Properties

Label 325.6.a.h.1.4
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 181 x^{7} + 688 x^{6} + 10455 x^{5} - 37904 x^{4} - 197375 x^{3} + 702868 x^{2} + \cdots - 366960 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.838151\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.83815 q^{2} -11.9262 q^{3} -28.6212 q^{4} +21.9221 q^{6} -112.158 q^{7} +111.431 q^{8} -100.766 q^{9} +162.916 q^{11} +341.342 q^{12} +169.000 q^{13} +206.164 q^{14} +711.052 q^{16} -379.413 q^{17} +185.224 q^{18} -284.116 q^{19} +1337.62 q^{21} -299.464 q^{22} +4188.02 q^{23} -1328.94 q^{24} -310.647 q^{26} +4099.82 q^{27} +3210.10 q^{28} +6279.50 q^{29} -7559.74 q^{31} -4872.81 q^{32} -1942.96 q^{33} +697.419 q^{34} +2884.05 q^{36} -7060.39 q^{37} +522.249 q^{38} -2015.52 q^{39} +4166.01 q^{41} -2458.75 q^{42} +21505.5 q^{43} -4662.85 q^{44} -7698.22 q^{46} +22686.6 q^{47} -8480.13 q^{48} -4227.52 q^{49} +4524.95 q^{51} -4836.98 q^{52} +4774.01 q^{53} -7536.08 q^{54} -12497.9 q^{56} +3388.42 q^{57} -11542.7 q^{58} -48311.4 q^{59} +3650.37 q^{61} +13895.9 q^{62} +11301.8 q^{63} -13796.7 q^{64} +3571.46 q^{66} -15803.8 q^{67} +10859.3 q^{68} -49947.1 q^{69} -37247.8 q^{71} -11228.5 q^{72} -29323.4 q^{73} +12978.1 q^{74} +8131.75 q^{76} -18272.4 q^{77} +3704.84 q^{78} -44954.4 q^{79} -24409.0 q^{81} -7657.75 q^{82} +23704.5 q^{83} -38284.3 q^{84} -39530.3 q^{86} -74890.4 q^{87} +18153.9 q^{88} +561.767 q^{89} -18954.7 q^{91} -119866. q^{92} +90158.8 q^{93} -41701.3 q^{94} +58114.0 q^{96} -31260.4 q^{97} +7770.82 q^{98} -16416.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} - 11 q^{3} + 91 q^{4} - 83 q^{6} + 12 q^{7} - 639 q^{8} + 562 q^{9} - 1422 q^{11} + 1567 q^{12} + 1521 q^{13} - 342 q^{14} - 1061 q^{16} + 648 q^{17} + 418 q^{18} - 408 q^{19} - 3912 q^{21}+ \cdots - 757776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.83815 −0.324942 −0.162471 0.986713i \(-0.551946\pi\)
−0.162471 + 0.986713i \(0.551946\pi\)
\(3\) −11.9262 −0.765065 −0.382532 0.923942i \(-0.624948\pi\)
−0.382532 + 0.923942i \(0.624948\pi\)
\(4\) −28.6212 −0.894413
\(5\) 0 0
\(6\) 21.9221 0.248602
\(7\) −112.158 −0.865140 −0.432570 0.901600i \(-0.642393\pi\)
−0.432570 + 0.901600i \(0.642393\pi\)
\(8\) 111.431 0.615575
\(9\) −100.766 −0.414676
\(10\) 0 0
\(11\) 162.916 0.405958 0.202979 0.979183i \(-0.434938\pi\)
0.202979 + 0.979183i \(0.434938\pi\)
\(12\) 341.342 0.684284
\(13\) 169.000 0.277350
\(14\) 206.164 0.281120
\(15\) 0 0
\(16\) 711.052 0.694386
\(17\) −379.413 −0.318413 −0.159206 0.987245i \(-0.550893\pi\)
−0.159206 + 0.987245i \(0.550893\pi\)
\(18\) 185.224 0.134746
\(19\) −284.116 −0.180556 −0.0902781 0.995917i \(-0.528776\pi\)
−0.0902781 + 0.995917i \(0.528776\pi\)
\(20\) 0 0
\(21\) 1337.62 0.661888
\(22\) −299.464 −0.131913
\(23\) 4188.02 1.65078 0.825391 0.564562i \(-0.190955\pi\)
0.825391 + 0.564562i \(0.190955\pi\)
\(24\) −1328.94 −0.470954
\(25\) 0 0
\(26\) −310.647 −0.0901227
\(27\) 4099.82 1.08232
\(28\) 3210.10 0.773792
\(29\) 6279.50 1.38653 0.693266 0.720682i \(-0.256171\pi\)
0.693266 + 0.720682i \(0.256171\pi\)
\(30\) 0 0
\(31\) −7559.74 −1.41287 −0.706436 0.707777i \(-0.749698\pi\)
−0.706436 + 0.707777i \(0.749698\pi\)
\(32\) −4872.81 −0.841210
\(33\) −1942.96 −0.310584
\(34\) 697.419 0.103466
\(35\) 0 0
\(36\) 2884.05 0.370891
\(37\) −7060.39 −0.847860 −0.423930 0.905695i \(-0.639350\pi\)
−0.423930 + 0.905695i \(0.639350\pi\)
\(38\) 522.249 0.0586703
\(39\) −2015.52 −0.212191
\(40\) 0 0
\(41\) 4166.01 0.387044 0.193522 0.981096i \(-0.438009\pi\)
0.193522 + 0.981096i \(0.438009\pi\)
\(42\) −2458.75 −0.215075
\(43\) 21505.5 1.77369 0.886845 0.462067i \(-0.152892\pi\)
0.886845 + 0.462067i \(0.152892\pi\)
\(44\) −4662.85 −0.363094
\(45\) 0 0
\(46\) −7698.22 −0.536409
\(47\) 22686.6 1.49804 0.749021 0.662546i \(-0.230524\pi\)
0.749021 + 0.662546i \(0.230524\pi\)
\(48\) −8480.13 −0.531251
\(49\) −4227.52 −0.251533
\(50\) 0 0
\(51\) 4524.95 0.243606
\(52\) −4836.98 −0.248065
\(53\) 4774.01 0.233450 0.116725 0.993164i \(-0.462760\pi\)
0.116725 + 0.993164i \(0.462760\pi\)
\(54\) −7536.08 −0.351691
\(55\) 0 0
\(56\) −12497.9 −0.532558
\(57\) 3388.42 0.138137
\(58\) −11542.7 −0.450543
\(59\) −48311.4 −1.80684 −0.903420 0.428756i \(-0.858952\pi\)
−0.903420 + 0.428756i \(0.858952\pi\)
\(60\) 0 0
\(61\) 3650.37 0.125606 0.0628032 0.998026i \(-0.479996\pi\)
0.0628032 + 0.998026i \(0.479996\pi\)
\(62\) 13895.9 0.459102
\(63\) 11301.8 0.358753
\(64\) −13796.7 −0.421042
\(65\) 0 0
\(66\) 3571.46 0.100922
\(67\) −15803.8 −0.430106 −0.215053 0.976602i \(-0.568992\pi\)
−0.215053 + 0.976602i \(0.568992\pi\)
\(68\) 10859.3 0.284792
\(69\) −49947.1 −1.26295
\(70\) 0 0
\(71\) −37247.8 −0.876909 −0.438455 0.898753i \(-0.644474\pi\)
−0.438455 + 0.898753i \(0.644474\pi\)
\(72\) −11228.5 −0.255264
\(73\) −29323.4 −0.644033 −0.322016 0.946734i \(-0.604361\pi\)
