Properties

Label 325.6.a.h.1.6
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 181 x^{7} + 688 x^{6} + 10455 x^{5} - 37904 x^{4} - 197375 x^{3} + 702868 x^{2} + \cdots - 366960 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(4.20685\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.20685 q^{2} -29.5845 q^{3} -21.7161 q^{4} -94.8732 q^{6} -11.5734 q^{7} -172.260 q^{8} +632.245 q^{9} +O(q^{10})\) \(q+3.20685 q^{2} -29.5845 q^{3} -21.7161 q^{4} -94.8732 q^{6} -11.5734 q^{7} -172.260 q^{8} +632.245 q^{9} -596.700 q^{11} +642.461 q^{12} +169.000 q^{13} -37.1142 q^{14} +142.504 q^{16} +2093.43 q^{17} +2027.52 q^{18} +35.4251 q^{19} +342.394 q^{21} -1913.53 q^{22} +2783.24 q^{23} +5096.22 q^{24} +541.958 q^{26} -11515.6 q^{27} +251.329 q^{28} -370.244 q^{29} +5055.06 q^{31} +5969.30 q^{32} +17653.1 q^{33} +6713.33 q^{34} -13729.9 q^{36} +4124.15 q^{37} +113.603 q^{38} -4999.79 q^{39} -18104.1 q^{41} +1098.01 q^{42} -7906.34 q^{43} +12958.0 q^{44} +8925.44 q^{46} -13185.2 q^{47} -4215.93 q^{48} -16673.1 q^{49} -61933.3 q^{51} -3670.02 q^{52} +38295.0 q^{53} -36929.0 q^{54} +1993.63 q^{56} -1048.03 q^{57} -1187.32 q^{58} +17886.6 q^{59} +7392.00 q^{61} +16210.8 q^{62} -7317.23 q^{63} +14582.5 q^{64} +56610.8 q^{66} -23357.0 q^{67} -45461.2 q^{68} -82340.9 q^{69} -33166.9 q^{71} -108910. q^{72} -10831.7 q^{73} +13225.5 q^{74} -769.295 q^{76} +6905.85 q^{77} -16033.6 q^{78} -17755.2 q^{79} +187049. q^{81} -58057.3 q^{82} -84243.8 q^{83} -7435.46 q^{84} -25354.5 q^{86} +10953.5 q^{87} +102787. q^{88} -46498.8 q^{89} -1955.91 q^{91} -60441.1 q^{92} -149552. q^{93} -42283.1 q^{94} -176599. q^{96} +154213. q^{97} -53468.0 q^{98} -377260. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} - 11 q^{3} + 91 q^{4} - 83 q^{6} + 12 q^{7} - 639 q^{8} + 562 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 5 q^{2} - 11 q^{3} + 91 q^{4} - 83 q^{6} + 12 q^{7} - 639 q^{8} + 562 q^{9} - 1422 q^{11} + 1567 q^{12} + 1521 q^{13} - 342 q^{14} - 1061 q^{16} + 648 q^{17} + 418 q^{18} - 408 q^{19} - 3912 q^{21} + 4345 q^{22} + 1839 q^{23} - 8469 q^{24} - 845 q^{26} - 7649 q^{27} - 2836 q^{28} - 8737 q^{29} + 748 q^{31} - 423 q^{32} - 356 q^{33} - 17789 q^{34} + 512 q^{36} - 15486 q^{37} - 3425 q^{38} - 1859 q^{39} - 28676 q^{41} + 6876 q^{42} + 28665 q^{43} - 30599 q^{44} - 12056 q^{46} - 29452 q^{47} + 64759 q^{48} - 40907 q^{49} - 31006 q^{51} + 15379 q^{52} + 75977 q^{53} - 102761 q^{54} - 23002 q^{56} - 38038 q^{57} + 142384 q^{58} - 88142 q^{59} + 28165 q^{61} - 137308 q^{62} + 41492 q^{63} - 100845 q^{64} + 42577 q^{66} - 94754 q^{67} + 89267 q^{68} - 181747 q^{69} - 70562 q^{71} - 263778 q^{72} + 60602 q^{73} - 135676 q^{74} + 46373 q^{76} - 140292 q^{77} - 14027 q^{78} - 164073 q^{79} - 69935 q^{81} - 72887 q^{82} - 22458 q^{83} - 345656 q^{84} - 294920 q^{86} - 87031 q^{87} + 430607 q^{88} - 252698 q^{89} + 2028 q^{91} - 237824 q^{92} + 56556 q^{93} - 501606 q^{94} - 319181 q^{96} + 137986 q^{97} + 378699 q^{98} - 757776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.20685 0.566897 0.283448 0.958988i \(-0.408522\pi\)
0.283448 + 0.958988i \(0.408522\pi\)
\(3\) −29.5845 −1.89785 −0.948925 0.315503i \(-0.897827\pi\)
−0.948925 + 0.315503i \(0.897827\pi\)
\(4\) −21.7161 −0.678628
\(5\) 0 0
\(6\) −94.8732 −1.07588
\(7\) −11.5734 −0.0892722 −0.0446361 0.999003i \(-0.514213\pi\)
−0.0446361 + 0.999003i \(0.514213\pi\)
\(8\) −172.260 −0.951609
\(9\) 632.245 2.60183
\(10\) 0 0
\(11\) −596.700 −1.48687 −0.743437 0.668806i \(-0.766806\pi\)
−0.743437 + 0.668806i \(0.766806\pi\)
\(12\) 642.461 1.28793
\(13\) 169.000 0.277350
\(14\) −37.1142 −0.0506081
\(15\) 0 0
\(16\) 142.504 0.139164
\(17\) 2093.43 1.75686 0.878429 0.477872i \(-0.158592\pi\)
0.878429 + 0.477872i \(0.158592\pi\)
\(18\) 2027.52 1.47497
\(19\) 35.4251 0.0225127 0.0112563 0.999937i \(-0.496417\pi\)
0.0112563 + 0.999937i \(0.496417\pi\)
\(20\) 0 0
\(21\) 342.394 0.169425
\(22\) −1913.53 −0.842904
\(23\) 2783.24 1.09706 0.548531 0.836130i \(-0.315187\pi\)
0.548531 + 0.836130i \(0.315187\pi\)
\(24\) 5096.22 1.80601
\(25\) 0 0
\(26\) 541.958 0.157229
\(27\) −11515.6 −3.04004
\(28\) 251.329 0.0605826
\(29\) −370.244 −0.0817511 −0.0408755 0.999164i \(-0.513015\pi\)
−0.0408755 + 0.999164i \(0.513015\pi\)
\(30\) 0 0
\(31\) 5055.06 0.944761 0.472381 0.881395i \(-0.343395\pi\)
0.472381 + 0.881395i \(0.343395\pi\)
\(32\) 5969.30 1.03050
\(33\) 17653.1 2.82186
\(34\) 6713.33 0.995957
\(35\) 0 0
\(36\) −13729.9 −1.76568
\(37\) 4124.15 0.495256 0.247628 0.968855i \(-0.420349\pi\)
0.247628 + 0.968855i \(0.420349\pi\)
\(38\) 113.603 0.0127624
\(39\) −4999.79 −0.526369
\(40\) 0 0
\(41\) −18104.1 −1.68197 −0.840985 0.541058i \(-0.818024\pi\)
−0.840985 + 0.541058i \(0.818024\pi\)
\(42\) 1098.01 0.0960466
\(43\) −7906.34 −0.652085 −0.326042 0.945355i \(-0.605715\pi\)
−0.326042 + 0.945355i \(0.605715\pi\)
\(44\) 12958.0 1.00903
\(45\) 0 0
\(46\) 8925.44 0.621921
\(47\) −13185.2 −0.870650 −0.435325 0.900273i \(-0.643366\pi\)
