Properties

Label 325.6.a.h.1.2
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 181 x^{7} + 688 x^{6} + 10455 x^{5} - 37904 x^{4} - 197375 x^{3} + 702868 x^{2} + \cdots - 366960 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-7.11691\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.11691 q^{2} -3.22994 q^{3} +33.8842 q^{4} +26.2172 q^{6} -20.7248 q^{7} -15.2938 q^{8} -232.567 q^{9} +134.772 q^{11} -109.444 q^{12} +169.000 q^{13} +168.222 q^{14} -960.156 q^{16} +2192.81 q^{17} +1887.73 q^{18} -1981.97 q^{19} +66.9401 q^{21} -1093.93 q^{22} -4227.53 q^{23} +49.3980 q^{24} -1371.76 q^{26} +1536.06 q^{27} -702.244 q^{28} +2547.33 q^{29} -1368.81 q^{31} +8282.90 q^{32} -435.305 q^{33} -17798.9 q^{34} -7880.36 q^{36} +14161.1 q^{37} +16087.5 q^{38} -545.861 q^{39} +11750.1 q^{41} -543.347 q^{42} +6627.63 q^{43} +4566.63 q^{44} +34314.5 q^{46} -14822.2 q^{47} +3101.25 q^{48} -16377.5 q^{49} -7082.67 q^{51} +5726.43 q^{52} +24261.4 q^{53} -12468.0 q^{54} +316.961 q^{56} +6401.66 q^{57} -20676.4 q^{58} +1438.11 q^{59} +16295.7 q^{61} +11110.5 q^{62} +4819.92 q^{63} -36506.5 q^{64} +3533.33 q^{66} +16700.2 q^{67} +74301.7 q^{68} +13654.7 q^{69} +27153.9 q^{71} +3556.83 q^{72} +63222.7 q^{73} -114944. q^{74} -67157.5 q^{76} -2793.12 q^{77} +4430.70 q^{78} -58165.8 q^{79} +51552.5 q^{81} -95374.1 q^{82} -121286. q^{83} +2268.21 q^{84} -53795.9 q^{86} -8227.72 q^{87} -2061.17 q^{88} -49897.1 q^{89} -3502.50 q^{91} -143246. q^{92} +4421.18 q^{93} +120311. q^{94} -26753.3 q^{96} -21395.4 q^{97} +132934. q^{98} -31343.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} - 11 q^{3} + 91 q^{4} - 83 q^{6} + 12 q^{7} - 639 q^{8} + 562 q^{9} - 1422 q^{11} + 1567 q^{12} + 1521 q^{13} - 342 q^{14} - 1061 q^{16} + 648 q^{17} + 418 q^{18} - 408 q^{19} - 3912 q^{21}+ \cdots - 757776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.11691 −1.43488 −0.717440 0.696620i \(-0.754686\pi\)
−0.717440 + 0.696620i \(0.754686\pi\)
\(3\) −3.22994 −0.207201 −0.103601 0.994619i \(-0.533036\pi\)
−0.103601 + 0.994619i \(0.533036\pi\)
\(4\) 33.8842 1.05888
\(5\) 0 0
\(6\) 26.2172 0.297309
\(7\) −20.7248 −0.159862 −0.0799312 0.996800i \(-0.525470\pi\)
−0.0799312 + 0.996800i \(0.525470\pi\)
\(8\) −15.2938 −0.0844869
\(9\) −232.567 −0.957068
\(10\) 0 0
\(11\) 134.772 0.335828 0.167914 0.985802i \(-0.446297\pi\)
0.167914 + 0.985802i \(0.446297\pi\)
\(12\) −109.444 −0.219401
\(13\) 169.000 0.277350
\(14\) 168.222 0.229383
\(15\) 0 0
\(16\) −960.156 −0.937652
\(17\) 2192.81 1.84026 0.920131 0.391612i \(-0.128082\pi\)
0.920131 + 0.391612i \(0.128082\pi\)
\(18\) 1887.73 1.37328
\(19\) −1981.97 −1.25954 −0.629772 0.776780i \(-0.716852\pi\)
−0.629772 + 0.776780i \(0.716852\pi\)
\(20\) 0 0
\(21\) 66.9401 0.0331236
\(22\) −1093.93 −0.481873
\(23\) −4227.53 −1.66635 −0.833177 0.553006i \(-0.813481\pi\)
−0.833177 + 0.553006i \(0.813481\pi\)
\(24\) 49.3980 0.0175058
\(25\) 0 0
\(26\) −1371.76 −0.397964
\(27\) 1536.06 0.405507
\(28\) −702.244 −0.169275
\(29\) 2547.33 0.562457 0.281229 0.959641i \(-0.409258\pi\)
0.281229 + 0.959641i \(0.409258\pi\)
\(30\) 0 0
\(31\) −1368.81 −0.255822 −0.127911 0.991786i \(-0.540827\pi\)
−0.127911 + 0.991786i \(0.540827\pi\)
\(32\) 8282.90 1.42991
\(33\) −435.305 −0.0695840
\(34\) −17798.9 −2.64055
\(35\) 0 0
\(36\) −7880.36 −1.01342
\(37\) 14161.1 1.70056 0.850282 0.526327i \(-0.176431\pi\)
0.850282 + 0.526327i \(0.176431\pi\)
\(38\) 16087.5 1.80729
\(39\) −545.861 −0.0574672
\(40\) 0 0
\(41\) 11750.1 1.09164 0.545821 0.837902i \(-0.316218\pi\)
0.545821 + 0.837902i \(0.316218\pi\)
\(42\) −543.347 −0.0475285
\(43\) 6627.63 0.546622 0.273311 0.961926i \(-0.411881\pi\)
0.273311 + 0.961926i \(0.411881\pi\)
\(44\) 4566.63 0.355602
\(45\) 0 0
\(46\) 34314.5 2.39102
\(47\) −14822.2 −0.978744 −0.489372 0.872075i \(-0.662774\pi\)
−0.489372 + 0.872075i \(0.662774\pi\)
\(48\) 3101.25 0.194283
\(49\) −16377.5 −0.974444
\(50\) 0 0
\(51\) −7082.67 −0.381304
\(52\) 5726.43 0.293681
\(53\) 24261.4 1.18639 0.593193 0.805060i \(-0.297867\pi\)
0.593193 + 0.805060i \(0.297867\pi\)
\(54\) −12468.0 −0.581853
\(55\) 0 0
\(56\) 316.961 0.0135063
\(57\) 6401.66 0.260979
\(58\) −20676.4 −0.807059
\(59\) 1438.11 0.0537850 0.0268925 0.999638i \(-0.491439\pi\)
0.0268925 + 0.999638i \(0.491439\pi\)
\(60\) 0 0
\(61\) 16295.7 0.560724 0.280362 0.959894i \(-0.409546\pi\)
0.280362 + 0.959894i \(0.409546\pi\)
\(62\) 11110.5 0.367074
\(63\) 4819.92 0.152999
\(64\) −36506.5 −1.11409
\(65\) 0 0
\(66\) 3533.33 0.0998446
\(67\) 16700.2 0.454502 0.227251 0.973836i \(-0.427026\pi\)
0.227251 + 0.973836i \(0.427026\pi\)
\(68\) 74301.7 1.94862