−0.322016 + 0.946734i \(0.604361\pi\)
\(74\) 12978.1 0.275506
\(75\) 0 0
\(76\) 8131.75 0.161492
\(77\) −18272.4 −0.351211
\(78\) 3704.84 0.0689497
\(79\) −44954.4 −0.810409 −0.405204 0.914226i \(-0.632800\pi\)
−0.405204 + 0.914226i \(0.632800\pi\)
\(80\) 0 0
\(81\) −24409.0 −0.413368
\(82\) −7657.75 −0.125767
\(83\) 23704.5 0.377690 0.188845 0.982007i \(-0.439526\pi\)
0.188845 + 0.982007i \(0.439526\pi\)
\(84\) −38284.3 −0.592001
\(85\) 0 0
\(86\) −39530.3 −0.576347
\(87\) −74890.4 −1.06079
\(88\) 18153.9 0.249898
\(89\) 561.767 0.00751763 0.00375882 0.999993i \(-0.498804\pi\)
0.00375882 + 0.999993i \(0.498804\pi\)
\(90\) 0 0
\(91\) −18954.7 −0.239947
\(92\) −119866. −1.47648
\(93\) 90158.8 1.08094
\(94\) −41701.3 −0.486777
\(95\) 0 0
\(96\) 58114.0 0.643580
\(97\) −31260.4 −0.337338 −0.168669 0.985673i \(-0.553947\pi\)
−0.168669 + 0.985673i \(0.553947\pi\)
\(98\) 7770.82 0.0817338
\(99\) −16416.4 −0.168341
\(100\) 0 0
\(101\) 104822. 1.02246 0.511231 0.859443i \(-0.329190\pi\)
0.511231 + 0.859443i \(0.329190\pi\)
\(102\) −8317.54 −0.0791579
\(103\) 17867.6 0.165948 0.0829742 0.996552i \(-0.473558\pi\)
0.0829742 + 0.996552i \(0.473558\pi\)
\(104\) 18831.8 0.170730
\(105\) 0 0
\(106\) −8775.35 −0.0758577
\(107\) −13003.9 −0.109803 −0.0549015 0.998492i \(-0.517484\pi\)
−0.0549015 + 0.998492i \(0.517484\pi\)
\(108\) −117342. −0.968039
\(109\) −205680. −1.65816 −0.829080 0.559130i \(-0.811135\pi\)
−0.829080 + 0.559130i \(0.811135\pi\)
\(110\) 0 0
\(111\) 84203.5 0.648668
\(112\) −79750.3 −0.600741
\(113\) 119392. 0.879585 0.439792 0.898100i \(-0.355052\pi\)
0.439792 + 0.898100i \(0.355052\pi\)
\(114\) −6228.43 −0.0448866
\(115\) 0 0
\(116\) −179727. −1.24013
\(117\) −17029.5 −0.115010
\(118\) 88803.7 0.587119
\(119\) 42554.3 0.275471
\(120\) 0 0
\(121\) −134509. −0.835198
\(122\) −6709.92 −0.0408148
\(123\) −49684.5 −0.296114
\(124\) 216369. 1.26369
\(125\) 0 0
\(126\) −20774.4 −0.116574
\(127\) −213727. −1.17584 −0.587922 0.808918i \(-0.700054\pi\)
−0.587922 + 0.808918i \(0.700054\pi\)
\(128\) 181290. 0.978024
\(129\) −256478. −1.35699
\(130\) 0 0
\(131\) 176742. 0.899833 0.449916 0.893071i \(-0.351454\pi\)
0.449916 + 0.893071i \(0.351454\pi\)
\(132\) 55609.9 0.277791
\(133\) 31866.0 0.156206
\(134\) 29049.8 0.139759
\(135\) 0 0
\(136\) −42278.4 −0.196007
\(137\) 133457. 0.607493 0.303746 0.952753i \(-0.401762\pi\)
0.303746 + 0.952753i \(0.401762\pi\)
\(138\) 91810.3 0.410387
\(139\) −179302. −0.787132 −0.393566 0.919296i \(-0.628759\pi\)
−0.393566 + 0.919296i \(0.628759\pi\)
\(140\) 0 0
\(141\) −270564. −1.14610
\(142\) 68467.0 0.284945
\(143\) 27532.8 0.112593
\(144\) −71650.0 −0.287945
\(145\) 0 0
\(146\) 53900.9 0.209273
\(147\) 50418.2 0.192439
\(148\) 202077. 0.758337
\(149\) 69993.7 0.258281 0.129141 0.991626i \(-0.458778\pi\)
0.129141 + 0.991626i \(0.458778\pi\)
\(150\) 0 0
\(151\) −360861. −1.28795 −0.643973 0.765048i \(-0.722715\pi\)
−0.643973 + 0.765048i \(0.722715\pi\)
\(152\) −31659.3 −0.111146
\(153\) 38232.0 0.132038
\(154\) 33587.3 0.114123
\(155\) 0 0
\(156\) 57686.7 0.189786
\(157\) −74024.2 −0.239676 −0.119838 0.992793i \(-0.538238\pi\)
−0.119838 + 0.992793i \(0.538238\pi\)
\(158\) 82632.9 0.263336
\(159\) −56935.7 −0.178604
\(160\) 0 0
\(161\) −469722. −1.42816
\(162\) 44867.3 0.134321
\(163\) −395684. −1.16649 −0.583243 0.812298i \(-0.698217\pi\)
−0.583243 + 0.812298i \(0.698217\pi\)
\(164\) −119236. −0.346177
\(165\) 0 0
\(166\) −43572.4 −0.122727
\(167\) 243331. 0.675160 0.337580 0.941297i \(-0.390392\pi\)
0.337580 + 0.941297i \(0.390392\pi\)
\(168\) 149052. 0.407441
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 28629.3 0.0748723
\(172\) −615512. −1.58641
\(173\) −12828.9 −0.0325892 −0.0162946 0.999867i \(-0.505187\pi\)
−0.0162946 + 0.999867i \(0.505187\pi\)
\(174\) 137660. 0.344694
\(175\) 0 0
\(176\) 115842. 0.281892
\(177\) 576171. 1.38235
\(178\) −1032.61 −0.00244280
\(179\) 643719. 1.50163 0.750817 0.660510i \(-0.229660\pi\)
0.750817 + 0.660510i \(0.229660\pi\)
\(180\) 0 0
\(181\) 598308. 1.35746 0.678732 0.734386i \(-0.262530\pi\)
0.678732 + 0.734386i \(0.262530\pi\)
\(182\) 34841.7 0.0779688
\(183\) −43534.9 −0.0960970
\(184\) 466675. 1.01618
\(185\) 0 0
\(186\) −165726. −0.351242
\(187\) −61812.4 −0.129262
\(188\) −649317. −1.33987
\(189\) −459829. −0.936357
\(190\) 0 0
\(191\) 364186. 0.722337 0.361169 0.932501i \(-0.382378\pi\)
0.361169 + 0.932501i \(0.382378\pi\)
\(192\) 164542. 0.322124
\(193\) −533579. −1.03111 −0.515555 0.856856i \(-0.672414\pi\)
−0.515555 + 0.856856i \(0.672414\pi\)
\(194\) 57461.4 0.109615
\(195\) 0 0
\(196\) 120997. 0.224975
\(197\) 295693. 0.542845 0.271422 0.962460i \(-0.412506\pi\)
0.271422 + 0.962460i \(0.412506\pi\)
\(198\) 30175.8 0.0547012
\(199\) −581653. −1.04119 −0.520597 0.853803i \(-0.674290\pi\)
−0.520597 + 0.853803i \(0.674290\pi\)