−0.435325 + 0.900273i \(0.643366\pi\)
\(48\) −4215.93 −0.264113
\(49\) −16673.1 −0.992030
\(50\) 0 0
\(51\) −61933.3 −3.33425
\(52\) −3670.02 −0.188218
\(53\) 38295.0 1.87263 0.936316 0.351160i \(-0.114213\pi\)
0.936316 + 0.351160i \(0.114213\pi\)
\(54\) −36929.0 −1.72339
\(55\) 0 0
\(56\) 1993.63 0.0849522
\(57\) −1048.03 −0.0427256
\(58\) −1187.32 −0.0463444
\(59\) 17886.6 0.668955 0.334477 0.942404i \(-0.391440\pi\)
0.334477 + 0.942404i \(0.391440\pi\)
\(60\) 0 0
\(61\) 7392.00 0.254353 0.127177 0.991880i \(-0.459408\pi\)
0.127177 + 0.991880i \(0.459408\pi\)
\(62\) 16210.8 0.535582
\(63\) −7317.23 −0.232271
\(64\) 14582.5 0.445023
\(65\) 0 0
\(66\) 56610.8 1.59970
\(67\) −23357.0 −0.635667 −0.317834 0.948147i \(-0.602955\pi\)
−0.317834 + 0.948147i \(0.602955\pi\)
\(68\) −45461.2 −1.19225
\(69\) −82340.9 −2.08206
\(70\) 0 0
\(71\) −33166.9 −0.780835 −0.390417 0.920638i \(-0.627669\pi\)
−0.390417 + 0.920638i \(0.627669\pi\)
\(72\) −108910. −2.47593
\(73\) −10831.7 −0.237898 −0.118949 0.992900i \(-0.537953\pi\)
−0.118949 + 0.992900i \(0.537953\pi\)
\(74\) 13225.5 0.280759
\(75\) 0 0
\(76\) −769.295 −0.0152777
\(77\) 6905.85 0.132736
\(78\) −16033.6 −0.298397
\(79\) −17755.2 −0.320079 −0.160039 0.987111i \(-0.551162\pi\)
−0.160039 + 0.987111i \(0.551162\pi\)
\(80\) 0 0
\(81\) 187049. 3.16770
\(82\) −58057.3 −0.953503
\(83\) −84243.8 −1.34228 −0.671139 0.741331i \(-0.734195\pi\)
−0.671139 + 0.741331i \(0.734195\pi\)
\(84\) −7435.46 −0.114977
\(85\) 0 0
\(86\) −25354.5 −0.369665
\(87\) 10953.5 0.155151
\(88\) 102787. 1.41492
\(89\) −46498.8 −0.622253 −0.311126 0.950369i \(-0.600706\pi\)
−0.311126 + 0.950369i \(0.600706\pi\)
\(90\) 0 0
\(91\) −1955.91 −0.0247597
\(92\) −60441.1 −0.744497
\(93\) −149552. −1.79301
\(94\) −42283.1 −0.493568
\(95\) 0 0
\(96\) −176599. −1.95573
\(97\) 154213. 1.66414 0.832072 0.554667i \(-0.187155\pi\)
0.832072 + 0.554667i \(0.187155\pi\)
\(98\) −53468.0 −0.562379
\(99\) −377260. −3.86860
\(100\) 0 0
\(101\) −110873. −1.08149 −0.540745 0.841187i \(-0.681858\pi\)
−0.540745 + 0.841187i \(0.681858\pi\)
\(102\) −198611. −1.89018
\(103\) 104407. 0.969699 0.484849 0.874598i \(-0.338874\pi\)
0.484849 + 0.874598i \(0.338874\pi\)
\(104\) −29111.9 −0.263929
\(105\) 0 0
\(106\) 122806. 1.06159
\(107\) −2229.04 −0.0188217 −0.00941084 0.999956i \(-0.502996\pi\)
−0.00941084 + 0.999956i \(0.502996\pi\)
\(108\) 250075. 2.06305
\(109\) −47011.7 −0.379000 −0.189500 0.981881i \(-0.560687\pi\)
−0.189500 + 0.981881i \(0.560687\pi\)
\(110\) 0 0
\(111\) −122011. −0.939921
\(112\) −1649.26 −0.0124235
\(113\) 198706. 1.46391 0.731956 0.681352i \(-0.238608\pi\)
0.731956 + 0.681352i \(0.238608\pi\)
\(114\) −3360.89 −0.0242210
\(115\) 0 0
\(116\) 8040.27 0.0554786
\(117\) 106849. 0.721618
\(118\) 57359.5 0.379228
\(119\) −24228.2 −0.156839
\(120\) 0 0
\(121\) 194999. 1.21079
\(122\) 23705.0 0.144192
\(123\) 535603. 3.19213
\(124\) −109776. −0.641142
\(125\) 0 0
\(126\) −23465.3 −0.131674
\(127\) 87410.5 0.480899 0.240450 0.970662i \(-0.422705\pi\)
0.240450 + 0.970662i \(0.422705\pi\)
\(128\) −144254. −0.778219
\(129\) 233905. 1.23756
\(130\) 0 0
\(131\) −19351.5 −0.0985226 −0.0492613 0.998786i \(-0.515687\pi\)
−0.0492613 + 0.998786i \(0.515687\pi\)
\(132\) −383356. −1.91500
\(133\) −409.989 −0.00200975
\(134\) −74902.4 −0.360358
\(135\) 0 0
\(136\) −360614. −1.67184
\(137\) −79960.9 −0.363979 −0.181989 0.983300i \(-0.558254\pi\)
−0.181989 + 0.983300i \(0.558254\pi\)
\(138\) −264055. −1.18031
\(139\) 285962. 1.25537 0.627684 0.778468i \(-0.284003\pi\)
0.627684 + 0.778468i \(0.284003\pi\)
\(140\) 0 0
\(141\) 390079. 1.65236
\(142\) −106361. −0.442652
\(143\) −100842. −0.412385
\(144\) 90097.7 0.362083
\(145\) 0 0
\(146\) −34735.8 −0.134864
\(147\) 493265. 1.88272
\(148\) −89560.4 −0.336095
\(149\) 506571. 1.86928 0.934641 0.355593i \(-0.115721\pi\)
0.934641 + 0.355593i \(0.115721\pi\)
\(150\) 0 0
\(151\) −353322. −1.26104 −0.630519 0.776174i \(-0.717158\pi\)
−0.630519 + 0.776174i \(0.717158\pi\)
\(152\) −6102.31 −0.0214232
\(153\) 1.32356e6 4.57105
\(154\) 22146.0 0.0752479
\(155\) 0 0
\(156\) 108576. 0.357209
\(157\) 222777. 0.721308 0.360654 0.932700i \(-0.382554\pi\)
0.360654 + 0.932700i \(0.382554\pi\)
\(158\) −56938.2 −0.181452
\(159\) −1.13294e6 −3.55397
\(160\) 0 0
\(161\) −32211.6 −0.0979371
\(162\) 599840. 1.79576
\(163\) −485830. −1.43224 −0.716120 0.697978i \(-0.754083\pi\)
−0.716120 + 0.697978i \(0.754083\pi\)
\(164\) 393151. 1.14143
\(165\) 0 0
\(166\) −270157. −0.760933
\(167\) 492737. 1.36717 0.683587 0.729869i \(-0.260419\pi\)
0.683587 + 0.729869i \(0.260419\pi\)
\(168\) −58980.7 −0.161226
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 22397.3 0.0585742
\(172\) 171695. 0.442523
\(173\) −608498. −1.54577 −0.772883 0.634549i \(-0.781186\pi\)
−0.772883 + 0.634549i \(0.781186\pi\)
\(174\) 35126.3 0.0879547
\(175\) 0 0
\(176\) −85032.3 −0.206920
\(177\) −529166. −1.26958
\(178\) −149115. −0.352753
\(179\) −270050. −0.629958 −0.314979 0.949099i \(-0.601997\pi\)
