583\) 8.46823e6 1.03186
\(584\) −1.15503e7 −1.40139
\(585\) 0 0
\(586\) −9.98641e6 −1.20134
\(587\) −7.95091e6 −0.952405 −0.476203 0.879336i \(-0.657987\pi\)
−0.476203 + 0.879336i \(0.657987\pi\)
\(588\) 264122. 0.0315036
\(589\) −8.83580e6 −1.04944
\(590\) 0 0
\(591\) 9.29556e6 1.09473
\(592\) 5.09046e6 0.596971
\(593\) 3.79733e6 0.443447 0.221724 0.975110i \(-0.428832\pi\)
0.221724 + 0.975110i \(0.428832\pi\)
\(594\) 5.45188e6 0.633986
\(595\) 0 0
\(596\) 2.59984e6 0.299800
\(597\) 1.30467e7 1.49818
\(598\) −222416. −0.0254339
\(599\) 1.28647e7 1.46498 0.732489 0.680779i \(-0.238359\pi\)
0.732489 + 0.680779i \(0.238359\pi\)
\(600\) 0 0
\(601\) 5.01991e6 0.566904 0.283452 0.958986i \(-0.408520\pi\)
0.283452 + 0.958986i \(0.408520\pi\)
\(602\) 9.27977e6 1.04363
\(603\) −4.67510e6 −0.523597
\(604\) 726929. 0.0810773
\(605\) 0 0
\(606\) −1.00366e7 −1.11021
\(607\) −1.26908e7 −1.39803 −0.699017 0.715105i \(-0.746379\pi\)
−0.699017 + 0.715105i \(0.746379\pi\)
\(608\) −9.72541e6 −1.06696
\(609\) 1.13043e7 1.23509
\(610\) 0 0
\(611\) −3.10101e6 −0.336047
\(612\) 3.97712e6 0.429230
\(613\) −1.60182e7 −1.72172 −0.860861 0.508840i \(-0.830075\pi\)
−0.860861 + 0.508840i \(0.830075\pi\)
\(614\) −3.46580e6 −0.371007
\(615\) 0 0
\(616\) 1.74645e7 1.85441
\(617\) −4.75362e6 −0.502703 −0.251352 0.967896i \(-0.580875\pi\)
−0.251352 + 0.967896i \(0.580875\pi\)
\(618\) 9.98374e6 1.05153
\(619\) −1.08346e7 −1.13655 −0.568274 0.822839i \(-0.692389\pi\)
−0.568274 + 0.822839i \(0.692389\pi\)
\(620\) 0 0
\(621\) 545562. 0.0567695
\(622\) −1.07545e7 −1.11459
\(623\) 1.56716e7 1.61768
\(624\) −1.38673e6 −0.142570
\(625\) 0 0
\(626\) 631747. 0.0644329
\(627\) 3.05942e7 3.10792
\(628\) −5.20248e6 −0.526395
\(629\) 2.38004e7 2.39860
\(630\) 0 0
\(631\) −1.16256e7 −1.16236 −0.581182 0.813774i \(-0.697409\pi\)
−0.581182 + 0.813774i \(0.697409\pi\)
\(632\) 8.48549e6 0.845054
\(633\) −1.01241e7 −1.00426
\(634\) 1.02447e7 1.01222
\(635\) 0 0
\(636\) 3.19884e6 0.313581
\(637\) −166587. −0.0162665
\(638\) −1.37881e7 −1.34107
\(639\) −2.23282e6 −0.216323
\(640\) 0 0
\(641\) −1.49693e7 −1.43899 −0.719495 0.694498i \(-0.755627\pi\)
−0.719495 + 0.694498i \(0.755627\pi\)
\(642\) 3.69619e6 0.353930
\(643\) −1.67965e6 −0.160210 −0.0801051 0.996786i \(-0.525526\pi\)
−0.0801051 + 0.996786i \(0.525526\pi\)
\(644\) 517427. 0.0491625
\(645\) 0 0
\(646\) 1.79770e7 1.69487
\(647\) 6.56503e6 0.616561 0.308281 0.951295i \(-0.400246\pi\)
0.308281 + 0.951295i \(0.400246\pi\)
\(648\) 1.42496e7 1.33311
\(649\) 2.82702e7 2.63461
\(650\) 0 0