\(200\) 0 0
\(201\) 188479. 0.329059
\(202\) −192678. −0.332241
\(203\) −704297. −1.19954
\(204\) −129509. −0.217884
\(205\) 0 0
\(206\) −32843.3 −0.0539236
\(207\) −422012. −0.684539
\(208\) 120168. 0.192588
\(209\) −46287.1 −0.0732983
\(210\) 0 0
\(211\) 452629. 0.699900 0.349950 0.936768i \(-0.386198\pi\)
0.349950 + 0.936768i \(0.386198\pi\)
\(212\) −136638. −0.208801
\(213\) 444224. 0.670892
\(214\) 23903.1 0.0356796
\(215\) 0 0
\(216\) 456846. 0.666248
\(217\) 847888. 1.22233
\(218\) 378071. 0.538806
\(219\) 349717. 0.492727
\(220\) 0 0
\(221\) −64120.8 −0.0883117
\(222\) −154779. −0.210780
\(223\) 430237. 0.579356 0.289678 0.957124i \(-0.406452\pi\)
0.289678 + 0.957124i \(0.406452\pi\)
\(224\) 546526. 0.727764
\(225\) 0 0
\(226\) −219460. −0.285814
\(227\) 694207. 0.894178 0.447089 0.894489i \(-0.352461\pi\)
0.447089 + 0.894489i \(0.352461\pi\)
\(228\) −96980.7 −0.123552
\(229\) 1.29181e6 1.62784 0.813920 0.580977i \(-0.197330\pi\)
0.813920 + 0.580977i \(0.197330\pi\)
\(230\) 0 0
\(231\) 217919. 0.268699
\(232\) 699730. 0.853514
\(233\) −604845. −0.729885 −0.364942 0.931030i \(-0.618911\pi\)
−0.364942 + 0.931030i \(0.618911\pi\)
\(234\) 31302.8 0.0373717
\(235\) 0 0
\(236\) 1.38273e6 1.61606
\(237\) 536134. 0.620015
\(238\) −78221.3 −0.0895122
\(239\) −182757. −0.206957 −0.103478 0.994632i \(-0.532997\pi\)
−0.103478 + 0.994632i \(0.532997\pi\)
\(240\) 0 0
\(241\) 1.34821e6 1.49525 0.747627 0.664118i \(-0.231193\pi\)
0.747627 + 0.664118i \(0.231193\pi\)
\(242\) 247249. 0.271391
\(243\) −705150. −0.766065
\(244\) −104478. −0.112344
\(245\) 0 0
\(246\) 91327.6 0.0962198
\(247\) −48015.7 −0.0500773
\(248\) −842389. −0.869728
\(249\) −282704. −0.288957
\(250\) 0 0
\(251\) −597169. −0.598291 −0.299146 0.954207i \(-0.596702\pi\)
−0.299146 + 0.954207i \(0.596702\pi\)
\(252\) −323470. −0.320873
\(253\) 682295. 0.670149
\(254\) 392862. 0.382081
\(255\) 0 0
\(256\) 108255. 0.103240
\(257\) −230980. −0.218144 −0.109072 0.994034i \(-0.534788\pi\)
−0.109072 + 0.994034i \(0.534788\pi\)
\(258\) 471445. 0.440943
\(259\) 791881. 0.733518
\(260\) 0 0
\(261\) −632761. −0.574961
\(262\) −324879. −0.292394
\(263\) −1.89928e6 −1.69317 −0.846585 0.532254i \(-0.821345\pi\)
−0.846585 + 0.532254i \(0.821345\pi\)
\(264\) −216506. −0.191188
\(265\) 0 0
\(266\) −58574.5 −0.0507580
\(267\) −6699.73 −0.00575148
\(268\) 452324. 0.384692
\(269\) 2.30772e6 1.94448 0.972239 0.233991i \(-0.0751785\pi\)
0.972239 + 0.233991i \(0.0751785\pi\)
\(270\) 0 0
\(271\) −2.18852e6 −1.81020 −0.905101 0.425197i \(-0.860205\pi\)
−0.905101 + 0.425197i \(0.860205\pi\)
\(272\) −269782. −0.221101
\(273\) 226058. 0.183575
\(274\) −245315. −0.197400
\(275\) 0 0
\(276\) 1.42955e6 1.12960
\(277\) −24533.4 −0.0192114 −0.00960569 0.999954i \(-0.503058\pi\)
−0.00960569 + 0.999954i \(0.503058\pi\)
\(278\) 329583. 0.255772
\(279\) 761767. 0.585884
\(280\) 0 0
\(281\) −237327. −0.179300 −0.0896501 0.995973i \(-0.528575\pi\)
−0.0896501 + 0.995973i \(0.528575\pi\)
\(282\) 497338. 0.372416
\(283\) 1.21567e6 0.902297 0.451148 0.892449i \(-0.351015\pi\)
0.451148 + 0.892449i \(0.351015\pi\)
\(284\) 1.06608e6 0.784318
\(285\) 0 0
\(286\) −50609.4 −0.0365861
\(287\) −467252. −0.334847
\(288\) 491015. 0.348830
\(289\) −1.27590e6 −0.898613
\(290\) 0 0
\(291\) 372818. 0.258086
\(292\) 839272. 0.576031
\(293\) −2.18776e6 −1.48878 −0.744391 0.667744i \(-0.767260\pi\)
−0.744391 + 0.667744i \(0.767260\pi\)
\(294\) −92676.2 −0.0625316
\(295\) 0 0
\(296\) −786746. −0.521921
\(297\) 667925. 0.439376
\(298\) −128659. −0.0839265
\(299\) 707776. 0.457844
\(300\) 0 0
\(301\) −2.41202e6 −1.53449
\(302\) 663317. 0.418508
\(303\) −1.25012e6 −0.782249
\(304\) −202021. −0.125376
\(305\) 0 0
\(306\) −70276.3 −0.0429047
\(307\) −460260. −0.278713 −0.139357 0.990242i \(-0.544503\pi\)
−0.139357 + 0.990242i \(0.544503\pi\)
\(308\) 522977. 0.314127
\(309\) −213092. −0.126961
\(310\) 0 0
\(311\) −1.54256e6 −0.904362 −0.452181 0.891926i \(-0.649354\pi\)
−0.452181 + 0.891926i \(0.649354\pi\)
\(312\) −224592. −0.130619
\(313\) −1.20176e6 −0.693357 −0.346679 0.937984i \(-0.612691\pi\)
−0.346679 + 0.937984i \(0.612691\pi\)
\(314\) 136068. 0.0778808
\(315\) 0 0
\(316\) 1.28665e6 0.724840
\(317\) −512204. −0.286282 −0.143141 0.989702i \(-0.545720\pi\)
−0.143141 + 0.989702i \(0.545720\pi\)
\(318\) 104656. 0.0580361
\(319\) 1.02303e6 0.562874
\(320\) 0 0
\(321\) 155087. 0.0840064
\(322\) 863419. 0.464068
\(323\) 107797. 0.0574913
\(324\) 698614. 0.369721
\(325\) 0 0
\(326\) 727327. 0.379041
\(327\) 2.45298e6 1.26860
\(328\) 464222. 0.238254
\(329\) −2.54449e6 −1.29602
\(330\) 0 0
\(331\) −135150. −0.0678026 −0.0339013 0.999425i \(-0.510793\pi\)
−0.0339013 + 0.999425i \(0.510793\pi\)
\(332\) −678451. −0.337811
\(333\) 711449. 0.351587
\(334\) −447279. −0.219388
\(335\) 0 0
\(336\) 951117. 0.459606