−0.314979 + 0.949099i \(0.601997\pi\)
\(180\) 0 0
\(181\) −602323. −1.36657 −0.683286 0.730151i \(-0.739450\pi\)
−0.683286 + 0.730151i \(0.739450\pi\)
\(182\) −6272.30 −0.0140362
\(183\) −218689. −0.482724
\(184\) −479440. −1.04397
\(185\) 0 0
\(186\) −479590. −1.01645
\(187\) −1.24915e6 −2.61223
\(188\) 286332. 0.590847
\(189\) 133275. 0.271391
\(190\) 0 0
\(191\) −138491. −0.274688 −0.137344 0.990523i \(-0.543857\pi\)
−0.137344 + 0.990523i \(0.543857\pi\)
\(192\) −431417. −0.844586
\(193\) −58857.2 −0.113738 −0.0568691 0.998382i \(-0.518112\pi\)
−0.0568691 + 0.998382i \(0.518112\pi\)
\(194\) 494537. 0.943398
\(195\) 0 0
\(196\) 362074. 0.673220
\(197\) −271860. −0.499091 −0.249545 0.968363i \(-0.580281\pi\)
−0.249545 + 0.968363i \(0.580281\pi\)
\(198\) −1.20982e6 −2.19309
\(199\) −71334.8 −0.127694 −0.0638468 0.997960i \(-0.520337\pi\)
−0.0638468 + 0.997960i \(0.520337\pi\)
\(200\) 0 0
\(201\) 691006. 1.20640
\(202\) −355553. −0.613093
\(203\) 4284.99 0.00729810
\(204\) 1.34495e6 2.26272
\(205\) 0 0
\(206\) 334818. 0.549719
\(207\) 1.75969e6 2.85437
\(208\) 24083.2 0.0385973
\(209\) −21138.1 −0.0334735
\(210\) 0 0
\(211\) 480921. 0.743648 0.371824 0.928303i \(-0.378732\pi\)
0.371824 + 0.928303i \(0.378732\pi\)
\(212\) −831618. −1.27082
\(213\) 981228. 1.48191
\(214\) −7148.20 −0.0106699
\(215\) 0 0
\(216\) 1.98368e6 2.89292
\(217\) −58504.3 −0.0843409
\(218\) −150759. −0.214854
\(219\) 320452. 0.451495
\(220\) 0 0
\(221\) 353790. 0.487265
\(222\) −391271. −0.532838
\(223\) −1.34684e6 −1.81365 −0.906823 0.421511i \(-0.861500\pi\)
−0.906823 + 0.421511i \(0.861500\pi\)
\(224\) −69085.1 −0.0919950
\(225\) 0 0
\(226\) 637221. 0.829887
\(227\) −719772. −0.927108 −0.463554 0.886069i \(-0.653426\pi\)
−0.463554 + 0.886069i \(0.653426\pi\)
\(228\) 22759.2 0.0289948
\(229\) −568410. −0.716264 −0.358132 0.933671i \(-0.616586\pi\)
−0.358132 + 0.933671i \(0.616586\pi\)
\(230\) 0 0
\(231\) −204306. −0.251914
\(232\) 63778.2 0.0777951
\(233\) 282144. 0.340472 0.170236 0.985403i \(-0.445547\pi\)
0.170236 + 0.985403i \(0.445547\pi\)
\(234\) 342650. 0.409083
\(235\) 0 0
\(236\) −388426. −0.453972
\(237\) 525278. 0.607461
\(238\) −77696.1 −0.0889113
\(239\) −143244. −0.162211 −0.0811056 0.996706i \(-0.525845\pi\)
−0.0811056 + 0.996706i \(0.525845\pi\)
\(240\) 0 0
\(241\) −369914. −0.410259 −0.205130 0.978735i \(-0.565762\pi\)
−0.205130 + 0.978735i \(0.565762\pi\)
\(242\) 625334. 0.686395
\(243\) −2.73547e6 −2.97178
\(244\) −160525. −0.172611
\(245\) 0 0
\(246\) 1.71760e6 1.80961
\(247\) 5986.84 0.00624389
\(248\) −870783. −0.899043
\(249\) 2.49231e6 2.54744
\(250\) 0 0
\(251\) −731868. −0.733244 −0.366622 0.930370i \(-0.619486\pi\)
−0.366622 + 0.930370i \(0.619486\pi\)
\(252\) 158902. 0.157626
\(253\) −1.66076e6 −1.63119
\(254\) 280312. 0.272620
\(255\) 0 0
\(256\) −929240. −0.886192
\(257\) 1.05879e6 0.999951 0.499975 0.866040i \(-0.333342\pi\)
0.499975 + 0.866040i \(0.333342\pi\)
\(258\) 750100. 0.701568
\(259\) −47730.4 −0.0442126
\(260\) 0 0
\(261\) −234085. −0.212703
\(262\) −62057.3 −0.0558521
\(263\) 318172. 0.283644 0.141822 0.989892i \(-0.454704\pi\)
0.141822 + 0.989892i \(0.454704\pi\)
\(264\) −3.04091e6 −2.68531
\(265\) 0 0
\(266\) −1314.77 −0.00113932
\(267\) 1.37565e6 1.18094
\(268\) 507223. 0.431382
\(269\) 1.13453e6 0.955954 0.477977 0.878372i \(-0.341370\pi\)
0.477977 + 0.878372i \(0.341370\pi\)
\(270\) 0 0
\(271\) −1.05400e6 −0.871805 −0.435902 0.899994i \(-0.643571\pi\)
−0.435902 + 0.899994i \(0.643571\pi\)
\(272\) 298324. 0.244492
\(273\) 57864.6 0.0469901
\(274\) −256423. −0.206338
\(275\) 0 0
\(276\) 1.78812e6 1.41294
\(277\) −2.18170e6 −1.70843 −0.854214 0.519922i \(-0.825961\pi\)
−0.854214 + 0.519922i \(0.825961\pi\)
\(278\) 917037. 0.711664
\(279\) 3.19604e6 2.45811
\(280\) 0 0
\(281\) −2.11562e6 −1.59835 −0.799176 0.601097i \(-0.794730\pi\)
−0.799176 + 0.601097i \(0.794730\pi\)
\(282\) 1.25093e6 0.936718
\(283\) −390968. −0.290185 −0.145092 0.989418i \(-0.546348\pi\)
−0.145092 + 0.989418i \(0.546348\pi\)
\(284\) 720256. 0.529896
\(285\) 0 0
\(286\) −323386. −0.233779
\(287\) 209527. 0.150153
\(288\) 3.77406e6 2.68119
\(289\) 2.96261e6 2.08655
\(290\) 0 0
\(291\) −4.56231e6 −3.15830
\(292\) 235223. 0.161444
\(293\) −2.44684e6 −1.66508 −0.832542 0.553961i \(-0.813116\pi\)
−0.832542 + 0.553961i \(0.813116\pi\)
\(294\) 1.58183e6 1.06731
\(295\) 0 0
\(296\) −710424. −0.471290
\(297\) 6.87138e6 4.52015
\(298\) 1.62450e6 1.05969
\(299\) 470368. 0.304270
\(300\) 0 0
\(301\) 91503.3 0.0582131
\(302\) −1.13305e6 −0.714878
\(303\) 3.28013e6 2.05251
\(304\) 5048.23 0.00313296
\(305\) 0 0
\(306\) 4.24447e6 2.59131
\(307\) −1.58927e6 −0.962390 −0.481195 0.876614i \(-0.659797\pi\)
−0.481195 + 0.876614i \(0.659797\pi\)
\(308\) −149968. −0.0900787
\(309\) −3.08884e6 −1.84034
\(310\) 0 0
\(311\) 3.15211e6 1.84799 0.923996 0.382403i \(-0.124903\pi\)
0.923996 + 0.382403i \(0.124903\pi\)
\(312\) 861261. 0.500897
\(313\) 1.58939e6 0.917001 0.458500 0.888694i \(-0.348387\pi\)