\(69\) 13654.7 0.345270
\(70\) 0 0
\(71\) 27153.9 0.639273 0.319636 0.947540i \(-0.396439\pi\)
0.319636 + 0.947540i \(0.396439\pi\)
\(72\) 3556.83 0.0808597
\(73\) 63222.7 1.38856 0.694282 0.719703i \(-0.255722\pi\)
0.694282 + 0.719703i \(0.255722\pi\)
\(74\) −114944. −2.44011
\(75\) 0 0
\(76\) −67157.5 −1.33371
\(77\) −2793.12 −0.0536863
\(78\) 4430.70 0.0824586
\(79\) −58165.8 −1.04858 −0.524288 0.851541i \(-0.675669\pi\)
−0.524288 + 0.851541i \(0.675669\pi\)
\(80\) 0 0
\(81\) 51552.5 0.873046
\(82\) −95374.1 −1.56638
\(83\) −121286. −1.93249 −0.966243 0.257632i \(-0.917058\pi\)
−0.966243 + 0.257632i \(0.917058\pi\)
\(84\) 2268.21 0.0350740
\(85\) 0 0
\(86\) −53795.9 −0.784337
\(87\) −8227.72 −0.116542
\(88\) −2061.17 −0.0283731
\(89\) −49897.1 −0.667729 −0.333865 0.942621i \(-0.608353\pi\)
−0.333865 + 0.942621i \(0.608353\pi\)
\(90\) 0 0
\(91\) −3502.50 −0.0443378
\(92\) −143246. −1.76447
\(93\) 4421.18 0.0530067
\(94\) 120311. 1.40438
\(95\) 0 0
\(96\) −26753.3 −0.296278
\(97\) −21395.4 −0.230883 −0.115441 0.993314i \(-0.536828\pi\)
−0.115441 + 0.993314i \(0.536828\pi\)
\(98\) 132934. 1.39821
\(99\) −31343.5 −0.321410
\(100\) 0 0
\(101\) −107983. −1.05330 −0.526648 0.850084i \(-0.676551\pi\)
−0.526648 + 0.850084i \(0.676551\pi\)
\(102\) 57489.4 0.547126
\(103\) −40865.0 −0.379541 −0.189771 0.981828i \(-0.560774\pi\)
−0.189771 + 0.981828i \(0.560774\pi\)
\(104\) −2584.65 −0.0234325
\(105\) 0 0
\(106\) −196928. −1.70232
\(107\) −74698.6 −0.630744 −0.315372 0.948968i \(-0.602129\pi\)
−0.315372 + 0.948968i \(0.602129\pi\)
\(108\) 52048.0 0.429383
\(109\) −84724.3 −0.683033 −0.341517 0.939876i \(-0.610941\pi\)
−0.341517 + 0.939876i \(0.610941\pi\)
\(110\) 0 0
\(111\) −45739.6 −0.352359
\(112\) 19899.1 0.149895
\(113\) −92231.9 −0.679493 −0.339747 0.940517i \(-0.610341\pi\)
−0.339747 + 0.940517i \(0.610341\pi\)
\(114\) −51961.7 −0.374473
\(115\) 0 0
\(116\) 86314.1 0.595575
\(117\) −39303.9 −0.265443
\(118\) −11673.0 −0.0771751
\(119\) −45445.7 −0.294188
\(120\) 0 0
\(121\) −142888. −0.887219
\(122\) −132271. −0.804572
\(123\) −37952.0 −0.226189
\(124\) −46381.0 −0.270885
\(125\) 0 0
\(126\) −39122.9 −0.219535
\(127\) −330445. −1.81799 −0.908993 0.416812i \(-0.863147\pi\)
−0.908993 + 0.416812i \(0.863147\pi\)
\(128\) 31267.3 0.168681
\(129\) −21406.9 −0.113261
\(130\) 0 0
\(131\) −73109.1 −0.372214 −0.186107 0.982529i \(-0.559587\pi\)
−0.186107 + 0.982529i \(0.559587\pi\)
\(132\) −14750.0 −0.0736811
\(133\) 41076.0 0.201354
\(134\) −135554. −0.652156
\(135\) 0 0
\(136\) −33536.4 −0.155478
\(137\) −137616. −0.626421 −0.313211 0.949684i \(-0.601405\pi\)
−0.313211 + 0.949684i \(0.601405\pi\)
\(138\) −110834. −0.495422
\(139\) 366876. 1.61058 0.805291 0.592880i \(-0.202009\pi\)
0.805291 + 0.592880i \(0.202009\pi\)
\(140\) 0 0
\(141\) 47875.0 0.202797
\(142\) −220406. −0.917280
\(143\) 22776.4 0.0931420
\(144\) 223301. 0.897397
\(145\) 0 0
\(146\) −513173. −1.99242
\(147\) 52898.4 0.201906
\(148\) 479838. 1.80070
\(149\) −426714. −1.57460 −0.787302 0.616567i \(-0.788523\pi\)
−0.787302 + 0.616567i \(0.788523\pi\)
\(150\) 0 0
\(151\) 22573.4 0.0805663 0.0402832 0.999188i \(-0.487174\pi\)
0.0402832 + 0.999188i \(0.487174\pi\)
\(152\) 30311.8 0.106415
\(153\) −509977. −1.76125
\(154\) 22671.5 0.0770334
\(155\) 0 0
\(156\) −18496.0 −0.0608510
\(157\) 496911. 1.60890 0.804451 0.594018i \(-0.202459\pi\)
0.804451 + 0.594018i \(0.202459\pi\)
\(158\) 472127. 1.50458
\(159\) −78363.0 −0.245821
\(160\) 0 0
\(161\) 87614.9 0.266387
\(162\) −418447. −1.25272
\(163\) 129489. 0.381737 0.190868 0.981616i \(-0.438870\pi\)
0.190868 + 0.981616i \(0.438870\pi\)
\(164\) 398141. 1.15592
\(165\) 0 0
\(166\) 984469. 2.77289
\(167\) −413362. −1.14694 −0.573469 0.819227i \(-0.694403\pi\)
−0.573469 + 0.819227i \(0.694403\pi\)
\(168\) −1023.77 −0.00279852
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 460942. 1.20547
\(172\) 224572. 0.578808
\(173\) −2949.45 −0.00749249 −0.00374625 0.999993i \(-0.501192\pi\)
−0.00374625 + 0.999993i \(0.501192\pi\)
\(174\) 66783.7 0.167223
\(175\) 0 0
\(176\) −129402. −0.314890
\(177\) −4645.01 −0.0111443
\(178\) 405010. 0.958112
\(179\) −431301. −1.00612 −0.503058 0.864253i \(-0.667792\pi\)
−0.503058 + 0.864253i \(0.667792\pi\)
\(180\) 0 0
\(181\) 65154.9 0.147826 0.0739129 0.997265i \(-0.476451\pi\)
0.0739129 + 0.997265i \(0.476451\pi\)
\(182\) 28429.5 0.0636195
\(183\) −52634.3 −0.116183
\(184\) 64654.9 0.140785
\(185\) 0 0
\(186\) −35886.3 −0.0760582
\(187\) 295529. 0.618012
\(188\) −502239. −1.03637
\(189\) −31834.5 −0.0648252
\(190\) 0 0
\(191\) 405278. 0.803840 0.401920 0.915675i \(-0.368343\pi\)