\(337\) 1.40146e6 0.672214 0.336107 0.941824i \(-0.390890\pi\)
0.336107 + 0.941824i \(0.390890\pi\)
\(338\) −52499.4 −0.0249956
\(339\) −1.42389e6 −0.672939
\(340\) 0 0
\(341\) −1.23160e6 −0.573567
\(342\) −52625.0 −0.0243292
\(343\) 2.35920e6 1.08275
\(344\) 2.39637e6 1.09184
\(345\) 0 0
\(346\) 23581.4 0.0105896
\(347\) 59106.2 0.0263517 0.0131759 0.999913i \(-0.495806\pi\)
0.0131759 + 0.999913i \(0.495806\pi\)
\(348\) 2.14345e6 0.948781
\(349\) 2.58914e6 1.13787 0.568934 0.822383i \(-0.307356\pi\)
0.568934 + 0.822383i \(0.307356\pi\)
\(350\) 0 0
\(351\) 692869. 0.300181
\(352\) −793858. −0.341496
\(353\) −1.08860e6 −0.464978 −0.232489 0.972599i \(-0.574687\pi\)
−0.232489 + 0.972599i \(0.574687\pi\)
\(354\) −1.05909e6 −0.449184
\(355\) 0 0
\(356\) −16078.4 −0.00672387
\(357\) −507511. −0.210753
\(358\) −1.18325e6 −0.487944
\(359\) −3.81776e6 −1.56341 −0.781705 0.623648i \(-0.785650\pi\)
−0.781705 + 0.623648i \(0.785650\pi\)
\(360\) 0 0
\(361\) −2.39538e6 −0.967399
\(362\) −1.09978e6 −0.441097
\(363\) 1.60418e6 0.638980
\(364\) 542508. 0.214611
\(365\) 0 0
\(366\) 80023.7 0.0312260
\(367\) −4.74165e6 −1.83766 −0.918828 0.394658i \(-0.870863\pi\)
−0.918828 + 0.394658i \(0.870863\pi\)
\(368\) 2.97790e6 1.14628
\(369\) −419793. −0.160498
\(370\) 0 0
\(371\) −535445. −0.201967
\(372\) −2.58045e6 −0.966805
\(373\) −705178. −0.262438 −0.131219 0.991353i \(-0.541889\pi\)
−0.131219 + 0.991353i \(0.541889\pi\)
\(374\) 113621. 0.0420028
\(375\) 0 0
\(376\) 2.52798e6 0.922157
\(377\) 1.06123e6 0.384555
\(378\) 845234. 0.304262
\(379\) 615406. 0.220071 0.110036 0.993928i \(-0.464903\pi\)
0.110036 + 0.993928i \(0.464903\pi\)
\(380\) 0 0
\(381\) 2.54894e6 0.899597
\(382\) −669429. −0.234718
\(383\) −3.77847e6 −1.31619 −0.658096 0.752934i \(-0.728638\pi\)
−0.658096 + 0.752934i \(0.728638\pi\)
\(384\) −2.16210e6 −0.748252
\(385\) 0 0
\(386\) 980798. 0.335051
\(387\) −2.16703e6 −0.735507
\(388\) 894712. 0.301720
\(389\) −1.92639e6 −0.645461 −0.322730 0.946491i \(-0.604601\pi\)
−0.322730 + 0.946491i \(0.604601\pi\)
\(390\) 0 0
\(391\) −1.58899e6 −0.525630
\(392\) −471076. −0.154838
\(393\) −2.10786e6 −0.688430
\(394\) −543528. −0.176393
\(395\) 0 0
\(396\) 469858. 0.150566
\(397\) −3.30989e6 −1.05399 −0.526996 0.849868i \(-0.676682\pi\)
−0.526996 + 0.849868i \(0.676682\pi\)
\(398\) 1.06917e6 0.338328
\(399\) −380040. −0.119508
\(400\) 0 0
\(401\) 2.63190e6 0.817350 0.408675 0.912680i \(-0.365991\pi\)
0.408675 + 0.912680i \(0.365991\pi\)
\(402\) −346453. −0.106925
\(403\) −1.27760e6 −0.391860
\(404\) −3.00012e6 −0.914502
\(405\) 0 0
\(406\) 1.29460e6 0.389782
\(407\) −1.15025e6 −0.344196
\(408\) 504219. 0.149958
\(409\) 575874. 0.170223 0.0851116 0.996371i \(-0.472875\pi\)
0.0851116 + 0.996371i \(0.472875\pi\)
\(410\) 0 0
\(411\) −1.59164e6 −0.464771
\(412\) −511392. −0.148426
\(413\) 5.41853e6 1.56317
\(414\) 775721. 0.222436
\(415\) 0 0
\(416\) −823505. −0.233310
\(417\) 2.13838e6 0.602207
\(418\) 85082.6 0.0238177
\(419\) −5.72386e6 −1.59277 −0.796386 0.604788i \(-0.793258\pi\)
−0.796386 + 0.604788i \(0.793258\pi\)
\(420\) 0 0
\(421\) −6.93158e6 −1.90602 −0.953009 0.302942i \(-0.902031\pi\)
−0.953009 + 0.302942i \(0.902031\pi\)
\(422\) −832000. −0.227427
\(423\) −2.28604e6 −0.621202
\(424\) 531972. 0.143706
\(425\) 0 0
\(426\) −816550. −0.218001
\(427\) −409419. −0.108667
\(428\) 372187. 0.0982092
\(429\) −328361. −0.0861406
\(430\) 0 0
\(431\) −215036. −0.0557594 −0.0278797 0.999611i \(-0.508876\pi\)
−0.0278797 + 0.999611i \(0.508876\pi\)
\(432\) 2.91518e6 0.751547
\(433\) 5.17858e6 1.32737 0.663684 0.748013i \(-0.268992\pi\)
0.663684 + 0.748013i \(0.268992\pi\)
\(434\) −1.55855e6 −0.397187
\(435\) 0 0
\(436\) 5.88682e6 1.48308
\(437\) −1.18989e6 −0.298059
\(438\) −642832. −0.160108
\(439\) −7.60133e6 −1.88247 −0.941235 0.337753i \(-0.890333\pi\)
−0.941235 + 0.337753i \(0.890333\pi\)
\(440\) 0 0
\(441\) 425991. 0.104305
\(442\) 117864. 0.0286962
\(443\) −7.13928e6 −1.72840 −0.864201 0.503146i \(-0.832176\pi\)
−0.864201 + 0.503146i \(0.832176\pi\)
\(444\) −2.41000e6 −0.580177
\(445\) 0 0
\(446\) −790840. −0.188257
\(447\) −834757. −0.197602
\(448\) 1.54741e6 0.364260
\(449\) −848355. −0.198592 −0.0992960 0.995058i \(-0.531659\pi\)
−0.0992960 + 0.995058i \(0.531659\pi\)
\(450\) 0 0
\(451\) 678708. 0.157124
\(452\) −3.41713e6 −0.786712
\(453\) 4.30369e6 0.985362
\(454\) −1.27606e6 −0.290556
\(455\) 0 0
\(456\) 377575. 0.0850337
\(457\) 3.35404e6 0.751238 0.375619 0.926774i \(-0.377430\pi\)
0.375619 + 0.926774i \(0.377430\pi\)
\(458\) −2.37455e6 −0.528954
\(459\) −1.55552e6 −0.344624
\(460\) 0 0
\(461\) −3.57354e6 −0.783152 −0.391576 0.920146i \(-0.628070\pi\)
−0.391576 + 0.920146i \(0.628070\pi\)
\(462\) −400569. −0.0873116
\(463\) −1.44187e6 −0.312590 −0.156295 0.987710i \(-0.549955\pi\)
−0.156295 + 0.987710i \(0.549955\pi\)
\(464\) 4.46505e6 0.962789
\(465\) 0 0