0.458500 + 0.888694i \(0.348387\pi\)
\(314\) 714412. 0.408907
\(315\) 0 0
\(316\) 385573. 0.217215
\(317\) −1.45529e6 −0.813396 −0.406698 0.913563i \(-0.633320\pi\)
−0.406698 + 0.913563i \(0.633320\pi\)
\(318\) −3.63317e6 −2.01473
\(319\) 220925. 0.121554
\(320\) 0 0
\(321\) 65945.1 0.0357207
\(322\) −103298. −0.0555202
\(323\) 74160.0 0.0395516
\(324\) −4.06198e6 −2.14969
\(325\) 0 0
\(326\) −1.55799e6 −0.811932
\(327\) 1.39082e6 0.719285
\(328\) 3.11861e6 1.60058
\(329\) 152598. 0.0777248
\(330\) 0 0
\(331\) 3.21928e6 1.61506 0.807530 0.589826i \(-0.200804\pi\)
0.807530 + 0.589826i \(0.200804\pi\)
\(332\) 1.82945e6 0.910908
\(333\) 2.60747e6 1.28857
\(334\) 1.58013e6 0.775046
\(335\) 0 0
\(336\) 48792.7 0.0235780
\(337\) −3.07320e6 −1.47406 −0.737031 0.675859i \(-0.763773\pi\)
−0.737031 + 0.675859i \(0.763773\pi\)
\(338\) 91590.9 0.0436074
\(339\) −5.87863e6 −2.77829
\(340\) 0 0
\(341\) −3.01635e6 −1.40474
\(342\) 71824.9 0.0332055
\(343\) 387478. 0.177833
\(344\) 1.36194e6 0.620530
\(345\) 0 0
\(346\) −1.95136e6 −0.876289
\(347\) −679230. −0.302826 −0.151413 0.988471i \(-0.548382\pi\)
−0.151413 + 0.988471i \(0.548382\pi\)
\(348\) −237868. −0.105290
\(349\) 3.00182e6 1.31923 0.659616 0.751603i \(-0.270719\pi\)
0.659616 + 0.751603i \(0.270719\pi\)
\(350\) 0 0
\(351\) −1.94614e6 −0.843154
\(352\) −3.56188e6 −1.53222
\(353\) 2.13910e6 0.913682 0.456841 0.889548i \(-0.348981\pi\)
0.456841 + 0.889548i \(0.348981\pi\)
\(354\) −1.69696e6 −0.719718
\(355\) 0 0
\(356\) 1.00977e6 0.422278
\(357\) 716779. 0.297656
\(358\) −866010. −0.357121
\(359\) 4.04695e6 1.65726 0.828631 0.559795i \(-0.189120\pi\)
0.828631 + 0.559795i \(0.189120\pi\)
\(360\) 0 0
\(361\) −2.47484e6 −0.999493
\(362\) −1.93156e6 −0.774705
\(363\) −5.76897e6 −2.29790
\(364\) 42474.7 0.0168026
\(365\) 0 0
\(366\) −701303. −0.273655
\(367\) 1.59021e6 0.616295 0.308148 0.951339i \(-0.400291\pi\)
0.308148 + 0.951339i \(0.400291\pi\)
\(368\) 396624. 0.152672
\(369\) −1.14463e7 −4.37620
\(370\) 0 0
\(371\) −443204. −0.167174
\(372\) 3.24768e6 1.21679
\(373\) −3.36023e6 −1.25054 −0.625270 0.780409i \(-0.715011\pi\)
−0.625270 + 0.780409i \(0.715011\pi\)
\(374\) −4.00584e6 −1.48086
\(375\) 0 0
\(376\) 2.27128e6 0.828518
\(377\) −62571.3 −0.0226737
\(378\) 427394. 0.153850
\(379\) 849174. 0.303668 0.151834 0.988406i \(-0.451482\pi\)
0.151834 + 0.988406i \(0.451482\pi\)
\(380\) 0 0
\(381\) −2.58600e6 −0.912674
\(382\) −444121. −0.155720
\(383\) −4.04395e6 −1.40867 −0.704335 0.709868i \(-0.748755\pi\)
−0.704335 + 0.709868i \(0.748755\pi\)
\(384\) 4.26768e6 1.47694
\(385\) 0 0
\(386\) −188746. −0.0644777
\(387\) −4.99874e6 −1.69662
\(388\) −3.34890e6 −1.12934
\(389\) −2.94042e6 −0.985226 −0.492613 0.870249i \(-0.663958\pi\)
−0.492613 + 0.870249i \(0.663958\pi\)
\(390\) 0 0
\(391\) 5.82653e6 1.92738
\(392\) 2.87209e6 0.944025
\(393\) 572504. 0.186981
\(394\) −871814. −0.282933
\(395\) 0 0
\(396\) 8.19263e6 2.62534
\(397\) −1.24060e6 −0.395053 −0.197526 0.980298i \(-0.563291\pi\)
−0.197526 + 0.980298i \(0.563291\pi\)
\(398\) −228760. −0.0723890
\(399\) 12129.3 0.00381421
\(400\) 0 0
\(401\) −972004. −0.301861 −0.150931 0.988544i \(-0.548227\pi\)
−0.150931 + 0.988544i \(0.548227\pi\)
\(402\) 2.21595e6 0.683904
\(403\) 854305. 0.262030
\(404\) 2.40773e6 0.733930
\(405\) 0 0
\(406\) 13741.3 0.00413727
\(407\) −2.46088e6 −0.736383
\(408\) 1.06686e7 3.17290
\(409\) 571971. 0.169070 0.0845348 0.996421i \(-0.473060\pi\)
0.0845348 + 0.996421i \(0.473060\pi\)
\(410\) 0 0
\(411\) 2.36561e6 0.690777
\(412\) −2.26731e6 −0.658065
\(413\) −207009. −0.0597191
\(414\) 5.64306e6 1.61813
\(415\) 0 0
\(416\) 1.00881e6 0.285809
\(417\) −8.46005e6 −2.38250
\(418\) −67786.9 −0.0189760
\(419\) −4.06416e6 −1.13093 −0.565465 0.824772i \(-0.691303\pi\)
−0.565465 + 0.824772i \(0.691303\pi\)
\(420\) 0 0
\(421\) −3.73588e6 −1.02728 −0.513639 0.858007i \(-0.671703\pi\)
−0.513639 + 0.858007i \(0.671703\pi\)
\(422\) 1.54224e6 0.421572
\(423\) −8.33631e6 −2.26528
\(424\) −6.59668e6 −1.78201
\(425\) 0 0
\(426\) 3.14665e6 0.840088
\(427\) −85550.6 −0.0227067
\(428\) 48406.0 0.0127729
\(429\) 2.98337e6 0.782644
\(430\) 0 0
\(431\) −1.53689e6 −0.398520 −0.199260 0.979947i \(-0.563854\pi\)
−0.199260 + 0.979947i \(0.563854\pi\)
\(432\) −1.64103e6 −0.423065
\(433\) 112160. 0.0287487 0.0143744 0.999897i \(-0.495424\pi\)
0.0143744 + 0.999897i \(0.495424\pi\)
\(434\) −187615. −0.0478126
\(435\) 0 0
\(436\) 1.02091e6 0.257200
\(437\) 98596.5 0.0246978
\(438\) 1.02764e6 0.255951
\(439\) −164279. −0.0406837 −0.0203418 0.999793i \(-0.506475\pi\)
−0.0203418 + 0.999793i \(0.506475\pi\)
\(440\) 0 0
\(441\) −1.05415e7 −2.58110
\(442\) 1.13455e6 0.276229
\(443\) 4.62345e6 1.11933 0.559664 0.828720i \(-0.310930\pi\)
0.559664 + 0.828720i \(0.310930\pi\)
\(444\) 2.64960e6 0.637857
\(445\) 0 0
\(446\) −4.31910e6 −1.02815
\(447\) −1.49867e7 −3.54761
\(448\) −168769. −0.0397282
\(449\) 421554. 0.0986820 0.0493410 0.998782i \(-0.484288\pi\)
0.0493410 + 0.998782i \(0.484288\pi\)