\(651\) 1.02128e7 0.944482
\(652\) −1.43764e6 −0.132444
\(653\) −1.78321e7 −1.63652 −0.818259 0.574850i \(-0.805060\pi\)
−0.818259 + 0.574850i \(0.805060\pi\)
\(654\) 2.78264e6 0.254398
\(655\) 0 0
\(656\) −5.94769e6 −0.539621
\(657\) 9.04820e6 0.817804
\(658\) −9.93810e6 −0.894826
\(659\) −1.18216e6 −0.106038 −0.0530190 0.998594i \(-0.516884\pi\)
−0.0530190 + 0.998594i \(0.516884\pi\)
\(660\) 0 0
\(661\) 1.20695e7 1.07445 0.537225 0.843439i \(-0.319472\pi\)
0.537225 + 0.843439i \(0.319472\pi\)
\(662\) 1.10089e7 0.976334
\(663\) −6.48362e6 −0.572841
\(664\) 1.64130e7 1.44467
\(665\) 0 0
\(666\) −8.15475e6 −0.712402
\(667\) −1.37975e6 −0.120084
\(668\) 5.00077e6 0.433606
\(669\) 1.94313e6 0.167856
\(670\) 0 0
\(671\) −3.18508e6 −0.273095
\(672\) 1.12411e7 0.960251
\(673\) 1.89473e7 1.61254 0.806270 0.591548i \(-0.201483\pi\)
0.806270 + 0.591548i \(0.201483\pi\)
\(674\) 1.02676e7 0.870600
\(675\) 0 0
\(676\) −384404. −0.0323535
\(677\) 817954. 0.0685894 0.0342947 0.999412i \(-0.489082\pi\)
0.0342947 + 0.999412i \(0.489082\pi\)
\(678\) 6.34154e6 0.529811
\(679\) 1.18038e7 0.982530
\(680\) 0 0
\(681\) −7.24163e6 −0.598368
\(682\) −1.24568e7 −1.02552
\(683\) −3.54928e6 −0.291131 −0.145565 0.989349i \(-0.546500\pi\)
−0.145565 + 0.989349i \(0.546500\pi\)
\(684\) 4.47123e6 0.365415
\(685\) 0 0
\(686\) −9.63671e6 −0.781841
\(687\) 1.09495e7 0.885118
\(688\) −7.06188e6 −0.568786
\(689\) −2.01757e6 −0.161913
\(690\) 0 0
\(691\) 2.39285e6 0.190643 0.0953214 0.995447i \(-0.469612\pi\)
0.0953214 + 0.995447i \(0.469612\pi\)
\(692\) −3.69693e6 −0.293479
\(693\) −1.36813e7 −1.08217
\(694\) −1.84205e6 −0.145178
\(695\) 0 0
\(696\) −1.75917e7 −1.37653
\(697\) −2.78084e7 −2.16817
\(698\) −1.68446e7 −1.30865
\(699\) −8.85840e6 −0.685744
\(700\) 0 0
\(701\) 1.83475e7 1.41020 0.705101 0.709106i \(-0.250901\pi\)
0.705101 + 0.709106i \(0.250901\pi\)
\(702\) −1.29892e6 −0.0994810
\(703\) 2.67573e7 2.04199
\(704\) −2.30665e7 −1.75409
\(705\) 0 0
\(706\) 8.00762e6 0.604633
\(707\) −1.47268e7 −1.10805
\(708\) 1.06789e7 0.800653
\(709\) −3.07694e6 −0.229881 −0.114941 0.993372i \(-0.536668\pi\)
−0.114941 + 0.993372i \(0.536668\pi\)
\(710\) 0 0
\(711\) −6.64733e6 −0.493144
\(712\) −2.43881e7 −1.80293
\(713\) −1.24653e6 −0.0918291
\(714\) −2.07787e7 −1.52536
\(715\) 0 0
\(716\) −4.27097e6 −0.311346
\(717\) 2.11158e7 1.53394
\(718\) 2.98466e6 0.216064
\(719\) 1.80795e7 1.30426 0.652129 0.758108i \(-0.273876\pi\)
0.652129 + 0.758108i \(0.273876\pi\)
\(720\) 0 0
\(721\) 1.46492e7 1.04948
\(722\) 9.54855e6 0.681702