\(466\) 1.11180e6 0.237170
\(467\) 7.03571e6 1.49285 0.746424 0.665471i \(-0.231769\pi\)
0.746424 + 0.665471i \(0.231769\pi\)
\(468\) 487405. 0.102867
\(469\) 1.77253e6 0.372101
\(470\) 0 0
\(471\) 882825. 0.183368
\(472\) −5.38339e6 −1.11225
\(473\) 3.50358e6 0.720044
\(474\) −985494. −0.201469
\(475\) 0 0
\(476\) −1.21796e6 −0.246385
\(477\) −481059. −0.0968061
\(478\) 335935. 0.0672489
\(479\) −1.40107e6 −0.279010 −0.139505 0.990221i \(-0.544551\pi\)
−0.139505 + 0.990221i \(0.544551\pi\)
\(480\) 0 0
\(481\) −1.19321e6 −0.235154
\(482\) −2.47821e6 −0.485871
\(483\) 5.60198e6 1.09263
\(484\) 3.84982e6 0.747011
\(485\) 0 0
\(486\) 1.29617e6 0.248927
\(487\) 8.45449e6 1.61534 0.807672 0.589632i \(-0.200727\pi\)
0.807672 + 0.589632i \(0.200727\pi\)
\(488\) 406764. 0.0773201
\(489\) 4.71900e6 0.892438
\(490\) 0 0
\(491\) −7.81764e6 −1.46343 −0.731715 0.681611i \(-0.761280\pi\)
−0.731715 + 0.681611i \(0.761280\pi\)
\(492\) 1.42203e6 0.264848
\(493\) −2.38252e6 −0.441489
\(494\) 88260.0 0.0162722
\(495\) 0 0
\(496\) −5.37537e6 −0.981079
\(497\) 4.17765e6 0.758649
\(498\) 519652. 0.0938944
\(499\) −6.37828e6 −1.14671 −0.573353 0.819308i \(-0.694358\pi\)
−0.573353 + 0.819308i \(0.694358\pi\)
\(500\) 0 0
\(501\) −2.90201e6 −0.516541
\(502\) 1.09769e6 0.194410
\(503\) 2.99032e6 0.526985 0.263492 0.964661i \(-0.415126\pi\)
0.263492 + 0.964661i \(0.415126\pi\)
\(504\) 1.25937e6 0.220839
\(505\) 0 0
\(506\) −1.25416e6 −0.217760
\(507\) −340624. −0.0588511
\(508\) 6.11712e6 1.05169
\(509\) −5.75011e6 −0.983743 −0.491871 0.870668i \(-0.663687\pi\)
−0.491871 + 0.870668i \(0.663687\pi\)
\(510\) 0 0
\(511\) 3.28887e6 0.557178
\(512\) −6.00028e6 −1.01157
\(513\) −1.16483e6 −0.195419
\(514\) 424577. 0.0708840
\(515\) 0 0
\(516\) 7.34071e6 1.21371
\(517\) 3.69600e6 0.608143
\(518\) −1.45560e6 −0.238351
\(519\) 153000. 0.0249329
\(520\) 0 0
\(521\) −1.06342e7 −1.71638 −0.858188 0.513336i \(-0.828409\pi\)
−0.858188 + 0.513336i \(0.828409\pi\)
\(522\) 1.16311e6 0.186829
\(523\) 5.82469e6 0.931148 0.465574 0.885009i \(-0.345848\pi\)
0.465574 + 0.885009i \(0.345848\pi\)
\(524\) −5.05857e6 −0.804822
\(525\) 0 0
\(526\) 3.49117e6 0.550182
\(527\) 2.86827e6 0.449876
\(528\) −1.38155e6 −0.215666
\(529\) 1.11032e7 1.72508
\(530\) 0 0
\(531\) 4.86816e6 0.749253
\(532\) −912043. −0.139713
\(533\) 704055. 0.107347
\(534\) 12315.1 0.00186890
\(535\) 0 0
\(536\) −1.76103e6 −0.264762
\(537\) −7.67711e6 −1.14885
\(538\) −4.24194e6 −0.631843
\(539\) −688730. −0.102112
\(540\) 0 0
\(541\) 249946. 0.0367158 0.0183579 0.999831i \(-0.494156\pi\)
0.0183579 + 0.999831i \(0.494156\pi\)
\(542\) 4.02283e6 0.588211
\(543\) −7.13552e6 −1.03855
\(544\) 1.84881e6 0.267852
\(545\) 0 0
\(546\) −415528. −0.0596512
\(547\) −9.11755e6 −1.30290 −0.651448 0.758693i \(-0.725838\pi\)
−0.651448 + 0.758693i \(0.725838\pi\)
\(548\) −3.81971e6 −0.543349
\(549\) −367834. −0.0520860
\(550\) 0 0
\(551\) −1.78411e6 −0.250347
\(552\) −5.56565e6 −0.777443
\(553\) 5.04200e6 0.701117
\(554\) 45096.1 0.00624259
\(555\) 0 0
\(556\) 5.13183e6 0.704020
\(557\) 6.02542e6 0.822905 0.411452 0.911431i \(-0.365022\pi\)
0.411452 + 0.911431i \(0.365022\pi\)
\(558\) −1.40024e6 −0.190378
\(559\) 3.63442e6 0.491933
\(560\) 0 0
\(561\) 737186. 0.0988940
\(562\) 436242. 0.0582622
\(563\) 1.08154e6 0.143804 0.0719021 0.997412i \(-0.477093\pi\)
0.0719021 + 0.997412i \(0.477093\pi\)
\(564\) 7.74387e6 1.02509
\(565\) 0 0
\(566\) −2.23458e6 −0.293194
\(567\) 2.73767e6 0.357621
\(568\) −4.15055e6 −0.539803
\(569\) 745292. 0.0965041 0.0482520 0.998835i \(-0.484635\pi\)
0.0482520 + 0.998835i \(0.484635\pi\)
\(570\) 0 0
\(571\) 4.58349e6 0.588309 0.294155 0.955758i \(-0.404962\pi\)
0.294155 + 0.955758i \(0.404962\pi\)
\(572\) −788021. −0.100704
\(573\) −4.34335e6 −0.552635
\(574\) 858880. 0.108806
\(575\) 0 0
\(576\) 1.39024e6 0.174596
\(577\) −1.17307e7 −1.46685 −0.733424 0.679772i \(-0.762079\pi\)
−0.733424 + 0.679772i \(0.762079\pi\)
\(578\) 2.34530e6 0.291997
\(579\) 6.36355e6 0.788866
\(580\) 0 0
\(581\) −2.65865e6 −0.326754
\(582\) −685295. −0.0838629
\(583\) 777762. 0.0947710
\(584\) −3.26754e6 −0.396450
\(585\) 0 0
\(586\) 4.02144e6 0.483768
\(587\) 8.72678e6 1.04534 0.522672 0.852534i \(-0.324935\pi\)
0.522672 + 0.852534i \(0.324935\pi\)
\(588\) −1.44303e6 −0.172120
\(589\) 2.14785e6 0.255103
\(590\) 0 0
\(591\) −3.52649e6 −0.415311
\(592\) −5.02030e6 −0.588743
\(593\) −500982. −0.0585040 −0.0292520 0.999572i \(-0.509313\pi\)
−0.0292520 + 0.999572i \(0.509313\pi\)
\(594\) −1.22775e6 −0.142772
\(595\) 0 0
\(596\) −2.00330e6 −0.231010
\(597\) 6.93690e6 0.796580
\(598\) −1.30100e6 −0.148773
\(599\) −1.04449e6 −0.118943 −0.0594714 0.998230i \(-0.518942\pi\)
−0.0594714 + 0.998230i \(0.518942\pi\)
\(600\) 0 0
\(601\) 3.03678e6 0.342948 0.171474 0.985189i \(-0.445147\pi\)
0.171474 + 0.985189i \(0.445147\pi\)