\(450\) 0 0
\(451\) 1.08027e7 2.50088
\(452\) −4.31512e6 −0.993452
\(453\) 1.04529e7 2.39326
\(454\) −2.30820e6 −0.525574
\(455\) 0 0
\(456\) 180534. 0.0406581
\(457\) 5.34433e6 1.19702 0.598512 0.801114i \(-0.295759\pi\)
0.598512 + 0.801114i \(0.295759\pi\)
\(458\) −1.82281e6 −0.406047
\(459\) −2.41072e7 −5.34091
\(460\) 0 0
\(461\) −4.95164e6 −1.08517 −0.542584 0.840002i \(-0.682554\pi\)
−0.542584 + 0.840002i \(0.682554\pi\)
\(462\) −655180. −0.142809
\(463\) −3.87726e6 −0.840567 −0.420283 0.907393i \(-0.638069\pi\)
−0.420283 + 0.907393i \(0.638069\pi\)
\(464\) −52761.5 −0.0113768
\(465\) 0 0
\(466\) 904795. 0.193013
\(467\) −1.64031e6 −0.348043 −0.174022 0.984742i \(-0.555676\pi\)
−0.174022 + 0.984742i \(0.555676\pi\)
\(468\) −2.32035e6 −0.489711
\(469\) 270320. 0.0567474
\(470\) 0 0
\(471\) −6.59075e6 −1.36893
\(472\) −3.08113e6 −0.636583
\(473\) 4.71771e6 0.969568
\(474\) 1.68449e6 0.344368
\(475\) 0 0
\(476\) 526141. 0.106435
\(477\) 2.42118e7 4.87227
\(478\) −459361. −0.0919570
\(479\) 2.63694e6 0.525123 0.262561 0.964915i \(-0.415433\pi\)
0.262561 + 0.964915i \(0.415433\pi\)
\(480\) 0 0
\(481\) 696981. 0.137359
\(482\) −1.18626e6 −0.232575
\(483\) 952965. 0.185870
\(484\) −4.23463e6 −0.821678
\(485\) 0 0
\(486\) −8.77225e6 −1.68469
\(487\) −3.47150e6 −0.663277 −0.331639 0.943407i \(-0.607601\pi\)
−0.331639 + 0.943407i \(0.607601\pi\)
\(488\) −1.27334e6 −0.242045
\(489\) 1.43731e7 2.71817
\(490\) 0 0
\(491\) −2.74272e6 −0.513425 −0.256713 0.966488i \(-0.582639\pi\)
−0.256713 + 0.966488i \(0.582639\pi\)
\(492\) −1.16312e7 −2.16627
\(493\) −775082. −0.143625
\(494\) 19198.9 0.00353964
\(495\) 0 0
\(496\) 720368. 0.131477
\(497\) 383854. 0.0697068
\(498\) 7.99248e6 1.44414
\(499\) −1.00565e7 −1.80799 −0.903996 0.427540i \(-0.859380\pi\)
−0.903996 + 0.427540i \(0.859380\pi\)
\(500\) 0 0
\(501\) −1.45774e7 −2.59469
\(502\) −2.34699e6 −0.415674
\(503\) −5.52516e6 −0.973699 −0.486850 0.873486i \(-0.661854\pi\)
−0.486850 + 0.873486i \(0.661854\pi\)
\(504\) 1.26046e6 0.221031
\(505\) 0 0
\(506\) −5.32580e6 −0.924717
\(507\) −844964. −0.145988
\(508\) −1.89821e6 −0.326352
\(509\) −6.59944e6 −1.12905 −0.564524 0.825416i \(-0.690940\pi\)
−0.564524 + 0.825416i \(0.690940\pi\)
\(510\) 0 0
\(511\) 125360. 0.0212377
\(512\) 1.63618e6 0.275839
\(513\) −407943. −0.0684393
\(514\) 3.39540e6 0.566869
\(515\) 0 0
\(516\) −5.07951e6 −0.839842
\(517\) 7.86763e6 1.29455
\(518\) −153064. −0.0250640
\(519\) 1.80021e7 2.93363
\(520\) 0 0
\(521\) −653159. −0.105420 −0.0527102 0.998610i \(-0.516786\pi\)
−0.0527102 + 0.998610i \(0.516786\pi\)
\(522\) −750677. −0.120580
\(523\) −3.60676e6 −0.576584 −0.288292 0.957543i \(-0.593087\pi\)
−0.288292 + 0.957543i \(0.593087\pi\)
\(524\) 420239. 0.0668602
\(525\) 0 0
\(526\) 1.02033e6 0.160797
\(527\) 1.05824e7 1.65981
\(528\) 2.51564e6 0.392703
\(529\) 1.31008e6 0.203544
\(530\) 0 0
\(531\) 1.13087e7 1.74051
\(532\) 8903.36 0.00136388
\(533\) −3.05960e6 −0.466495
\(534\) 4.41149e6 0.669472
\(535\) 0 0
\(536\) 4.02346e6 0.604906
\(537\) 7.98931e6 1.19557
\(538\) 3.63828e6 0.541927
\(539\) 9.94881e6 1.47502
\(540\) 0 0
\(541\) −1.92001e6 −0.282040 −0.141020 0.990007i \(-0.545038\pi\)
−0.141020 + 0.990007i \(0.545038\pi\)
\(542\) −3.38004e6 −0.494223
\(543\) 1.78194e7 2.59355
\(544\) 1.24963e7 1.81044
\(545\) 0 0
\(546\) 185563. 0.0266385
\(547\) 7.41583e6 1.05972 0.529860 0.848085i \(-0.322244\pi\)
0.529860 + 0.848085i \(0.322244\pi\)
\(548\) 1.73644e6 0.247006
\(549\) 4.67356e6 0.661784
\(550\) 0 0
\(551\) −13115.9 −0.00184043
\(552\) 1.41840e7 1.98130
\(553\) 205488. 0.0285741
\(554\) −6.99640e6 −0.968502
\(555\) 0 0
\(556\) −6.20998e6 −0.851928
\(557\) −3.52870e6 −0.481922 −0.240961 0.970535i \(-0.577463\pi\)
−0.240961 + 0.970535i \(0.577463\pi\)
\(558\) 1.02492e7 1.39349
\(559\) −1.33617e6 −0.180856
\(560\) 0 0
\(561\) 3.69556e7 4.95761
\(562\) −6.78449e6 −0.906100
\(563\) 4.31809e6 0.574144 0.287072 0.957909i \(-0.407318\pi\)
0.287072 + 0.957909i \(0.407318\pi\)
\(564\) −8.47100e6 −1.12134
\(565\) 0 0
\(566\) −1.25378e6 −0.164505
\(567\) −2.16480e6 −0.282787
\(568\) 5.71332e6 0.743049
\(569\) −3.99812e6 −0.517696 −0.258848 0.965918i \(-0.583343\pi\)
−0.258848 + 0.965918i \(0.583343\pi\)
\(570\) 0 0
\(571\) 298969. 0.0383739 0.0191869 0.999816i \(-0.493892\pi\)
0.0191869 + 0.999816i \(0.493892\pi\)
\(572\) 2.18990e6 0.279856
\(573\) 4.09720e6 0.521316
\(574\) 671921. 0.0851213
\(575\) 0 0
\(576\) 9.21972e6 1.15787
\(577\) −2.22363e6 −0.278050 −0.139025 0.990289i \(-0.544397\pi\)
−0.139025 + 0.990289i \(0.544397\pi\)
\(578\) 9.50064e6 1.18286
\(579\) 1.74126e6 0.215858
\(580\) 0 0
\(581\) 974988. 0.119828
\(582\) −1.46307e7 −1.79043
\(583\) −2.28506e7 −2.78437
\(584\) 1.86587e6 0.226386
\(585\) 0 0
\(586\) −7.84665e6 −0.943931
\(587\) −3.25215e6 −0.389560 −0.194780 0.980847i \(-0.562399\pi\)
−0.194780 + 0.980847i \(0.562399\pi\)
\(588\) −1.07118e7 −1.27767
\(589\) 179076. 0.0212691
\(590\) 0 0
\(591\) 8.04285e6 0.947199