\(723\) 1.27817e7 0.909373
\(724\) 3.25069e6 0.230478
\(725\) 0 0
\(726\) 2.93261e7 2.06497
\(727\) 2.35372e7 1.65165 0.825826 0.563925i \(-0.190709\pi\)
0.825826 + 0.563925i \(0.190709\pi\)
\(728\) −4.16096e6 −0.290981
\(729\) −2.52763e6 −0.176155
\(730\) 0 0
\(731\) −3.30177e7 −2.28536
\(732\) −1.20315e6 −0.0829930
\(733\) −4.96555e6 −0.341356 −0.170678 0.985327i \(-0.554596\pi\)
−0.170678 + 0.985327i \(0.554596\pi\)
\(734\) 9.73130e6 0.666700
\(735\) 0 0
\(736\) −1.37204e6 −0.0933624
\(737\) 2.16264e7 1.46661
\(738\) 9.52800e6 0.643963
\(739\) −2.40104e7 −1.61729 −0.808646 0.588296i \(-0.799799\pi\)
−0.808646 + 0.588296i \(0.799799\pi\)
\(740\) 0 0
\(741\) −7.28913e6 −0.487675
\(742\) −6.46591e6 −0.431141
\(743\) 1.15136e7 0.765140 0.382570 0.923927i \(-0.375039\pi\)
0.382570 + 0.923927i \(0.375039\pi\)
\(744\) −1.58932e7 −1.05264
\(745\) 0 0
\(746\) 3.45351e6 0.227203
\(747\) −1.28576e7 −0.843060
\(748\) −1.83976e7 −1.20228
\(749\) 5.42345e6 0.353241
\(750\) 0 0
\(751\) −2.24902e7 −1.45510 −0.727552 0.686052i \(-0.759342\pi\)
−0.727552 + 0.686052i \(0.759342\pi\)
\(752\) 7.56286e6 0.487688
\(753\) 7.69302e6 0.494435
\(754\) 3.28504e6 0.210432
\(755\) 0 0
\(756\) 3.02180e6 0.192292
\(757\) −788552. −0.0500139 −0.0250069 0.999687i \(-0.507961\pi\)
−0.0250069 + 0.999687i \(0.507961\pi\)
\(758\) 6.22913e6 0.393780
\(759\) 4.31616e6 0.271952
\(760\) 0 0
\(761\) −5.67255e6 −0.355072 −0.177536 0.984114i \(-0.556813\pi\)
−0.177536 + 0.984114i \(0.556813\pi\)
\(762\) −2.14772e7 −1.33995
\(763\) 4.08299e6 0.253903
\(764\) −2.81061e6 −0.174208
\(765\) 0 0
\(766\) 1.52971e7 0.941970
\(767\) −6.73543e6 −0.413406
\(768\) −2.10274e7 −1.28642
\(769\) −2.85131e6 −0.173872 −0.0869358 0.996214i \(-0.527707\pi\)
−0.0869358 + 0.996214i \(0.527707\pi\)
\(770\) 0 0
\(771\) 8.60124e6 0.521105
\(772\) 5.52216e6 0.333477
\(773\) −1.94976e7 −1.17363 −0.586817 0.809720i \(-0.699619\pi\)
−0.586817 + 0.809720i \(0.699619\pi\)
\(774\) 1.13129e7 0.678768
\(775\) 0 0
\(776\) −1.83690e7 −1.09504
\(777\) −3.09274e7 −1.83777
\(778\) −2.40246e7 −1.42301
\(779\) −3.12632e7 −1.84582
\(780\) 0 0
\(781\) 1.03287e7 0.605925
\(782\) 2.53616e6 0.148306
\(783\) −8.05784e6 −0.469693
\(784\) 406279. 0.0236066
\(785\) 0 0
\(786\) 8.43788e6 0.487166
\(787\) −8.39703e6 −0.483269 −0.241634 0.970367i \(-0.577683\pi\)
−0.241634 + 0.970367i \(0.577683\pi\)
\(788\) −6.28429e6 −0.360529
\(789\) 2.40100e6 0.137309
\(790\) 0 0
\(791\) 9.30499e6 0.528779
\(792\) 2.12909e7 1.20609
\(793\) 758851. 0.0428523
\(794\) −1.48014e7 −0.833206