\(602\) 4.43365e6 0.498620
\(603\) 1.59249e6 0.178354
\(604\) 1.03283e7 1.15195
\(605\) 0 0
\(606\) 2.29791e6 0.254186
\(607\) −809264. −0.0891494 −0.0445747 0.999006i \(-0.514193\pi\)
−0.0445747 + 0.999006i \(0.514193\pi\)
\(608\) 1.38444e6 0.151886
\(609\) 8.39958e6 0.917728
\(610\) 0 0
\(611\) 3.83403e6 0.415482
\(612\) −1.09425e6 −0.118096
\(613\) −1.04363e7 −1.12175 −0.560875 0.827900i \(-0.689535\pi\)
−0.560875 + 0.827900i \(0.689535\pi\)
\(614\) 846028. 0.0905657
\(615\) 0 0
\(616\) −2.03611e6 −0.216196
\(617\) 2.56343e6 0.271086 0.135543 0.990771i \(-0.456722\pi\)
0.135543 + 0.990771i \(0.456722\pi\)
\(618\) 391695. 0.0412551
\(619\) 6.77494e6 0.710687 0.355344 0.934736i \(-0.384364\pi\)
0.355344 + 0.934736i \(0.384364\pi\)
\(620\) 0 0
\(621\) 1.71701e7 1.78667
\(622\) 2.83547e6 0.293865
\(623\) −63006.8 −0.00650380
\(624\) −1.43314e6 −0.147342
\(625\) 0 0
\(626\) 2.20902e6 0.225301
\(627\) 552028. 0.0560779
\(628\) 2.11866e6 0.214369
\(629\) 2.67881e6 0.269969
\(630\) 0 0
\(631\) 1.07855e7 1.07837 0.539185 0.842187i \(-0.318732\pi\)
0.539185 + 0.842187i \(0.318732\pi\)
\(632\) −5.00930e6 −0.498867
\(633\) −5.39814e6 −0.535469
\(634\) 941508. 0.0930252
\(635\) 0 0
\(636\) 1.62957e6 0.159746
\(637\) −714451. −0.0697628
\(638\) −1.88048e6 −0.182902
\(639\) 3.75332e6 0.363633
\(640\) 0 0
\(641\) 329201. 0.0316458 0.0158229 0.999875i \(-0.494963\pi\)
0.0158229 + 0.999875i \(0.494963\pi\)
\(642\) −285073. −0.0272972
\(643\) −1.85214e7 −1.76663 −0.883317 0.468777i \(-0.844695\pi\)
−0.883317 + 0.468777i \(0.844695\pi\)
\(644\) 1.34440e7 1.27736
\(645\) 0 0
\(646\) −198148. −0.0186814
\(647\) −4.85885e6 −0.456324 −0.228162 0.973623i \(-0.573272\pi\)
−0.228162 + 0.973623i \(0.573272\pi\)
\(648\) −2.71991e6 −0.254459
\(649\) −7.87069e6 −0.733502
\(650\) 0 0
\(651\) −1.01121e7 −0.935163
\(652\) 1.13250e7 1.04332
\(653\) 4.56792e6 0.419214 0.209607 0.977786i \(-0.432782\pi\)
0.209607 + 0.977786i \(0.432782\pi\)
\(654\) −4.50895e6 −0.412222
\(655\) 0 0
\(656\) 2.96225e6 0.268758
\(657\) 2.95481e6 0.267065
\(658\) 4.67715e6 0.421130
\(659\) −9.51262e6 −0.853270 −0.426635 0.904424i \(-0.640301\pi\)
−0.426635 + 0.904424i \(0.640301\pi\)
\(660\) 0 0
\(661\) −1.91227e6 −0.170233 −0.0851167 0.996371i \(-0.527126\pi\)
−0.0851167 + 0.996371i \(0.527126\pi\)
\(662\) 248426. 0.0220319
\(663\) 764716. 0.0675642
\(664\) 2.64141e6 0.232496
\(665\) 0 0
\(666\) −1.30775e6 −0.114246
\(667\) 2.62987e7 2.28886
\(668\) −6.96443e6 −0.603872
\(669\) −5.13108e6 −0.443245
\(670\) 0 0
\(671\) 594702. 0.0509910
\(672\) −6.51797e6 −0.556787
\(673\) −5.38551e6 −0.458341 −0.229171 0.973386i \(-0.573601\pi\)
−0.229171 + 0.973386i \(0.573601\pi\)
\(674\) −2.57610e6 −0.218431
\(675\) 0 0
\(676\) −817450. −0.0688010
\(677\) 1.65232e7 1.38555 0.692775 0.721154i \(-0.256388\pi\)
0.692775 + 0.721154i \(0.256388\pi\)
\(678\) 2.61732e6 0.218666
\(679\) 3.50612e6 0.291845
\(680\) 0 0
\(681\) −8.27923e6 −0.684104
\(682\) 2.26387e6 0.186376
\(683\) −8.83329e6 −0.724554 −0.362277 0.932070i \(-0.618001\pi\)
−0.362277 + 0.932070i \(0.618001\pi\)
\(684\) −819406. −0.0669667
\(685\) 0 0
\(686\) −4.33656e6 −0.351832
\(687\) −1.54064e7 −1.24540
\(688\) 1.52915e7 1.23163
\(689\) 806808. 0.0647474
\(690\) 0 0
\(691\) 1.77549e7 1.41457 0.707284 0.706929i \(-0.249920\pi\)
0.707284 + 0.706929i \(0.249920\pi\)
\(692\) 367179. 0.0291482
\(693\) 1.84124e6 0.145639
\(694\) −108646. −0.00856279
\(695\) 0 0
\(696\) −8.34510e6 −0.652993
\(697\) −1.58064e6 −0.123240
\(698\) −4.75923e6 −0.369741
\(699\) 7.21349e6 0.558409
\(700\) 0 0
\(701\) 1.32222e7 1.01627 0.508133 0.861279i \(-0.330336\pi\)
0.508133 + 0.861279i \(0.330336\pi\)
\(702\) −1.27360e6 −0.0975415
\(703\) 2.00597e6 0.153086
\(704\) −2.24770e6 −0.170925
\(705\) 0 0
\(706\) 2.00101e6 0.151091
\(707\) −1.17566e7 −0.884572
\(708\) −1.64907e7 −1.23639
\(709\) 2.51312e7 1.87758 0.938790 0.344490i \(-0.111948\pi\)
0.938790 + 0.344490i \(0.111948\pi\)
\(710\) 0 0
\(711\) 4.52988e6 0.336057
\(712\) 62598.2 0.00462766
\(713\) −3.16604e7 −2.33234
\(714\) 932881. 0.0684827
\(715\) 0 0
\(716\) −1.84240e7 −1.34308
\(717\) 2.17959e6 0.158335
\(718\) 7.01763e6 0.508018
\(719\) 2.01931e6 0.145674 0.0728369 0.997344i \(-0.476795\pi\)
0.0728369 + 0.997344i \(0.476795\pi\)
\(720\) 0 0
\(721\) −2.00400e6 −0.143568
\(722\) 4.40306e6 0.314349
\(723\) −1.60790e7 −1.14397
\(724\) −1.71243e7 −1.21413
\(725\) 0 0
\(726\) −2.94873e6 −0.207632
\(727\) 2.25046e6 0.157919 0.0789597 0.996878i \(-0.474840\pi\)
0.0789597 + 0.996878i \(0.474840\pi\)
\(728\) −2.11214e6 −0.147705
\(729\) 1.43411e7 0.999458
\(730\) 0 0
\(731\) −8.15946e6 −0.564765
\(732\) 1.24602e6 0.0859504
\(733\) 5.24333e6 0.360452 0.180226 0.983625i \(-0.442317\pi\)
0.180226 + 0.983625i \(0.442317\pi\)
\(734\) 8.71586e6 0.597132
\(735\) 0 0
\(736\) −2.04074e7 −1.38865
\(737\) −2.57469e6 −0.174605