0.401920 + 0.915675i \(0.368343\pi\)
\(192\) 117914. 0.230841
\(193\) −596684. −1.15306 −0.576529 0.817077i \(-0.695593\pi\)
−0.576529 + 0.817077i \(0.695593\pi\)
\(194\) 173665. 0.331289
\(195\) 0 0
\(196\) −554938. −1.03182
\(197\) 240155. 0.440886 0.220443 0.975400i \(-0.429250\pi\)
0.220443 + 0.975400i \(0.429250\pi\)
\(198\) 254413. 0.461185
\(199\) 438913. 0.785680 0.392840 0.919607i \(-0.371493\pi\)
0.392840 + 0.919607i \(0.371493\pi\)
\(200\) 0 0
\(201\) −53940.9 −0.0941733
\(202\) 876484. 1.51135
\(203\) −52792.9 −0.0899157
\(204\) −239990. −0.403756
\(205\) 0 0
\(206\) 331698. 0.544596
\(207\) 983186. 1.59481
\(208\) −162266. −0.260058
\(209\) −267114. −0.422990
\(210\) 0 0
\(211\) −107094. −0.165600 −0.0828000 0.996566i \(-0.526386\pi\)
−0.0828000 + 0.996566i \(0.526386\pi\)
\(212\) 822078. 1.25624
\(213\) −87705.6 −0.132458
\(214\) 606321. 0.905041
\(215\) 0 0
\(216\) −23492.1 −0.0342600
\(217\) 28368.3 0.0408964
\(218\) 687699. 0.980071
\(219\) −204206. −0.287712
\(220\) 0 0
\(221\) 370586. 0.510397
\(222\) 371264. 0.505593
\(223\) −865096. −1.16494 −0.582468 0.812853i \(-0.697913\pi\)
−0.582468 + 0.812853i \(0.697913\pi\)
\(224\) −171662. −0.228588
\(225\) 0 0
\(226\) 748638. 0.974991
\(227\) 772248. 0.994700 0.497350 0.867550i \(-0.334307\pi\)
0.497350 + 0.867550i \(0.334307\pi\)
\(228\) 216915. 0.276346
\(229\) −615081. −0.775075 −0.387538 0.921854i \(-0.626674\pi\)
−0.387538 + 0.921854i \(0.626674\pi\)
\(230\) 0 0
\(231\) 9021.64 0.0111239
\(232\) −38958.2 −0.0475203
\(233\) −1.38212e6 −1.66784 −0.833922 0.551882i \(-0.813910\pi\)
−0.833922 + 0.551882i \(0.813910\pi\)
\(234\) 319026. 0.380879
\(235\) 0 0
\(236\) 48729.1 0.0569519
\(237\) 187872. 0.217266
\(238\) 368879. 0.422125
\(239\) −1.15404e6 −1.30685 −0.653424 0.756993i \(-0.726668\pi\)
−0.653424 + 0.756993i \(0.726668\pi\)
\(240\) 0 0
\(241\) −1.36874e6 −1.51802 −0.759011 0.651078i \(-0.774317\pi\)
−0.759011 + 0.651078i \(0.774317\pi\)
\(242\) 1.15981e6 1.27305
\(243\) −539774. −0.586403
\(244\) 552167. 0.593740
\(245\) 0 0
\(246\) 308053. 0.324555
\(247\) −334953. −0.349335
\(248\) 20934.2 0.0216136
\(249\) 391748. 0.400413
\(250\) 0 0
\(251\) 1.37571e6 1.37830 0.689149 0.724620i \(-0.257985\pi\)
0.689149 + 0.724620i \(0.257985\pi\)
\(252\) 163319. 0.162008
\(253\) −569752. −0.559609
\(254\) 2.68219e6 2.60859
\(255\) 0 0
\(256\) 914414. 0.872054
\(257\) −594799. −0.561742 −0.280871 0.959745i \(-0.590623\pi\)
−0.280871 + 0.959745i \(0.590623\pi\)
\(258\) 173758. 0.162516
\(259\) −293487. −0.271856
\(260\) 0 0
\(261\) −592425. −0.538310
\(262\) 593420. 0.534083
\(263\) 1.60634e6 1.43202 0.716008 0.698092i \(-0.245967\pi\)
0.716008 + 0.698092i \(0.245967\pi\)
\(264\) 6657.46 0.00587894
\(265\) 0 0
\(266\) −333410. −0.288918
\(267\) 161165. 0.138354
\(268\) 565874. 0.481263
\(269\) −764991. −0.644578 −0.322289 0.946641i \(-0.604452\pi\)
−0.322289 + 0.946641i \(0.604452\pi\)
\(270\) 0 0
\(271\) 479475. 0.396591 0.198296 0.980142i \(-0.436459\pi\)
0.198296 + 0.980142i \(0.436459\pi\)
\(272\) −2.10544e6 −1.72552
\(273\) 11312.9 0.00918685
\(274\) 1.11701e6 0.898839
\(275\) 0 0
\(276\) 462678. 0.365600
\(277\) −218179. −0.170849 −0.0854246 0.996345i \(-0.527225\pi\)
−0.0854246 + 0.996345i \(0.527225\pi\)
\(278\) −2.97790e6 −2.31099
\(279\) 318340. 0.244839
\(280\) 0 0
\(281\) −824857. −0.623179 −0.311590 0.950217i \(-0.600861\pi\)
−0.311590 + 0.950217i \(0.600861\pi\)
\(282\) −388597. −0.290989
\(283\) −1.37912e6 −1.02361 −0.511806 0.859101i \(-0.671023\pi\)
−0.511806 + 0.859101i \(0.671023\pi\)
\(284\) 920087. 0.676914
\(285\) 0 0
\(286\) −184874. −0.133648
\(287\) −243518. −0.174512
\(288\) −1.92633e6 −1.36852
\(289\) 3.38858e6 2.38656
\(290\) 0 0
\(291\) 69106.1 0.0478392
\(292\) 2.14225e6 1.47032
\(293\) 2.22384e6 1.51334 0.756668 0.653799i \(-0.226826\pi\)
0.756668 + 0.653799i \(0.226826\pi\)
\(294\) −429371. −0.289711
\(295\) 0 0
\(296\) −216577. −0.143676
\(297\) 207017. 0.136181
\(298\) 3.46360e6 2.25937
\(299\) −714453. −0.462163
\(300\) 0 0
\(301\) −137357. −0.0873843
\(302\) −183226. −0.115603
\(303\) 348778. 0.218244
\(304\) 1.90300e6 1.18101
\(305\) 0 0
\(306\) 4.13944e6 2.52719
\(307\) −2.71603e6 −1.64471 −0.822355 0.568975i \(-0.807340\pi\)
−0.822355 + 0.568975i \(0.807340\pi\)
\(308\) −94642.7 −0.0568474
\(309\) 131992. 0.0786413
\(310\) 0 0
\(311\) −2.07670e6 −1.21751 −0.608754 0.793359i \(-0.708330\pi\)
−0.608754 + 0.793359i \(0.708330\pi\)
\(312\) 8348.27 0.00485523
\(313\) 1.45231e6 0.837910 0.418955 0.908007i \(-0.362396\pi\)
0.418955 + 0.908007i \(0.362396\pi\)
\(314\) −4.03338e6 −2.30858
\(315\) 0 0
\(316\) −1.97090e6 −1.11032