\(795\) 0 0
\(796\) −8.82023e6 −0.493398
\(797\) −1.20402e6 −0.0671411 −0.0335705 0.999436i \(-0.510688\pi\)
−0.0335705 + 0.999436i \(0.510688\pi\)
\(798\) −2.33602e7 −1.29858
\(799\) 3.53601e7 1.95951
\(800\) 0 0
\(801\) 1.91051e7 1.05213
\(802\) −1.93614e7 −1.06292
\(803\) −4.18558e7 −2.29069
\(804\) 8.16926e6 0.445700
\(805\) 0 0
\(806\) 2.96786e6 0.160918
\(807\) −4.38729e7 −2.37144
\(808\) 2.29178e7 1.23494
\(809\) 8.10437e6 0.435360 0.217680 0.976020i \(-0.430151\pi\)
0.217680 + 0.976020i \(0.430151\pi\)
\(810\) 0 0
\(811\) −4.53486e6 −0.242109 −0.121055 0.992646i \(-0.538628\pi\)
−0.121055 + 0.992646i \(0.538628\pi\)
\(812\) −7.64230e6 −0.406756
\(813\) 1.19264e7 0.632827
\(814\) 3.77228e7 1.99546
\(815\) 0 0
\(816\) 1.58125e7 0.831333
\(817\) −3.71198e7 −1.94559
\(818\) −1.72585e7 −0.901821
\(819\) 3.25960e6 0.169807
\(820\) 0 0
\(821\) 1.59739e6 0.0827092 0.0413546 0.999145i \(-0.486833\pi\)
0.0413546 + 0.999145i \(0.486833\pi\)
\(822\) −2.59689e7 −1.34052
\(823\) 2.00928e7 1.03405 0.517024 0.855971i \(-0.327040\pi\)
0.517024 + 0.855971i \(0.327040\pi\)
\(824\) −2.27971e7 −1.16967
\(825\) 0 0
\(826\) −2.15856e7 −1.10082
\(827\) 1.57246e7 0.799498 0.399749 0.916625i \(-0.369097\pi\)
0.399749 + 0.916625i \(0.369097\pi\)
\(828\) 630791. 0.0319749
\(829\) −2.66412e7 −1.34638 −0.673190 0.739470i \(-0.735076\pi\)
−0.673190 + 0.739470i \(0.735076\pi\)
\(830\) 0 0
\(831\) 1.35268e6 0.0679503
\(832\) 5.49565e6 0.275240
\(833\) 1.89955e6 0.0948504
\(834\) −1.84922e7 −0.920607
\(835\) 0 0
\(836\) −2.06833e7 −1.02354
\(837\) −7.27983e6 −0.359176
\(838\) −131017. −0.00644494
\(839\) −2.06873e7 −1.01461 −0.507306 0.861766i \(-0.669359\pi\)
−0.507306 + 0.861766i \(0.669359\pi\)
\(840\) 0 0
\(841\) −132454. −0.00645768
\(842\) 5.54253e6 0.269419
\(843\) 1.57939e6 0.0765455
\(844\) 6.84442e6 0.330735
\(845\) 0 0
\(846\) −1.21155e7 −0.581988
\(847\) 4.30304e7 2.06095
\(848\) 4.92054e6 0.234976
\(849\) −1.61456e7 −0.768750
\(850\) 0 0
\(851\) 3.77486e6 0.178681
\(852\) 3.90163e6 0.184140
\(853\) −706242. −0.0332339 −0.0166169 0.999862i \(-0.505290\pi\)
−0.0166169 + 0.999862i \(0.505290\pi\)
\(854\) 2.43196e6 0.114107
\(855\) 0 0
\(856\) −8.43997e6 −0.393692
\(857\) 1.54355e7 0.717908 0.358954 0.933355i \(-0.383133\pi\)
0.358954 + 0.933355i \(0.383133\pi\)
\(858\) −1.02763e7 −0.476561
\(859\) 2.09391e7 0.968222 0.484111 0.875007i \(-0.339143\pi\)
0.484111 + 0.875007i \(0.339143\pi\)
\(860\) 0 0
\(861\) 3.61355e7 1.66122
\(862\) −1.41006e7 −0.646351
\(863\) 1.50017e7 0.685665 0.342833 0.939397i \(-0.388614\pi\)