\(738\) 771642. 0.0521525
\(739\) −1.56695e7 −1.05547 −0.527733 0.849411i \(-0.676958\pi\)
−0.527733 + 0.849411i \(0.676958\pi\)
\(740\) 0 0
\(741\) 572643. 0.0383123
\(742\) 984228. 0.0656275
\(743\) 6.91028e6 0.459223 0.229611 0.973282i \(-0.426254\pi\)
0.229611 + 0.973282i \(0.426254\pi\)
\(744\) 1.00465e7 0.665398
\(745\) 0 0
\(746\) 1.29622e6 0.0852772
\(747\) −2.38861e6 −0.156619
\(748\) 1.76915e6 0.115614
\(749\) 1.45850e6 0.0949949
\(750\) 0 0
\(751\) 9.35145e6 0.605033 0.302517 0.953144i \(-0.402173\pi\)
0.302517 + 0.953144i \(0.402173\pi\)
\(752\) 1.61313e7 1.04022
\(753\) 7.12194e6 0.457731
\(754\) −1.95071e6 −0.124958
\(755\) 0 0
\(756\) 1.31608e7 0.837489
\(757\) 1.84763e7 1.17186 0.585929 0.810362i \(-0.300730\pi\)
0.585929 + 0.810362i \(0.300730\pi\)
\(758\) −1.13121e6 −0.0715105
\(759\) −8.13718e6 −0.512707
\(760\) 0 0
\(761\) −1.84001e7 −1.15175 −0.575876 0.817537i \(-0.695339\pi\)
−0.575876 + 0.817537i \(0.695339\pi\)
\(762\) −4.68534e6 −0.292317
\(763\) 2.30688e7 1.43454
\(764\) −1.04234e7 −0.646067
\(765\) 0 0
\(766\) 6.94540e6 0.427686
\(767\) −8.16463e6 −0.501127
\(768\) −1.29107e6 −0.0789856
\(769\) −1.14513e7 −0.698295 −0.349148 0.937068i \(-0.613529\pi\)
−0.349148 + 0.937068i \(0.613529\pi\)
\(770\) 0 0
\(771\) 2.75471e6 0.166894
\(772\) 1.52717e7 0.922238
\(773\) 1.86929e7 1.12519 0.562597 0.826731i \(-0.309802\pi\)
0.562597 + 0.826731i \(0.309802\pi\)
\(774\) 3.98332e6 0.238997
\(775\) 0 0
\(776\) −3.48338e6 −0.207657
\(777\) −9.44412e6 −0.561189
\(778\) 3.54099e6 0.209737
\(779\) −1.18363e6 −0.0698831
\(780\) 0 0
\(781\) −6.06825e6 −0.355989
\(782\) 2.92081e6 0.170799
\(783\) 2.57448e7 1.50067
\(784\) −3.00599e6 −0.174661
\(785\) 0 0
\(786\) 3.87456e6 0.223700
\(787\) −2.53432e7 −1.45856 −0.729281 0.684214i \(-0.760145\pi\)
−0.729281 + 0.684214i \(0.760145\pi\)
\(788\) −8.46309e6 −0.485527
\(789\) 2.26512e7 1.29538
\(790\) 0 0
\(791\) −1.33908e7 −0.760964
\(792\) −1.82930e6 −0.103627
\(793\) 616912. 0.0348370
\(794\) 6.08408e6 0.342487
\(795\) 0 0
\(796\) 1.66476e7 0.931256
\(797\) 2.38962e7 1.33255 0.666276 0.745706i \(-0.267887\pi\)
0.666276 + 0.745706i \(0.267887\pi\)
\(798\) 698570. 0.0388332
\(799\) −8.60758e6 −0.476995
\(800\) 0 0
\(801\) −56607.1 −0.00311738
\(802\) −4.83783e6 −0.265592
\(803\) −4.77725e6 −0.261450
\(804\) −5.39450e6 −0.294314
\(805\) 0 0
\(806\) 2.34841e6 0.127332
\(807\) −2.75223e7 −1.48765
\(808\) 1.16804e7 0.629401
\(809\) −1.73141e7 −0.930096 −0.465048 0.885285i \(-0.653963\pi\)
−0.465048 + 0.885285i \(0.653963\pi\)
\(810\) 0 0
\(811\) 2.18577e7 1.16695 0.583474 0.812131i \(-0.301693\pi\)
0.583474 + 0.812131i \(0.301693\pi\)
\(812\) 2.01578e7 1.07289
\(813\) 2.61007e7 1.38492
\(814\) 2.11433e6 0.111844
\(815\) 0 0
\(816\) 3.21747e6 0.169157
\(817\) −6.11006e6 −0.320251
\(818\) −1.05854e6 −0.0553127
\(819\) 1.91000e6 0.0995001
\(820\) 0 0
\(821\) 7.12188e6 0.368754 0.184377 0.982856i \(-0.440973\pi\)
0.184377 + 0.982856i \(0.440973\pi\)
\(822\) 2.92567e6 0.151024
\(823\) 2.08032e7 1.07061 0.535303 0.844660i \(-0.320197\pi\)
0.535303 + 0.844660i \(0.320197\pi\)
\(824\) 1.99100e6 0.102154
\(825\) 0 0
\(826\) −9.96007e6 −0.507940
\(827\) 1.96032e6 0.0996698 0.0498349 0.998757i \(-0.484130\pi\)
0.0498349 + 0.998757i \(0.484130\pi\)
\(828\) 1.20785e7 0.612261
\(829\) 1.66913e7 0.843535 0.421768 0.906704i \(-0.361410\pi\)
0.421768 + 0.906704i \(0.361410\pi\)
\(830\) 0 0
\(831\) 292590. 0.0146979
\(832\) −2.33164e6 −0.116776
\(833\) 1.60398e6 0.0800914
\(834\) −3.93067e6 −0.195682
\(835\) 0 0
\(836\) 1.32479e6 0.0655589
\(837\) −3.09936e7 −1.52918
\(838\) 1.05213e7 0.517559
\(839\) −2.47847e7 −1.21557 −0.607783 0.794103i \(-0.707941\pi\)
−0.607783 + 0.794103i \(0.707941\pi\)
\(840\) 0 0
\(841\) 1.89209e7 0.922470
\(842\) 1.27413e7 0.619346
\(843\) 2.83040e6 0.137176
\(844\) −1.29548e7 −0.626000
\(845\) 0 0
\(846\) 4.20209e6 0.201855
\(847\) 1.50863e7 0.722563
\(848\) 3.39457e6 0.162104
\(849\) −1.44983e7 −0.690315
\(850\) 0 0
\(851\) −2.95691e7 −1.39963
\(852\) −1.27142e7 −0.600054
\(853\) −1.16070e7 −0.546193 −0.273096 0.961987i \(-0.588048\pi\)
−0.273096 + 0.961987i \(0.588048\pi\)
\(854\) 752573. 0.0353105
\(855\) 0 0
\(856\) −1.44904e6 −0.0675919
\(857\) 2.85621e7 1.32843 0.664214 0.747543i \(-0.268767\pi\)
0.664214 + 0.747543i \(0.268767\pi\)
\(858\) 603577. 0.0279907
\(859\) −2.72393e6 −0.125955 −0.0629773 0.998015i \(-0.520060\pi\)
−0.0629773 + 0.998015i \(0.520060\pi\)
\(860\) 0 0
\(861\) 5.57253e6 0.256180
\(862\) 395269. 0.0181186
\(863\) −4.18556e7 −1.91305 −0.956525 0.291651i \(-0.905795\pi\)
−0.956525 + 0.291651i \(0.905795\pi\)
\(864\) −1.99776e7 −0.910457
\(865\) 0 0
\(866\) −9.51902e6 −0.431318
\(867\) 1.52166e7 0.687497
\(868\) −2.42676e7 −1.09327
\(869\) −7.32378e6 −0.328992
\(870\) 0 0
\(871\) −2.67085e6 −0.119290
\(872\) −2.29191e7 −1.02072