\(317\) −1.58790e6 −0.887511 −0.443755 0.896148i \(-0.646354\pi\)
−0.443755 + 0.896148i \(0.646354\pi\)
\(318\) 636065. 0.352723
\(319\) 343308. 0.188889
\(320\) 0 0
\(321\) 241272. 0.130691
\(322\) −711162. −0.382234
\(323\) −4.34609e6 −2.31789
\(324\) 1.74681e6 0.924452
\(325\) 0 0
\(326\) −1.05105e6 −0.547746
\(327\) 273655. 0.141525
\(328\) −179703. −0.0922295
\(329\) 307188. 0.156464
\(330\) 0 0
\(331\) −2.91368e6 −1.46174 −0.730872 0.682515i \(-0.760886\pi\)
−0.730872 + 0.682515i \(0.760886\pi\)
\(332\) −4.10969e6 −2.04627
\(333\) −3.29341e6 −1.62756
\(334\) 3.35522e6 1.64572
\(335\) 0 0
\(336\) −64272.9 −0.0310585
\(337\) 2.39665e6 1.14956 0.574778 0.818309i \(-0.305088\pi\)
0.574778 + 0.818309i \(0.305088\pi\)
\(338\) −231827. −0.110375
\(339\) 297904. 0.140792
\(340\) 0 0
\(341\) −184477. −0.0859124
\(342\) −3.74142e6 −1.72970
\(343\) 687743. 0.315639
\(344\) −101362. −0.0461824
\(345\) 0 0
\(346\) 23940.4 0.0107508
\(347\) 529222. 0.235947 0.117973 0.993017i \(-0.462360\pi\)
0.117973 + 0.993017i \(0.462360\pi\)
\(348\) −278790. −0.123404
\(349\) −847145. −0.372301 −0.186151 0.982521i \(-0.559601\pi\)
−0.186151 + 0.982521i \(0.559601\pi\)
\(350\) 0 0
\(351\) 259594. 0.112467
\(352\) 1.11630e6 0.480203
\(353\) −3.44913e6 −1.47324 −0.736619 0.676308i \(-0.763579\pi\)
−0.736619 + 0.676308i \(0.763579\pi\)
\(354\) 37703.1 0.0159908
\(355\) 0 0
\(356\) −1.69072e6 −0.707046
\(357\) 146787. 0.0609562
\(358\) 3.50083e6 1.44366
\(359\) −192156. −0.0786895 −0.0393448 0.999226i \(-0.512527\pi\)
−0.0393448 + 0.999226i \(0.512527\pi\)
\(360\) 0 0
\(361\) 1.45211e6 0.586451
\(362\) −528856. −0.212112
\(363\) 461519. 0.183833
\(364\) −118679. −0.0469485
\(365\) 0 0
\(366\) 427228. 0.166708
\(367\) 1.34308e6 0.520518 0.260259 0.965539i \(-0.416192\pi\)
0.260259 + 0.965539i \(0.416192\pi\)
\(368\) 4.05909e6 1.56246
\(369\) −2.73268e6 −1.04478
\(370\) 0 0
\(371\) −502814. −0.189658
\(372\) 149808. 0.0561277
\(373\) 3.94149e6 1.46686 0.733430 0.679765i \(-0.237918\pi\)
0.733430 + 0.679765i \(0.237918\pi\)
\(374\) −2.39878e6 −0.886773
\(375\) 0 0
\(376\) 226688. 0.0826911
\(377\) 430498. 0.155998
\(378\) 258398. 0.0930164
\(379\) −769080. −0.275026 −0.137513 0.990500i \(-0.543911\pi\)
−0.137513 + 0.990500i \(0.543911\pi\)
\(380\) 0 0
\(381\) 1.06732e6 0.376689
\(382\) −3.28960e6 −1.15341
\(383\) −1.33597e6 −0.465371 −0.232685 0.972552i \(-0.574751\pi\)
−0.232685 + 0.972552i \(0.574751\pi\)
\(384\) −100992. −0.0349509
\(385\) 0 0
\(386\) 4.84323e6 1.65450
\(387\) −1.54137e6 −0.523155
\(388\) −724967. −0.244477
\(389\) 158354. 0.0530584 0.0265292 0.999648i \(-0.491554\pi\)
0.0265292 + 0.999648i \(0.491554\pi\)
\(390\) 0 0
\(391\) −9.27019e6 −3.06653
\(392\) 250473. 0.0823278
\(393\) 236138. 0.0771232
\(394\) −1.94932e6 −0.632619
\(395\) 0 0
\(396\) −1.06205e6 −0.340335
\(397\) 2.11342e6 0.672992 0.336496 0.941685i \(-0.390758\pi\)
0.336496 + 0.941685i \(0.390758\pi\)
\(398\) −3.56261e6 −1.12736
\(399\) −132673. −0.0417207
\(400\) 0 0
\(401\) −2.39852e6 −0.744874 −0.372437 0.928057i \(-0.621478\pi\)
−0.372437 + 0.928057i \(0.621478\pi\)
\(402\) 437833. 0.135127
\(403\) −231329. −0.0709524
\(404\) −3.65890e6 −1.11531
\(405\) 0 0
\(406\) 428515. 0.129018
\(407\) 1.90852e6 0.571098
\(408\) 108321. 0.0322152
\(409\) −2.12794e6 −0.629000 −0.314500 0.949257i \(-0.601837\pi\)
−0.314500 + 0.949257i \(0.601837\pi\)
\(410\) 0 0
\(411\) 444491. 0.129795
\(412\) −1.38468e6 −0.401889
\(413\) −29804.6 −0.00859820
\(414\) −7.98043e6 −2.28837
\(415\) 0 0
\(416\) 1.39981e6 0.396584
\(417\) −1.18499e6 −0.333714
\(418\) 2.16814e6 0.606941
\(419\) −3.35254e6 −0.932908 −0.466454 0.884545i \(-0.654469\pi\)
−0.466454 + 0.884545i \(0.654469\pi\)
\(420\) 0 0
\(421\) 205253. 0.0564397 0.0282198 0.999602i \(-0.491016\pi\)
0.0282198 + 0.999602i \(0.491016\pi\)
\(422\) 869275. 0.237616
\(423\) 3.44717e6 0.936724
\(424\) −371048. −0.100234
\(425\) 0 0
\(426\) 711898. 0.190061
\(427\) −337726. −0.0896386
\(428\) −2.53110e6 −0.667882
\(429\) −73566.6 −0.0192991
\(430\) 0 0
\(431\) −6.22797e6 −1.61493 −0.807464 0.589917i \(-0.799161\pi\)
−0.807464 + 0.589917i \(0.799161\pi\)
\(432\) −1.47485e6 −0.380224
\(433\) 4.07150e6 1.04360 0.521801 0.853067i \(-0.325260\pi\)
0.521801 + 0.853067i \(0.325260\pi\)
\(434\) −230263. −0.0586814
\(435\) 0 0
\(436\) −2.87081e6 −0.723251
\(437\) 8.37885e6 2.09885
\(438\) 1.65752e6 0.412832
\(439\) 1.75484e6 0.434588 0.217294 0.976106i \(-0.430277\pi\)
0.217294 + 0.976106i \(0.430277\pi\)
\(440\) 0 0
\(441\) 3.80887e6 0.932609
\(442\) −3.00801e6 −0.732358