\(592\) 587709. 0.0689220
\(593\) −1.23502e7 −1.44224 −0.721121 0.692810i \(-0.756373\pi\)
−0.721121 + 0.692810i \(0.756373\pi\)
\(594\) 2.20355e7 2.56246
\(595\) 0 0
\(596\) −1.10007e7 −1.26855
\(597\) 2.11041e6 0.242343
\(598\) 1.50840e6 0.172490
\(599\) −1.26026e7 −1.43513 −0.717567 0.696490i \(-0.754744\pi\)
−0.717567 + 0.696490i \(0.754744\pi\)
\(600\) 0 0
\(601\) 1.10475e7 1.24760 0.623802 0.781582i \(-0.285587\pi\)
0.623802 + 0.781582i \(0.285587\pi\)
\(602\) 293437. 0.0330008
\(603\) −1.47673e7 −1.65390
\(604\) 7.67277e6 0.855776
\(605\) 0 0
\(606\) 1.05189e7 1.16356
\(607\) 1.47315e7 1.62284 0.811421 0.584462i \(-0.198694\pi\)
0.811421 + 0.584462i \(0.198694\pi\)
\(608\) 211463. 0.0231993
\(609\) −126769. −0.0138507
\(610\) 0 0
\(611\) −2.22831e6 −0.241475
\(612\) −2.87426e7 −3.10204
\(613\) 6.38520e6 0.686315 0.343157 0.939278i \(-0.388504\pi\)
0.343157 + 0.939278i \(0.388504\pi\)
\(614\) −5.09655e6 −0.545576
\(615\) 0 0
\(616\) −1.18960e6 −0.126313
\(617\) 1.69836e7 1.79604 0.898020 0.439954i \(-0.145005\pi\)
0.898020 + 0.439954i \(0.145005\pi\)
\(618\) −9.90544e6 −1.04328
\(619\) −1.06421e7 −1.11635 −0.558175 0.829723i \(-0.688498\pi\)
−0.558175 + 0.829723i \(0.688498\pi\)
\(620\) 0 0
\(621\) −3.20508e7 −3.33511
\(622\) 1.01083e7 1.04762
\(623\) 538150. 0.0555499
\(624\) −712492. −0.0732518
\(625\) 0 0
\(626\) 5.09694e6 0.519845
\(627\) 625362. 0.0635276
\(628\) −4.83784e6 −0.489500
\(629\) 8.63362e6 0.870095
\(630\) 0 0
\(631\) 8.93725e6 0.893574 0.446787 0.894640i \(-0.352568\pi\)
0.446787 + 0.894640i \(0.352568\pi\)
\(632\) 3.05850e6 0.304590
\(633\) −1.42278e7 −1.41133
\(634\) −4.66691e6 −0.461111
\(635\) 0 0
\(636\) 2.46030e7 2.41183
\(637\) −2.81775e6 −0.275140
\(638\) 708473. 0.0689083
\(639\) −2.09696e7 −2.03160
\(640\) 0 0
\(641\) −1.12700e7 −1.08337 −0.541686 0.840581i \(-0.682214\pi\)
−0.541686 + 0.840581i \(0.682214\pi\)
\(642\) 211476. 0.0202499
\(643\) 1.16584e7 1.11202 0.556008 0.831177i \(-0.312332\pi\)
0.556008 + 0.831177i \(0.312332\pi\)
\(644\) 699510. 0.0664629
\(645\) 0 0
\(646\) 237820. 0.0224217
\(647\) 8.09860e6 0.760587 0.380294 0.924866i \(-0.375823\pi\)
0.380294 + 0.924866i \(0.375823\pi\)
\(648\) −3.22211e7 −3.01441
\(649\) −1.06729e7 −0.994651
\(650\) 0 0
\(651\) 1.73082e6 0.160066
\(652\) 1.05503e7 0.971958
\(653\) −2.50550e6 −0.229938 −0.114969 0.993369i \(-0.536677\pi\)
−0.114969 + 0.993369i \(0.536677\pi\)
\(654\) 4.46015e6 0.407760
\(655\) 0 0
\(656\) −2.57992e6 −0.234070
\(657\) −6.84831e6 −0.618971
\(658\) 489360. 0.0440619
\(659\) −2.14090e7 −1.92036 −0.960182 0.279376i \(-0.909873\pi\)
−0.960182 + 0.279376i \(0.909873\pi\)
\(660\) 0 0
\(661\) 1.59525e7 1.42012 0.710060 0.704141i \(-0.248668\pi\)
0.710060 + 0.704141i \(0.248668\pi\)
\(662\) 1.03238e7 0.915572
\(663\) −1.04667e7 −0.924755
\(664\) 1.45118e7 1.27732
\(665\) 0 0
\(666\) 8.36177e6 0.730488
\(667\) −1.03048e6 −0.0896860
\(668\) −1.07003e7 −0.927803
\(669\) 3.98455e7 3.44203
\(670\) 0 0
\(671\) −4.41080e6 −0.378191
\(672\) 2.04385e6 0.174593
\(673\) 9.71969e6 0.827208 0.413604 0.910457i \(-0.364270\pi\)
0.413604 + 0.910457i \(0.364270\pi\)
\(674\) −9.85529e6 −0.835641
\(675\) 0 0
\(676\) −620234. −0.0522022
\(677\) 1.01440e7 0.850628 0.425314 0.905046i \(-0.360164\pi\)
0.425314 + 0.905046i \(0.360164\pi\)
\(678\) −1.88519e7 −1.57500
\(679\) −1.78477e6 −0.148562
\(680\) 0 0
\(681\) 2.12941e7 1.75951
\(682\) −9.67300e6 −0.796343
\(683\) −6.41414e6 −0.526122 −0.263061 0.964779i \(-0.584732\pi\)
−0.263061 + 0.964779i \(0.584732\pi\)
\(684\) −486383. −0.0397501
\(685\) 0 0
\(686\) 1.24259e6 0.100813
\(687\) 1.68161e7 1.35936
\(688\) −1.12669e6 −0.0907471
\(689\) 6.47185e6 0.519374
\(690\) 0 0
\(691\) −8.38877e6 −0.668349 −0.334175 0.942511i \(-0.608458\pi\)
−0.334175 + 0.942511i \(0.608458\pi\)
\(692\) 1.32142e7 1.04900
\(693\) 4.36619e6 0.345358
\(694\) −2.17819e6 −0.171671
\(695\) 0 0
\(696\) −1.88685e6 −0.147643
\(697\) −3.78998e7 −2.95498
\(698\) 9.62639e6 0.747868
\(699\) −8.34712e6 −0.646165
\(700\) 0 0
\(701\) −5.05150e6 −0.388263 −0.194131 0.980976i \(-0.562189\pi\)
−0.194131 + 0.980976i \(0.562189\pi\)
\(702\) −6.24099e6 −0.477981
\(703\) 146098. 0.0111495
\(704\) −8.70138e6 −0.661693
\(705\) 0 0
\(706\) 6.85979e6 0.517963
\(707\) 1.28318e6 0.0965470
\(708\) 1.14914e7 0.861570
\(709\) 1.37386e7 1.02642 0.513212 0.858262i \(-0.328455\pi\)
0.513212 + 0.858262i \(0.328455\pi\)
\(710\) 0 0
\(711\) −1.12256e7 −0.832791
\(712\) 8.00986e6 0.592141
\(713\) 1.40694e7 1.03646
\(714\) 2.29860e6 0.168740
\(715\) 0 0
\(716\) 5.86443e6 0.427507
\(717\) 4.23780e6 0.307852
\(718\) 1.29780e7 0.939496
\(719\) −8.31655e6 −0.599958 −0.299979 0.953946i \(-0.596980\pi\)
−0.299979 + 0.953946i \(0.596980\pi\)
\(720\) 0 0
\(721\) −1.20835e6 −0.0865671
\(722\) −7.93646e6 −0.566609
\(723\) 1.09437e7 0.778610
\(724\) 1.30801e7 0.927395
\(725\) 0 0
\(726\) −1.85002e7 −1.30267
\(727\) 4.72548e6 0.331596 0.165798 0.986160i \(-0.446980\pi\)
0.165798 + 0.986160i \(0.446980\pi\)