0.342833 + 0.939397i \(0.388614\pi\)
\(864\) −8.01278e6 −0.365173
\(865\) 0 0
\(866\) −1.10425e7 −0.500348
\(867\) 4.56642e7 2.06314
\(868\) −6.90441e6 −0.311048
\(869\) 3.07497e7 1.38131
\(870\) 0 0
\(871\) −5.15253e6 −0.230131
\(872\) −6.35395e6 −0.282978
\(873\) 1.43898e7 0.639029
\(874\) 2.85124e6 0.126257
\(875\) 0 0
\(876\) −1.58108e7 −0.696136
\(877\) −2.64018e7 −1.15914 −0.579569 0.814923i \(-0.696779\pi\)
−0.579569 + 0.814923i \(0.696779\pi\)
\(878\) 4.18989e6 0.183428
\(879\) −4.61719e7 −2.01561
\(880\) 0 0
\(881\) −3.15138e7 −1.36792 −0.683960 0.729520i \(-0.739744\pi\)
−0.683960 + 0.729520i \(0.739744\pi\)
\(882\) −650845. −0.0281713
\(883\) 1.04657e7 0.451718 0.225859 0.974160i \(-0.427481\pi\)
0.225859 + 0.974160i \(0.427481\pi\)
\(884\) 4.38327e6 0.188655
\(885\) 0 0
\(886\) 8.53607e6 0.365320
\(887\) −2.29824e7 −0.980815 −0.490408 0.871493i \(-0.663152\pi\)
−0.490408 + 0.871493i \(0.663152\pi\)
\(888\) 4.81292e7 2.04822
\(889\) −3.15136e7 −1.33735
\(890\) 0 0
\(891\) 5.16376e7 2.17907
\(892\) −1.31366e6 −0.0552804
\(893\) 3.97532e7 1.66818
\(894\) −1.65589e7 −0.692928
\(895\) 0 0
\(896\) −456146. −0.0189816
\(897\) −1.02833e6 −0.0426730
\(898\) 8.54508e6 0.353610
\(899\) 1.84111e7 0.759766
\(900\) 0 0
\(901\) 2.30059e7 0.944121
\(902\) −4.40752e7 −1.80376
\(903\) 4.29048e7 1.75100
\(904\) −1.44804e7 −0.589332
\(905\) 0 0
\(906\) −4.62996e6 −0.187394
\(907\) 3.45508e7 1.39457 0.697284 0.716795i \(-0.254392\pi\)
0.697284 + 0.716795i \(0.254392\pi\)
\(908\) 4.89572e6 0.197062
\(909\) −1.79533e7 −0.720666
\(910\) 0 0
\(911\) −2.24713e7 −0.897081 −0.448540 0.893763i \(-0.648056\pi\)
−0.448540 + 0.893763i \(0.648056\pi\)
\(912\) 1.77770e7 0.707736
\(913\) 5.94775e7 2.36143
\(914\) −2.99298e7 −1.18506
\(915\) 0 0
\(916\) −7.40242e6 −0.291498
\(917\) 1.23810e7 0.486218
\(918\) 1.48113e7 0.580078
\(919\) 1.60273e7 0.625995 0.312997 0.949754i \(-0.398667\pi\)
0.312997 + 0.949754i \(0.398667\pi\)
\(920\) 0 0
\(921\) −1.60240e7 −0.622476
\(922\) −1.13492e7 −0.439680
\(923\) −2.46084e6 −0.0950779
\(924\) 2.39067e7 0.921170
\(925\) 0 0
\(926\) −2.90898e7 −1.11484
\(927\) 1.78587e7 0.682576
\(928\) 2.02647e7 0.772451
\(929\) −2.25541e6 −0.0857404 −0.0428702 0.999081i \(-0.513650\pi\)
−0.0428702 + 0.999081i \(0.513650\pi\)
\(930\) 0 0
\(931\) 2.13555e6 0.0807487
\(932\) 5.98875e6 0.225838
\(933\) −4.97231e7 −1.87006
\(934\) −3.16238e7 −1.18617
\(935\) 0 0
\(936\) −5.07259e6 −0.189252
\(937\) −1.45299e7 −0.540645 −0.270323 0.962770i \(-0.587130\pi\)