\(443\) −4.08504e6 −0.988979 −0.494489 0.869184i \(-0.664645\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(444\) −1.54985e6 −0.373106
\(445\) 0 0
\(446\) 7.02191e6 1.67154
\(447\) 1.37826e6 0.326260
\(448\) 756592. 0.178101
\(449\) 4.32979e6 1.01356 0.506782 0.862074i \(-0.330835\pi\)
0.506782 + 0.862074i \(0.330835\pi\)
\(450\) 0 0
\(451\) 1.58358e6 0.366604
\(452\) −3.12520e6 −0.719502
\(453\) −72910.7 −0.0166934
\(454\) −6.26826e6 −1.42728
\(455\) 0 0
\(456\) −97905.5 −0.0220493
\(457\) 4.37096e6 0.979009 0.489504 0.872001i \(-0.337178\pi\)
0.489504 + 0.872001i \(0.337178\pi\)
\(458\) 4.99256e6 1.11214
\(459\) 3.36829e6 0.746238
\(460\) 0 0
\(461\) −3.13672e6 −0.687421 −0.343711 0.939076i \(-0.611684\pi\)
−0.343711 + 0.939076i \(0.611684\pi\)
\(462\) −73227.8 −0.0159614
\(463\) 6.47218e6 1.40313 0.701566 0.712605i \(-0.252485\pi\)
0.701566 + 0.712605i \(0.252485\pi\)
\(464\) −2.44583e6 −0.527389
\(465\) 0 0
\(466\) 1.12185e7 2.39316
\(467\) 2.32552e6 0.493433 0.246717 0.969088i \(-0.420648\pi\)
0.246717 + 0.969088i \(0.420648\pi\)
\(468\) −1.33178e6 −0.281072
\(469\) −346110. −0.0726577
\(470\) 0 0
\(471\) −1.60500e6 −0.333366
\(472\) −21994.1 −0.00454413
\(473\) 893218. 0.183571
\(474\) −1.52494e6 −0.311751
\(475\) 0 0
\(476\) −1.53989e6 −0.311510
\(477\) −5.64241e6 −1.13545
\(478\) 9.36721e6 1.87517
\(479\) −1.16074e6 −0.231150 −0.115575 0.993299i \(-0.536871\pi\)
−0.115575 + 0.993299i \(0.536871\pi\)
\(480\) 0 0
\(481\) 2.39323e6 0.471652
\(482\) 1.11099e7 2.17818
\(483\) −282991. −0.0551957
\(484\) −4.84163e6 −0.939460
\(485\) 0 0
\(486\) 4.38129e6 0.841417
\(487\) 3.63836e6 0.695158 0.347579 0.937651i \(-0.387004\pi\)
0.347579 + 0.937651i \(0.387004\pi\)
\(488\) −249223. −0.0473739
\(489\) −418242. −0.0790962
\(490\) 0 0
\(491\) 8.45015e6 1.58183 0.790917 0.611924i \(-0.209604\pi\)
0.790917 + 0.611924i \(0.209604\pi\)
\(492\) −1.28597e6 −0.239508
\(493\) 5.58581e6 1.03507
\(494\) 2.71878e6 0.501253
\(495\) 0 0
\(496\) 1.31427e6 0.239872
\(497\) −562760. −0.102196
\(498\) −3.17978e6 −0.574545
\(499\) −6.28285e6 −1.12955 −0.564775 0.825245i \(-0.691037\pi\)
−0.564775 + 0.825245i \(0.691037\pi\)
\(500\) 0 0
\(501\) 1.33514e6 0.237647
\(502\) −1.11665e7 −1.97769
\(503\) 2.30761e6 0.406670 0.203335 0.979109i \(-0.434822\pi\)
0.203335 + 0.979109i \(0.434822\pi\)
\(504\) −73714.8 −0.0129264
\(505\) 0 0
\(506\) 4.62462e6 0.802971
\(507\) −92250.5 −0.0159385
\(508\) −1.11969e7 −1.92503
\(509\) −2.24701e6 −0.384423 −0.192212 0.981353i \(-0.561566\pi\)
−0.192212 + 0.981353i \(0.561566\pi\)
\(510\) 0 0
\(511\) −1.31028e6 −0.221979
\(512\) −8.42277e6 −1.41997
\(513\) −3.04442e6 −0.510753
\(514\) 4.82793e6 0.806033
\(515\) 0 0
\(516\) −725355. −0.119930
\(517\) −1.99762e6 −0.328690
\(518\) 2.38221e6 0.390081
\(519\) 9526.57 0.00155245
\(520\) 0 0
\(521\) −1.20692e7 −1.94797 −0.973987 0.226602i \(-0.927238\pi\)
−0.973987 + 0.226602i \(0.927238\pi\)
\(522\) 4.80866e6 0.772410
\(523\) 1.19375e6 0.190835 0.0954174 0.995437i \(-0.469581\pi\)
0.0954174 + 0.995437i \(0.469581\pi\)
\(524\) −2.47724e6 −0.394131
\(525\) 0 0
\(526\) −1.30385e7 −2.05477
\(527\) −3.00154e6 −0.470780
\(528\) 417961. 0.0652456
\(529\) 1.14357e7 1.77674
\(530\) 0 0
\(531\) −334457. −0.0514759
\(532\) 1.39183e6 0.213209
\(533\) 1.98576e6 0.302767
\(534\) −1.30816e6 −0.198522
\(535\) 0 0
\(536\) −255410. −0.0383995
\(537\) 1.39308e6 0.208468
\(538\) 6.20936e6 0.924892
\(539\) −2.20722e6 −0.327246
\(540\) 0 0
\(541\) −9.83092e6 −1.44411 −0.722056 0.691834i \(-0.756803\pi\)
−0.722056 + 0.691834i \(0.756803\pi\)
\(542\) −3.89186e6 −0.569061
\(543\) −210447. −0.0306297
\(544\) 1.81629e7 2.63140
\(545\) 0 0
\(546\) −91825.6 −0.0131820
\(547\) 8.63291e6 1.23364 0.616821 0.787104i \(-0.288420\pi\)
0.616821 + 0.787104i \(0.288420\pi\)
\(548\) −4.66299e6 −0.663305
\(549\) −3.78986e6 −0.536651
\(550\) 0 0
\(551\) −5.04873e6 −0.708440
\(552\) −208832. −0.0291708
\(553\) 1.20548e6 0.167628
\(554\) 1.77094e6 0.245148
\(555\) 0 0
\(556\) 1.24313e7 1.70541
\(557\) −3.22690e6 −0.440704 −0.220352 0.975420i \(-0.570721\pi\)
−0.220352 + 0.975420i \(0.570721\pi\)
\(558\) −2.58394e6 −0.351315
\(559\) 1.12007e6 0.151606
\(560\) 0 0
\(561\) −954544. −0.128053
\(562\) 6.69529e6 0.894187
\(563\) −683340. −0.0908586 −0.0454293 0.998968i \(-0.514466\pi\)
−0.0454293 + 0.998968i \(0.514466\pi\)
\(564\) 1.62221e6 0.214738
\(565\) 0 0
\(566\) 1.11942e7 1.46876
\(567\) −1.06842e6 −0.139567
\(568\) −415285. −0.0540102
\(569\) −5.95105e6 −0.770572 −0.385286 0.922797i \(-0.625897\pi\)
−0.385286 + 0.922797i \(0.625897\pi\)
\(570\) 0 0
\(571\) −2.57116e6 −0.330019 −0.165009 0.986292i \(-0.552765\pi\)
−0.165009 + 0.986292i \(0.552765\pi\)