\(728\) 336924. 0.0235615
\(729\) 3.54746e7 2.47229
\(730\) 0 0
\(731\) −1.65514e7 −1.14562
\(732\) 4.74907e6 0.327590
\(733\) 1.07477e6 0.0738847 0.0369423 0.999317i \(-0.488238\pi\)
0.0369423 + 0.999317i \(0.488238\pi\)
\(734\) 5.09956e6 0.349376
\(735\) 0 0
\(736\) 1.66140e7 1.13052
\(737\) 1.39371e7 0.945157
\(738\) −3.67064e7 −2.48086
\(739\) −2.04180e7 −1.37531 −0.687657 0.726036i \(-0.741361\pi\)
−0.687657 + 0.726036i \(0.741361\pi\)
\(740\) 0 0
\(741\) −177118. −0.0118500
\(742\) −1.42129e6 −0.0947703
\(743\) −2.55138e7 −1.69552 −0.847762 0.530377i \(-0.822050\pi\)
−0.847762 + 0.530377i \(0.822050\pi\)
\(744\) 2.57617e7 1.70625
\(745\) 0 0
\(746\) −1.07758e7 −0.708926
\(747\) −5.32627e7 −3.49238
\(748\) 2.71267e7 1.77273
\(749\) 25797.6 0.00168025
\(750\) 0 0
\(751\) 2.09344e7 1.35444 0.677220 0.735780i \(-0.263184\pi\)
0.677220 + 0.735780i \(0.263184\pi\)
\(752\) −1.87896e6 −0.121163
\(753\) 2.16520e7 1.39159
\(754\) −200657. −0.0128536
\(755\) 0 0
\(756\) −2.89422e6 −0.184173
\(757\) −6.00641e6 −0.380956 −0.190478 0.981691i \(-0.561004\pi\)
−0.190478 + 0.981691i \(0.561004\pi\)
\(758\) 2.72317e6 0.172148
\(759\) 4.91328e7 3.09576
\(760\) 0 0
\(761\) −4.48972e6 −0.281033 −0.140517 0.990078i \(-0.544876\pi\)
−0.140517 + 0.990078i \(0.544876\pi\)
\(762\) −8.29291e6 −0.517392
\(763\) 544085. 0.0338342
\(764\) 3.00749e6 0.186411
\(765\) 0 0
\(766\) −1.29684e7 −0.798570
\(767\) 3.02283e6 0.185535
\(768\) 2.74911e7 1.68186
\(769\) 2.20361e7 1.34375 0.671877 0.740663i \(-0.265488\pi\)
0.671877 + 0.740663i \(0.265488\pi\)
\(770\) 0 0
\(771\) −3.13239e7 −1.89776
\(772\) 1.27815e6 0.0771859
\(773\) −9.09786e6 −0.547634 −0.273817 0.961782i \(-0.588286\pi\)
−0.273817 + 0.961782i \(0.588286\pi\)
\(774\) −1.60302e7 −0.961806
\(775\) 0 0
\(776\) −2.65646e7 −1.58361
\(777\) 1.41208e6 0.0839088
\(778\) −9.42950e6 −0.558521
\(779\) −641341. −0.0378656
\(780\) 0 0
\(781\) 1.97907e7 1.16100
\(782\) 1.86848e7 1.09263
\(783\) 4.26360e6 0.248526
\(784\) −2.37598e6 −0.138055
\(785\) 0 0
\(786\) 1.83594e6 0.105999
\(787\) 1.65992e7 0.955325 0.477662 0.878544i \(-0.341484\pi\)
0.477662 + 0.878544i \(0.341484\pi\)
\(788\) 5.90374e6 0.338697
\(789\) −9.41298e6 −0.538313
\(790\) 0 0
\(791\) −2.29971e6 −0.130687
\(792\) 6.49867e7 3.68139
\(793\) 1.24925e6 0.0705449
\(794\) −3.97841e6 −0.223954
\(795\) 0 0
\(796\) 1.54911e6 0.0866564
\(797\) 2.41936e7 1.34913 0.674567 0.738213i \(-0.264330\pi\)
0.674567 + 0.738213i \(0.264330\pi\)
\(798\) 38897.0 0.00216226
\(799\) −2.76024e7 −1.52961
\(800\) 0 0
\(801\) −2.93986e7 −1.61900
\(802\) −3.11707e6 −0.171124
\(803\) 6.46329e6 0.353724
\(804\) −1.50059e7 −0.818697
\(805\) 0 0
\(806\) 2.73963e6 0.148544
\(807\) −3.35647e7 −1.81426
\(808\) 1.90989e7 1.02916
\(809\) −1.25176e7 −0.672433 −0.336216 0.941785i \(-0.609147\pi\)
−0.336216 + 0.941785i \(0.609147\pi\)
\(810\) 0 0
\(811\) −1.21034e7 −0.646183 −0.323091 0.946368i \(-0.604722\pi\)
−0.323091 + 0.946368i \(0.604722\pi\)
\(812\) −93053.3 −0.00495270
\(813\) 3.11822e7 1.65455
\(814\) −7.89166e6 −0.417453
\(815\) 0 0
\(816\) −8.82576e6 −0.464010
\(817\) −280083. −0.0146802
\(818\) 1.83423e6 0.0958450
\(819\) −1.23661e6 −0.0644205
\(820\) 0 0
\(821\) 9.24362e6 0.478613 0.239306 0.970944i \(-0.423080\pi\)
0.239306 + 0.970944i \(0.423080\pi\)
\(822\) 7.58615e6 0.391599
\(823\) −2.93437e7 −1.51013 −0.755067 0.655648i \(-0.772396\pi\)
−0.755067 + 0.655648i \(0.772396\pi\)
\(824\) −1.79851e7 −0.922774
\(825\) 0 0
\(826\) −663846. −0.0338545
\(827\) −1.74083e6 −0.0885099 −0.0442550 0.999020i \(-0.514091\pi\)
−0.0442550 + 0.999020i \(0.514091\pi\)
\(828\) −3.82136e7 −1.93706
\(829\) 2.00227e7 1.01190 0.505948 0.862564i \(-0.331143\pi\)
0.505948 + 0.862564i \(0.331143\pi\)
\(830\) 0 0
\(831\) 6.45447e7 3.24234
\(832\) 2.46444e6 0.123427
\(833\) −3.49039e7 −1.74286
\(834\) −2.71301e7 −1.35063
\(835\) 0 0
\(836\) 459038. 0.0227160
\(837\) −5.82123e7 −2.87211
\(838\) −1.30332e7 −0.641121
\(839\) 1.34556e7 0.659931 0.329966 0.943993i \(-0.392963\pi\)
0.329966 + 0.943993i \(0.392963\pi\)
\(840\) 0 0
\(841\) −2.03741e7 −0.993317
\(842\) −1.19804e7 −0.582360
\(843\) 6.25897e7 3.03343
\(844\) −1.04437e7 −0.504661
\(845\) 0 0
\(846\) −2.67333e7 −1.28418
\(847\) −2.25681e6 −0.108090
\(848\) 5.45720e6 0.260604
\(849\) 1.15666e7 0.550727
\(850\) 0 0
\(851\) 1.14785e7 0.543326
\(852\) −2.13084e7 −1.00566
\(853\) 2.46799e7 1.16137 0.580685 0.814129i \(-0.302785\pi\)
0.580685 + 0.814129i \(0.302785\pi\)
\(854\) −274348. −0.0128723
\(855\) 0 0
\(856\) 383973. 0.0179109
\(857\) 1.53970e6 0.0716118 0.0358059 0.999359i \(-0.488600\pi\)
0.0358059 + 0.999359i \(0.488600\pi\)
\(858\) 9.56723e6 0.443678
\(859\) 2.43418e7 1.12556 0.562781 0.826606i \(-0.309732\pi\)
0.562781 + 0.826606i \(0.309732\pi\)
\(860\) 0 0
\(861\) −6.19875e6 −0.284968
\(862\) −4.92858e6 −0.225920
\(863\) −2.27132e7 −1.03813 −0.519064 0.854735i \(-0.673720\pi\)
−0.519064 + 0.854735i \(0.673720\pi\)
\(864\) −6.87403e7 −3.13276
\(865\) 0 0
\(866\) 359681. 0.0162976