−0.270323 + 0.962770i \(0.587130\pi\)
\(938\) −1.65128e7 −0.612792
\(939\) 2.92087e6 0.108106
\(940\) 0 0
\(941\) −2.81974e7 −1.03809 −0.519046 0.854746i \(-0.673713\pi\)
−0.519046 + 0.854746i \(0.673713\pi\)
\(942\) 3.31357e7 1.21666
\(943\) −4.41055e6 −0.161515
\(944\) 1.64266e7 0.599954
\(945\) 0 0
\(946\) −5.23319e7 −1.90125
\(947\) 1.11561e7 0.404238 0.202119 0.979361i \(-0.435217\pi\)
0.202119 + 0.979361i \(0.435217\pi\)
\(948\) 1.16155e7 0.419777
\(949\) 9.97223e6 0.359440
\(950\) 0 0
\(951\) 4.73659e7 1.69830
\(952\) 4.74465e7 1.69672
\(953\) 2.78329e7 0.992719 0.496359 0.868117i \(-0.334670\pi\)
0.496359 + 0.868117i \(0.334670\pi\)
\(954\) −7.88253e6 −0.280411
\(955\) 0 0
\(956\) −1.42754e7 −0.505177
\(957\) −6.37488e7 −2.25005
\(958\) −2.64415e7 −0.930833
\(959\) −3.81043e7 −1.33791
\(960\) 0 0
\(961\) −1.19957e7 −0.419004
\(962\) −8.98753e6 −0.313114
\(963\) 6.61168e6 0.229745
\(964\) −8.64109e6 −0.299486
\(965\) 0 0
\(966\) −3.29560e6 −0.113630
\(967\) −2.30836e7 −0.793847 −0.396924 0.917852i \(-0.629922\pi\)
−0.396924 + 0.917852i \(0.629922\pi\)
\(968\) −6.69640e7 −2.29696
\(969\) 8.31162e7 2.84365
\(970\) 0 0
\(971\) 1.79497e7 0.610955 0.305477 0.952199i \(-0.401184\pi\)
0.305477 + 0.952199i \(0.401184\pi\)
\(972\) 1.36680e7 0.464024
\(973\) −2.71338e7 −0.918815
\(974\) 7.47657e6 0.252525
\(975\) 0 0
\(976\) −1.85072e6 −0.0621892
\(977\) 5.63392e7 1.88832 0.944158 0.329494i \(-0.106878\pi\)
0.944158 + 0.329494i \(0.106878\pi\)
\(978\) 9.15665e6 0.306118
\(979\) −8.83775e7 −2.94703
\(980\) 0 0
\(981\) 4.97754e6 0.165136
\(982\) −7.14815e6 −0.236545
\(983\) 4.50208e6 0.148604 0.0743018 0.997236i \(-0.476327\pi\)
0.0743018 + 0.997236i \(0.476327\pi\)
\(984\) −5.62341e7 −1.85145
\(985\) 0 0
\(986\) −3.74585e7 −1.22704
\(987\) −4.59486e7 −1.50134
\(988\) 4.92784e6 0.160607
\(989\) −5.23678e6 −0.170245
\(990\) 0 0
\(991\) 4.18623e7 1.35406 0.677032 0.735954i \(-0.263266\pi\)
0.677032 + 0.735954i \(0.263266\pi\)
\(992\) 1.83081e7 0.590697
\(993\) 5.08993e7 1.63809
\(994\) −7.88649e6 −0.253173
\(995\) 0 0
\(996\) 2.24674e7 0.717635
\(997\) 5.44586e7 1.73512 0.867558 0.497337i \(-0.165689\pi\)
0.867558 + 0.497337i \(0.165689\pi\)
\(998\) 3.37062e7 1.07123
\(999\) 2.20454e7 0.698883
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.h.1.7 9
5.2 odd 4 325.6.b.h.274.13 18
5.3 odd 4 325.6.b.h.274.6 18
5.4 even 2 325.6.a.i.1.3 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.7 9 1.1 even 1 trivial
325.6.a.i.1.3 yes 9 5.4 even 2
325.6.b.h.274.6 18 5.3 odd 4
325.6.b.h.274.13 18 5.2 odd 4