\(572\) 771761. 0.0986263
\(573\) −1.30903e6 −0.166556
\(574\) 1.97661e6 0.250404
\(575\) 0 0
\(576\) 8.49023e6 1.06626
\(577\) 1.09233e6 0.136588 0.0682940 0.997665i \(-0.478244\pi\)
0.0682940 + 0.997665i \(0.478244\pi\)
\(578\) −2.75047e7 −3.42443
\(579\) 1.92726e6 0.238915
\(580\) 0 0
\(581\) 2.51364e6 0.308932
\(582\) −560928. −0.0686435
\(583\) 3.26975e6 0.398422
\(584\) −966913. −0.117315
\(585\) 0 0
\(586\) −1.80507e7 −2.17146
\(587\) 1.10253e7 1.32067 0.660334 0.750972i \(-0.270415\pi\)
0.660334 + 0.750972i \(0.270415\pi\)
\(588\) 1.79242e6 0.213794
\(589\) 2.71294e6 0.322219
\(590\) 0 0
\(591\) −775689. −0.0913521
\(592\) −1.35969e7 −1.59454
\(593\) −1.27015e7 −1.48327 −0.741633 0.670806i \(-0.765948\pi\)
−0.741633 + 0.670806i \(0.765948\pi\)
\(594\) −1.68034e6 −0.195403
\(595\) 0 0
\(596\) −1.44589e7 −1.66732
\(597\) −1.41766e6 −0.162794
\(598\) 5.79915e6 0.663149
\(599\) −2.40180e6 −0.273508 −0.136754 0.990605i \(-0.543667\pi\)
−0.136754 + 0.990605i \(0.543667\pi\)
\(600\) 0 0
\(601\) −6.52655e6 −0.737051 −0.368526 0.929618i \(-0.620137\pi\)
−0.368526 + 0.929618i \(0.620137\pi\)
\(602\) 1.11491e6 0.125386
\(603\) −3.88393e6 −0.434989
\(604\) 764880. 0.0853102
\(605\) 0 0
\(606\) −2.83100e6 −0.313154
\(607\) −1.25664e7 −1.38433 −0.692164 0.721740i \(-0.743343\pi\)
−0.692164 + 0.721740i \(0.743343\pi\)
\(608\) −1.64165e7 −1.80103
\(609\) 170518. 0.0186306
\(610\) 0 0
\(611\) −2.50496e6 −0.271455
\(612\) −1.72802e7 −1.86496
\(613\) −5.17046e6 −0.555748 −0.277874 0.960617i \(-0.589630\pi\)
−0.277874 + 0.960617i \(0.589630\pi\)
\(614\) 2.20458e7 2.35996
\(615\) 0 0
\(616\) 42717.4 0.00453579
\(617\) 7.58899e6 0.802548 0.401274 0.915958i \(-0.368567\pi\)
0.401274 + 0.915958i \(0.368567\pi\)
\(618\) −1.07137e6 −0.112841
\(619\) −3.72082e6 −0.390312 −0.195156 0.980772i \(-0.562521\pi\)
−0.195156 + 0.980772i \(0.562521\pi\)
\(620\) 0 0
\(621\) −6.49373e6 −0.675717
\(622\) 1.68563e7 1.74698
\(623\) 1.03411e6 0.106745
\(624\) 524111. 0.0538843
\(625\) 0 0
\(626\) −1.17882e7 −1.20230
\(627\) 862763. 0.0876441
\(628\) 1.68374e7 1.70364
\(629\) 3.10527e7 3.12948
\(630\) 0 0
\(631\) 1.80988e7 1.80958 0.904788 0.425862i \(-0.140029\pi\)
0.904788 + 0.425862i \(0.140029\pi\)
\(632\) 889575. 0.0885910
\(633\) 345909. 0.0343125
\(634\) 1.28888e7 1.27347
\(635\) 0 0
\(636\) −2.65527e6 −0.260295
\(637\) −2.76779e6 −0.270262
\(638\) −2.78660e6 −0.271033
\(639\) −6.31511e6 −0.611827
\(640\) 0 0
\(641\) 3.95349e6 0.380046 0.190023 0.981780i \(-0.439144\pi\)
0.190023 + 0.981780i \(0.439144\pi\)
\(642\) −1.95838e6 −0.187526
\(643\) 2.15047e6 0.205119 0.102559 0.994727i \(-0.467297\pi\)
0.102559 + 0.994727i \(0.467297\pi\)
\(644\) 2.96876e6 0.282072
\(645\) 0 0
\(646\) 3.52768e7 3.32589
\(647\) −7.72603e6 −0.725598 −0.362799 0.931867i \(-0.618179\pi\)
−0.362799 + 0.931867i \(0.618179\pi\)
\(648\) −788432. −0.0737610
\(649\) 193816. 0.0180625
\(650\) 0 0
\(651\) −91628.2 −0.00847377
\(652\) 4.38763e6 0.404213
\(653\) −7.07138e6 −0.648965 −0.324482 0.945892i \(-0.605190\pi\)
−0.324482 + 0.945892i \(0.605190\pi\)
\(654\) −2.22123e6 −0.203072
\(655\) 0 0
\(656\) −1.12819e7 −1.02358
\(657\) −1.47035e7 −1.32895
\(658\) −2.49342e6 −0.224507
\(659\) 8.83103e6 0.792133 0.396066 0.918222i \(-0.370375\pi\)
0.396066 + 0.918222i \(0.370375\pi\)
\(660\) 0 0
\(661\) −8.94111e6 −0.795954 −0.397977 0.917395i \(-0.630288\pi\)
−0.397977 + 0.917395i \(0.630288\pi\)
\(662\) 2.36500e7 2.09743
\(663\) −1.19697e6 −0.105755
\(664\) 1.85492e6 0.163270
\(665\) 0 0
\(666\) 2.67323e7 2.33535
\(667\) −1.07689e7 −0.937253
\(668\) −1.40064e7 −1.21447
\(669\) 2.79421e6 0.241376
\(670\) 0 0
\(671\) 2.19620e6 0.188307
\(672\) 554458. 0.0473637
\(673\) 2.00280e7 1.70451 0.852257 0.523123i \(-0.175233\pi\)
0.852257 + 0.523123i \(0.175233\pi\)
\(674\) −1.94534e7 −1.64948
\(675\) 0 0
\(676\) 967766. 0.0814524
\(677\) 1.44506e6 0.121175 0.0605877 0.998163i \(-0.480703\pi\)
0.0605877 + 0.998163i \(0.480703\pi\)
\(678\) −2.41806e6 −0.202019
\(679\) 443417. 0.0369095
\(680\) 0 0
\(681\) −2.49432e6 −0.206103
\(682\) 1.49738e6 0.123274
\(683\) −3.37739e6 −0.277032 −0.138516 0.990360i \(-0.544233\pi\)
−0.138516 + 0.990360i \(0.544233\pi\)
\(684\) 1.56186e7 1.27645
\(685\) 0 0
\(686\) −5.58235e6 −0.452904
\(687\) 1.98668e6 0.160596
\(688\) −6.36356e6 −0.512542
\(689\) 4.10018e6 0.329044
\(690\) 0 0
\(691\) −1.36877e7 −1.09052 −0.545262 0.838265i \(-0.683570\pi\)
−0.545262 + 0.838265i \(0.683570\pi\)
\(692\) −99939.8 −0.00793366
\(693\) 649590. 0.0513814
\(694\) −4.29565e6 −0.338555
\(695\) 0 0
\(696\) 125833. 0.00984626
\(697\) 2.57657e7 2.00891