\(867\) −8.76474e7 −3.95996
\(868\) 1.27049e6 0.0572361
\(869\) 1.05945e7 0.475917
\(870\) 0 0
\(871\) −3.94733e6 −0.176302
\(872\) 8.09821e6 0.360660
\(873\) 9.75003e7 4.32982
\(874\) 316184. 0.0140011
\(875\) 0 0
\(876\) −6.95897e6 −0.306397
\(877\) −1.86650e7 −0.819464 −0.409732 0.912206i \(-0.634378\pi\)
−0.409732 + 0.912206i \(0.634378\pi\)
\(878\) −526817. −0.0230634
\(879\) 7.23886e7 3.16008
\(880\) 0 0
\(881\) 2.91491e7 1.26528 0.632639 0.774447i \(-0.281972\pi\)
0.632639 + 0.774447i \(0.281972\pi\)
\(882\) −3.38049e7 −1.46322
\(883\) −837238. −0.0361366 −0.0180683 0.999837i \(-0.505752\pi\)
−0.0180683 + 0.999837i \(0.505752\pi\)
\(884\) −7.68295e6 −0.330672
\(885\) 0 0
\(886\) 1.48267e7 0.634543
\(887\) 2.00532e7 0.855806 0.427903 0.903825i \(-0.359252\pi\)
0.427903 + 0.903825i \(0.359252\pi\)
\(888\) 2.10176e7 0.894437
\(889\) −1.01164e6 −0.0429309
\(890\) 0 0
\(891\) −1.11612e8 −4.70997
\(892\) 2.92480e7 1.23079
\(893\) −467088. −0.0196006
\(894\) −4.80600e7 −2.01113
\(895\) 0 0
\(896\) 1.66951e6 0.0694733
\(897\) −1.39156e7 −0.577459
\(898\) 1.35186e6 0.0559425
\(899\) −1.87161e6 −0.0772353
\(900\) 0 0
\(901\) 8.01680e7 3.28995
\(902\) 3.46428e7 1.41774
\(903\) −2.70708e6 −0.110480
\(904\) −3.42290e7 −1.39307
\(905\) 0 0
\(906\) 3.35208e7 1.35673
\(907\) −2.26638e7 −0.914775 −0.457388 0.889267i \(-0.651215\pi\)
−0.457388 + 0.889267i \(0.651215\pi\)
\(908\) 1.56306e7 0.629162
\(909\) −7.00989e7 −2.81386
\(910\) 0 0
\(911\) −1.78322e7 −0.711885 −0.355942 0.934508i \(-0.615840\pi\)
−0.355942 + 0.934508i \(0.615840\pi\)
\(912\) −149350. −0.00594589
\(913\) 5.02682e7 1.99580
\(914\) 1.71385e7 0.678589
\(915\) 0 0
\(916\) 1.23436e7 0.486077
\(917\) 223962. 0.00879533
\(918\) −7.73083e7 −3.02775
\(919\) −1.61471e7 −0.630677 −0.315338 0.948979i \(-0.602118\pi\)
−0.315338 + 0.948979i \(0.602118\pi\)
\(920\) 0 0
\(921\) 4.70178e7 1.82647
\(922\) −1.58792e7 −0.615178
\(923\) −5.60521e6 −0.216565
\(924\) 4.43674e6 0.170956
\(925\) 0 0
\(926\) −1.24338e7 −0.476514
\(927\) 6.60109e7 2.52299
\(928\) −2.21010e6 −0.0842445
\(929\) −4.41295e7 −1.67761 −0.838803 0.544435i \(-0.816744\pi\)
−0.838803 + 0.544435i \(0.816744\pi\)
\(930\) 0 0
\(931\) −590644. −0.0223332
\(932\) −6.12708e6 −0.231054
\(933\) −9.32536e7 −3.50721
\(934\) −5.26022e6 −0.197305
\(935\) 0 0
\(936\) −1.84058e7 −0.686698
\(937\) 2.76747e7 1.02976 0.514878 0.857263i \(-0.327837\pi\)
0.514878 + 0.857263i \(0.327837\pi\)
\(938\) 866876. 0.0321699
\(939\) −4.70214e7 −1.74033
\(940\) 0 0
\(941\) −9.84362e6 −0.362394 −0.181197 0.983447i \(-0.557997\pi\)
−0.181197 + 0.983447i \(0.557997\pi\)
\(942\) −2.11356e7 −0.776044
\(943\) −5.03882e7 −1.84522
\(944\) 2.54891e6 0.0930947
\(945\) 0 0
\(946\) 1.51290e7 0.549645
\(947\) 1.20978e7 0.438360 0.219180 0.975684i \(-0.429662\pi\)
0.219180 + 0.975684i \(0.429662\pi\)
\(948\) −1.14070e7 −0.412240
\(949\) −1.83056e6 −0.0659810
\(950\) 0 0
\(951\) 4.30541e7 1.54370
\(952\) 4.17353e6 0.149249
\(953\) −2.22761e7 −0.794524 −0.397262 0.917705i \(-0.630040\pi\)
−0.397262 + 0.917705i \(0.630040\pi\)
\(954\) 7.76437e7 2.76207
\(955\) 0 0
\(956\) 3.11070e6 0.110081
\(957\) −6.53596e6 −0.230690
\(958\) 8.45627e6 0.297690
\(959\) 925420. 0.0324932
\(960\) 0 0
\(961\) −3.07551e6 −0.107426
\(962\) 2.23511e6 0.0778685
\(963\) −1.40930e6 −0.0489708
\(964\) 8.03309e6 0.278413
\(965\) 0 0
\(966\) 3.05602e6 0.105369
\(967\) −1.59432e7 −0.548288 −0.274144 0.961689i \(-0.588395\pi\)
−0.274144 + 0.961689i \(0.588395\pi\)
\(968\) −3.35905e7 −1.15220
\(969\) −2.19399e6 −0.0750629
\(970\) 0 0
\(971\) 1.41319e6 0.0481008 0.0240504 0.999711i \(-0.492344\pi\)
0.0240504 + 0.999711i \(0.492344\pi\)
\(972\) 5.94038e7 2.01673
\(973\) −3.30955e6 −0.112069
\(974\) −1.11326e7 −0.376010
\(975\) 0 0
\(976\) 1.05339e6 0.0353969
\(977\) −3.55699e7 −1.19219 −0.596096 0.802913i \(-0.703282\pi\)
−0.596096 + 0.802913i \(0.703282\pi\)
\(978\) 4.60923e7 1.54092
\(979\) 2.77458e7 0.925211
\(980\) 0 0
\(981\) −2.97229e7 −0.986095
\(982\) −8.79548e6 −0.291059
\(983\) 4.80377e7 1.58562 0.792808 0.609471i \(-0.208618\pi\)
0.792808 + 0.609471i \(0.208618\pi\)
\(984\) −9.22627e7 −3.03765
\(985\) 0 0
\(986\) −2.48557e6 −0.0814206
\(987\) −4.51455e6 −0.147510
\(988\) −130011. −0.00423728
\(989\) −2.20052e7 −0.715377
\(990\) 0 0
\(991\) −4.57999e7 −1.48143 −0.740714 0.671821i \(-0.765512\pi\)
−0.740714 + 0.671821i \(0.765512\pi\)
\(992\) 3.01752e7 0.973577
\(993\) −9.52409e7 −3.06514
\(994\) 1.23096e6 0.0395166
\(995\) 0 0
\(996\) −5.41233e7 −1.72877
\(997\) −1.03492e7 −0.329738 −0.164869 0.986315i \(-0.552720\pi\)
−0.164869 + 0.986315i \(0.552720\pi\)
\(998\) −3.22498e7 −1.02494
\(999\) −4.74922e7 −1.50560
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.h.1.6 9
5.2 odd 4 325.6.b.h.274.12 18
5.3 odd 4 325.6.b.h.274.7 18
5.4 even 2 325.6.a.i.1.4 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.6 9 1.1 even 1 trivial
325.6.a.i.1.4 yes 9 5.4 even 2
325.6.b.h.274.7 18 5.3 odd 4
325.6.b.h.274.12 18 5.2 odd 4