\(873\) 3.15000e6 0.139886
\(874\) 2.18719e6 0.0968519
\(875\) 0 0
\(876\) −1.00093e7 −0.440701
\(877\) −3.60953e7 −1.58472 −0.792359 0.610055i \(-0.791147\pi\)
−0.792359 + 0.610055i \(0.791147\pi\)
\(878\) 1.39724e7 0.611694
\(879\) 2.60917e7 1.13901
\(880\) 0 0
\(881\) 3.31393e7 1.43848 0.719240 0.694761i \(-0.244490\pi\)
0.719240 + 0.694761i \(0.244490\pi\)
\(882\) −783036. −0.0338930
\(883\) 9.64225e6 0.416176 0.208088 0.978110i \(-0.433276\pi\)
0.208088 + 0.978110i \(0.433276\pi\)
\(884\) 1.83522e6 0.0789871
\(885\) 0 0
\(886\) 1.31231e7 0.561631
\(887\) −3.59387e6 −0.153375 −0.0766873 0.997055i \(-0.524434\pi\)
−0.0766873 + 0.997055i \(0.524434\pi\)
\(888\) 9.38287e6 0.399304
\(889\) 2.39712e7 1.01727
\(890\) 0 0
\(891\) −3.97661e6 −0.167810
\(892\) −1.23139e7 −0.518183
\(893\) −6.44563e6 −0.270481
\(894\) 1.53441e6 0.0642092
\(895\) 0 0
\(896\) −2.03332e7 −0.846128
\(897\) −8.44106e6 −0.350281
\(898\) 1.55940e6 0.0645309
\(899\) −4.74714e7 −1.95899
\(900\) 0 0
\(901\) −1.81132e6 −0.0743334
\(902\) −1.24757e6 −0.0510561
\(903\) 2.87661e7 1.17398
\(904\) 1.33039e7 0.541450
\(905\) 0 0
\(906\) −7.91083e6 −0.320186
\(907\) −4.23884e7 −1.71092 −0.855458 0.517872i \(-0.826724\pi\)
−0.855458 + 0.517872i \(0.826724\pi\)
\(908\) −1.98690e7 −0.799764
\(909\) −1.05625e7 −0.423990
\(910\) 0 0
\(911\) −2.39933e7 −0.957841 −0.478921 0.877858i \(-0.658972\pi\)
−0.478921 + 0.877858i \(0.658972\pi\)
\(912\) 2.40934e6 0.0959205
\(913\) 3.86184e6 0.153326
\(914\) −6.16522e6 −0.244109
\(915\) 0 0
\(916\) −3.69733e7 −1.45596
\(917\) −1.98231e7 −0.778481
\(918\) 2.85929e6 0.111983
\(919\) −2.53438e7 −0.989883 −0.494941 0.868926i \(-0.664810\pi\)
−0.494941 + 0.868926i \(0.664810\pi\)
\(920\) 0 0
\(921\) 5.48915e6 0.213234
\(922\) 6.56870e6 0.254479
\(923\) −6.29488e6 −0.243211
\(924\) −6.23712e6 −0.240328
\(925\) 0 0
\(926\) 2.65038e6 0.101574
\(927\) −1.80045e6 −0.0688148
\(928\) −3.05988e7 −1.16636
\(929\) −2.04548e7 −0.777601 −0.388800 0.921322i \(-0.627110\pi\)
−0.388800 + 0.921322i \(0.627110\pi\)
\(930\) 0 0
\(931\) 1.20111e6 0.0454159
\(932\) 1.73114e7 0.652818
\(933\) 1.83969e7 0.691896
\(934\) −1.29327e7 −0.485089
\(935\) 0 0
\(936\) −1.89761e6 −0.0707975
\(937\) −1.98261e7 −0.737716 −0.368858 0.929486i \(-0.620251\pi\)
−0.368858 + 0.929486i \(0.620251\pi\)
\(938\) −3.25818e6 −0.120911
\(939\) 1.43324e7 0.530463
\(940\) 0 0
\(941\) −3.32679e7 −1.22476 −0.612380 0.790564i \(-0.709788\pi\)
−0.612380 + 0.790564i \(0.709788\pi\)
\(942\) −1.62277e6 −0.0595839
\(943\) 1.74473e7 0.638925
\(944\) −3.43519e7 −1.25465
\(945\) 0 0
\(946\) −6.44011e6 −0.233973
\(947\) −4.75820e7 −1.72412 −0.862060 0.506806i \(-0.830826\pi\)
−0.862060 + 0.506806i \(0.830826\pi\)
\(948\) −1.53448e7 −0.554549
\(949\) −4.95566e6 −0.178623
\(950\) 0 0
\(951\) 6.10863e6 0.219025
\(952\) 4.74187e6 0.169573
\(953\) −4.16316e7 −1.48488 −0.742440 0.669913i \(-0.766331\pi\)
−0.742440 + 0.669913i \(0.766331\pi\)
\(954\) 884259. 0.0314564
\(955\) 0 0
\(956\) 5.23073e6 0.185105
\(957\) −1.22008e7 −0.430635
\(958\) 2.57537e6 0.0906623
\(959\) −1.49683e7 −0.525566
\(960\) 0 0
\(961\) 2.85206e7 0.996207
\(962\) 2.19329e6 0.0764115
\(963\) 1.31035e6 0.0455327
\(964\) −3.85874e7 −1.33737
\(965\) 0 0
\(966\) −1.02973e7 −0.355042
\(967\) −3.70062e7 −1.27265 −0.636324 0.771422i \(-0.719546\pi\)
−0.636324 + 0.771422i \(0.719546\pi\)
\(968\) −1.49885e7 −0.514127
\(969\) −1.28561e6 −0.0439846
\(970\) 0 0
\(971\) 846545. 0.0288139 0.0144070 0.999896i \(-0.495414\pi\)
0.0144070 + 0.999896i \(0.495414\pi\)
\(972\) 2.01822e7 0.685179
\(973\) 2.01102e7 0.680979
\(974\) −1.55406e7 −0.524894
\(975\) 0 0
\(976\) 2.59560e6 0.0872194
\(977\) 5.86464e7 1.96564 0.982822 0.184554i \(-0.0590840\pi\)
0.982822 + 0.184554i \(0.0590840\pi\)
\(978\) −8.67423e6 −0.289991
\(979\) 91520.7 0.00305185
\(980\) 0 0
\(981\) 2.07256e7 0.687599
\(982\) 1.43700e7 0.475530
\(983\) −1.17394e7 −0.387492 −0.193746 0.981052i \(-0.562064\pi\)
−0.193746 + 0.981052i \(0.562064\pi\)
\(984\) −5.53639e6 −0.182280
\(985\) 0 0
\(986\) 4.37944e6 0.143458
\(987\) 3.03460e7 0.991536
\(988\) 1.37427e6 0.0447897
\(989\) 9.00654e7 2.92798
\(990\) 0 0
\(991\) −2.34339e7 −0.757984 −0.378992 0.925400i \(-0.623729\pi\)
−0.378992 + 0.925400i \(0.623729\pi\)
\(992\) 3.68372e7 1.18852
\(993\) 1.61182e6 0.0518734
\(994\) −7.67914e6 −0.246517
\(995\) 0 0
\(996\) 8.09133e6 0.258447
\(997\) −3.77262e7 −1.20200 −0.601001 0.799248i \(-0.705231\pi\)
−0.601001 + 0.799248i \(0.705231\pi\)
\(998\) 1.17242e7 0.372613
\(999\) −2.89463e7 −0.917655
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.h.1.4 9
5.2 odd 4 325.6.b.h.274.8 18
5.3 odd 4 325.6.b.h.274.11 18
5.4 even 2 325.6.a.i.1.6 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.4 9 1.1 even 1 trivial
325.6.a.i.1.6 yes 9 5.4 even 2
325.6.b.h.274.8 18 5.2 odd 4
325.6.b.h.274.11 18 5.3 odd 4