\(698\) 6.87620e6 0.534207
\(699\) 4.46417e6 0.345579
\(700\) 0 0
\(701\) 2.12015e7 1.62957 0.814784 0.579765i \(-0.196856\pi\)
0.814784 + 0.579765i \(0.196856\pi\)
\(702\) −2.10710e6 −0.161377
\(703\) −2.80669e7 −2.14194
\(704\) −4.92005e6 −0.374143
\(705\) 0 0
\(706\) 2.79963e7 2.11392
\(707\) 2.23792e6 0.168382
\(708\) −157392. −0.0118005
\(709\) 4.77971e6 0.357097 0.178549 0.983931i \(-0.442860\pi\)
0.178549 + 0.983931i \(0.442860\pi\)
\(710\) 0 0
\(711\) 1.35275e7 1.00356
\(712\) 763115. 0.0564144
\(713\) 5.78668e6 0.426291
\(714\) −1.19146e6 −0.0874648
\(715\) 0 0
\(716\) −1.46143e7 −1.06536
\(717\) 3.72747e6 0.270780
\(718\) 1.55971e6 0.112910
\(719\) −1.56246e7 −1.12716 −0.563580 0.826062i \(-0.690576\pi\)
−0.563580 + 0.826062i \(0.690576\pi\)
\(720\) 0 0
\(721\) 846921. 0.0606743
\(722\) −1.17866e7 −0.841487
\(723\) 4.42095e6 0.314536
\(724\) 2.20772e6 0.156530
\(725\) 0 0
\(726\) −3.74611e6 −0.263778
\(727\) −1.10204e7 −0.773327 −0.386664 0.922221i \(-0.626373\pi\)
−0.386664 + 0.922221i \(0.626373\pi\)
\(728\) 53566.4 0.00374597
\(729\) −1.07838e7 −0.751543
\(730\) 0 0
\(731\) 1.45332e7 1.00593
\(732\) −1.78347e6 −0.123024
\(733\) 3.38982e6 0.233033 0.116516 0.993189i \(-0.462827\pi\)
0.116516 + 0.993189i \(0.462827\pi\)
\(734\) −1.09016e7 −0.746880
\(735\) 0 0
\(736\) −3.50162e7 −2.38273
\(737\) 2.25072e6 0.152635
\(738\) 2.21809e7 1.49913
\(739\) 2.83527e7 1.90978 0.954891 0.296956i \(-0.0959714\pi\)
0.954891 + 0.296956i \(0.0959714\pi\)
\(740\) 0 0
\(741\) 1.08188e6 0.0723825
\(742\) 4.08129e6 0.272137
\(743\) 2.16151e7 1.43643 0.718216 0.695820i \(-0.244959\pi\)
0.718216 + 0.695820i \(0.244959\pi\)
\(744\) −67616.5 −0.00447837
\(745\) 0 0
\(746\) −3.19927e7 −2.10477
\(747\) 2.82072e7 1.84952
\(748\) 1.00138e7 0.654401
\(749\) 1.54812e6 0.100832
\(750\) 0 0
\(751\) 1.11361e7 0.720500 0.360250 0.932856i \(-0.382691\pi\)
0.360250 + 0.932856i \(0.382691\pi\)
\(752\) 1.42317e7 0.917721
\(753\) −4.44347e6 −0.285585
\(754\) −3.49431e6 −0.223838
\(755\) 0 0
\(756\) −1.07869e6 −0.0686422
\(757\) 4.00933e6 0.254291 0.127146 0.991884i \(-0.459418\pi\)
0.127146 + 0.991884i \(0.459418\pi\)
\(758\) 6.24255e6 0.394629
\(759\) 1.84027e6 0.115952
\(760\) 0 0
\(761\) 3.18411e7 1.99309 0.996543 0.0830812i \(-0.0264761\pi\)
0.996543 + 0.0830812i \(0.0264761\pi\)
\(762\) −8.66334e6 −0.540503
\(763\) 1.75590e6 0.109191
\(764\) 1.37325e7 0.851170
\(765\) 0 0
\(766\) 1.08439e7 0.667752
\(767\) 243040. 0.0149173
\(768\) −2.95351e6 −0.180690
\(769\) −2.53683e7 −1.54695 −0.773474 0.633828i \(-0.781483\pi\)
−0.773474 + 0.633828i \(0.781483\pi\)
\(770\) 0 0
\(771\) 1.92117e6 0.116394
\(772\) −2.02182e7 −1.22095
\(773\) −2.50569e7 −1.50827 −0.754134 0.656720i \(-0.771943\pi\)
−0.754134 + 0.656720i \(0.771943\pi\)
\(774\) 1.25112e7 0.750664
\(775\) 0 0
\(776\) 327217. 0.0195066
\(777\) 947947. 0.0563289
\(778\) −1.28534e6 −0.0761325
\(779\) −2.32883e7 −1.37497
\(780\) 0 0
\(781\) 3.65958e6 0.214686
\(782\) 7.52453e7 4.40010
\(783\) 3.91284e6 0.228080
\(784\) 1.57249e7 0.913690
\(785\) 0 0
\(786\) −1.91671e6 −0.110663
\(787\) −2.15591e7 −1.24078 −0.620389 0.784294i \(-0.713025\pi\)
−0.620389 + 0.784294i \(0.713025\pi\)
\(788\) 8.13747e6 0.466846
\(789\) −5.18839e6 −0.296715
\(790\) 0 0
\(791\) 1.91149e6 0.108625
\(792\) 479361. 0.0271550
\(793\) 2.75398e6 0.155517
\(794\) −1.71545e7 −0.965663
\(795\) 0 0
\(796\) 1.48722e7 0.831941
\(797\) −2.48604e6 −0.138631 −0.0693157 0.997595i \(-0.522082\pi\)
−0.0693157 + 0.997595i \(0.522082\pi\)
\(798\) 1.07690e6 0.0598642
\(799\) −3.25024e7 −1.80114
\(800\) 0 0
\(801\) 1.16044e7 0.639062
\(802\) 1.94686e7 1.06881
\(803\) 8.52063e6 0.466319
\(804\) −1.82774e6 −0.0997183
\(805\) 0 0
\(806\) 1.87767e6 0.101808
\(807\) 2.47088e6 0.133557
\(808\) 1.65146e6 0.0889897
\(809\) −2.67078e7 −1.43472 −0.717360 0.696703i \(-0.754650\pi\)
−0.717360 + 0.696703i \(0.754650\pi\)
\(810\) 0 0
\(811\) 3.53377e6 0.188663 0.0943313 0.995541i \(-0.469929\pi\)
0.0943313 + 0.995541i \(0.469929\pi\)
\(812\) −1.78885e6 −0.0952100
\(813\) −1.54868e6 −0.0821741
\(814\) −1.54913e7 −0.819457
\(815\) 0 0
\(816\) 6.80046e6 0.357531
\(817\) −1.31358e7 −0.688495
\(818\) 1.72723e7 0.902540
\(819\) 814567. 0.0424343
\(820\) 0 0
\(821\) −8.58501e6 −0.444511 −0.222256 0.974988i \(-0.571342\pi\)
−0.222256 + 0.974988i \(0.571342\pi\)
\(822\) −3.60789e6 −0.186240
\(823\) −1.58052e7 −0.813396 −0.406698 0.913563i \(-0.633320\pi\)
−0.406698 + 0.913563i \(0.633320\pi\)
\(824\) 624981. 0.0320663
\(825\) 0 0
\(826\) 241921. 0.0123374
\(827\) −1.82089e7 −0.925808 −0.462904 0.886408i \(-0.653192\pi\)
−0.462904 + 0.886408i \(0.653192\pi\)
\(828\) 3.33145e7 1.68872
\(829\) 1.13685e7 0.574534 0.287267 0.957850i \(-0.407253\pi\)
0.287267 + 0.957850i \(0.407253\pi\)
\(830\) 0 0
\(831\) 704705. 0.0354001
\(832\) −6.16960e6 −0.308993
\(833\) −3.59128e7 −1.79323
\(834\) 9.61846e6 0.478840
\(835\) 0 0
\(836\) −9.05093e6 −0.447896
\(837\) −2.10257e6 −0.103738
\(838\) 2.72123e7 1.33861
\(839\) −2.63011e7 −1.28994 −0.644970 0.764208i \(-0.723130\pi\)
−0.644970 + 0.764208i \(0.723130\pi\)
\(840\) 0 0
\(841\) −1.40223e7 −0.683642
\(842\) −1.66602e6 −0.0809841
\(843\) 2.66424e6 0.129123
\(844\) −3.62881e6 −0.175351
\(845\) 0 0
\(846\) −2.79804e7 −1.34409
\(847\) 2.96132e6 0.141833
\(848\) −2.32947e7 −1.11242
\(849\) 4.45448e6 0.212094
\(850\) 0 0
\(851\) −5.98666e7 −2.83374
\(852\) −2.97183e6 −0.140257
\(853\) −2.59081e7 −1.21916 −0.609582 0.792723i \(-0.708663\pi\)
−0.609582 + 0.792723i \(0.708663\pi\)
\(854\) 2.74129e6 0.128621
\(855\) 0 0
\(856\) 1.14242e6 0.0532896
\(857\) 2.09566e7 0.974697 0.487348 0.873208i \(-0.337964\pi\)
0.487348 + 0.873208i \(0.337964\pi\)
\(858\) 597133. 0.0276919
\(859\) 3.29521e7 1.52370 0.761852 0.647751i \(-0.224290\pi\)
0.761852 + 0.647751i \(0.224290\pi\)
\(860\) 0 0
\(861\) 786550. 0.0361592
\(862\) 5.05518e7 2.31723
\(863\) 2.33805e7 1.06863 0.534314 0.845286i \(-0.320570\pi\)
0.534314 + 0.845286i \(0.320570\pi\)
\(864\) 1.27230e7 0.579836
\(865\) 0 0
\(866\) −3.30480e7 −1.49744
\(867\) −1.09449e7 −0.494498
\(868\) 961238. 0.0433044
\(869\) −7.83911e6 −0.352142
\(870\) 0 0
\(871\) 2.82234e6 0.126056
\(872\) 1.29575e6 0.0577074
\(873\) 4.97588e6 0.220971
\(874\) −6.80103e7 −3.01159
\(875\) 0 0
\(876\) −6.91935e6 −0.304653
\(877\) −6.24910e6 −0.274359 −0.137179 0.990546i \(-0.543804\pi\)
−0.137179 + 0.990546i \(0.543804\pi\)
\(878\) −1.42439e7 −0.623581
\(879\) −7.18290e6 −0.313565
\(880\) 0 0
\(881\) 8.57115e6 0.372048 0.186024 0.982545i \(-0.440440\pi\)
0.186024 + 0.982545i \(0.440440\pi\)
\(882\) −3.09162e7 −1.33818
\(883\) 2.98999e7 1.29053 0.645265 0.763958i \(-0.276747\pi\)
0.645265 + 0.763958i \(0.276747\pi\)
\(884\) 1.25570e7 0.540449
\(885\) 0 0
\(886\) 3.31579e7 1.41907
\(887\) −3.63685e7 −1.55209 −0.776043 0.630680i \(-0.782776\pi\)
−0.776043 + 0.630680i \(0.782776\pi\)
\(888\) 699531. 0.0297697
\(889\) 6.84843e6 0.290627
\(890\) 0 0
\(891\) 6.94782e6 0.293194
\(892\) −2.93131e7 −1.23353
\(893\) 2.93772e7 1.23277
\(894\) −1.11872e7 −0.468144
\(895\) 0 0
\(896\) −648011. −0.0269657
\(897\) 2.30764e6 0.0957608
\(898\) −3.51445e7 −1.45434
\(899\) −3.48680e6 −0.143889
\(900\) 0 0
\(901\) 5.32007e7 2.18326
\(902\) −1.28537e7 −0.526033
\(903\) 443654. 0.0181061
\(904\) 1.41057e6 0.0574083
\(905\) 0 0
\(906\) 591809. 0.0239531
\(907\) −2.51577e7 −1.01544 −0.507718 0.861523i \(-0.669511\pi\)
−0.507718 + 0.861523i \(0.669511\pi\)
\(908\) 2.61670e7 1.05327
\(909\) 2.51132e7 1.00807
\(910\) 0 0
\(911\) −4.68717e7 −1.87118 −0.935588 0.353092i \(-0.885130\pi\)
−0.935588 + 0.353092i \(0.885130\pi\)
\(912\) −6.14659e6 −0.244707
\(913\) −1.63460e7 −0.648983
\(914\) −3.54787e7 −1.40476
\(915\) 0 0
\(916\) −2.08415e7 −0.820712
\(917\) 1.51517e6 0.0595031
\(918\) −2.73401e7 −1.07076
\(919\) −879544. −0.0343533 −0.0171767 0.999852i \(-0.505468\pi\)
−0.0171767 + 0.999852i \(0.505468\pi\)
\(920\) 0 0
\(921\) 8.77264e6 0.340785
\(922\) 2.54604e7 0.986367
\(923\) 4.58901e6 0.177302
\(924\) 305691. 0.0117788
\(925\) 0 0
\(926\) −5.25341e7 −2.01332
\(927\) 9.50388e6 0.363247
\(928\) 2.10992e7 0.804261
\(929\) 2.05492e7 0.781187 0.390593 0.920563i \(-0.372270\pi\)
0.390593 + 0.920563i \(0.372270\pi\)
\(930\) 0 0
\(931\) 3.24597e7 1.22736
\(932\) −4.68320e7 −1.76605
\(933\) 6.70761e6 0.252269
\(934\) −1.88761e7 −0.708018
\(935\) 0 0
\(936\) 601105. 0.0224265
\(937\) −3.29842e7 −1.22732 −0.613659 0.789571i \(-0.710303\pi\)
−0.613659 + 0.789571i \(0.710303\pi\)
\(938\) 2.80934e6 0.104255
\(939\) −4.69087e6 −0.173616
\(940\) 0 0
\(941\) 1.67975e7 0.618400 0.309200 0.950997i \(-0.399939\pi\)
0.309200 + 0.950997i \(0.399939\pi\)
\(942\) 1.30276e7 0.478341
\(943\) −4.96737e7 −1.81906
\(944\) −1.38081e6 −0.0504316
\(945\) 0 0
\(946\) −7.25017e6 −0.263403
\(947\) 1.07215e7 0.388492 0.194246 0.980953i \(-0.437774\pi\)
0.194246 + 0.980953i \(0.437774\pi\)
\(948\) 6.36590e6 0.230059
\(949\) 1.06846e7 0.385118
\(950\) 0 0
\(951\) 5.12881e6 0.183893
\(952\) 695036. 0.0248551
\(953\) 1.79930e7 0.641758 0.320879 0.947120i \(-0.396022\pi\)
0.320879 + 0.947120i \(0.396022\pi\)
\(954\) 4.57989e7 1.62924
\(955\) 0 0
\(956\) −3.91036e7 −1.38380
\(957\) −1.10886e6 −0.0391380
\(958\) 9.42158e6 0.331673
\(959\) 2.85206e6 0.100141
\(960\) 0 0
\(961\) −2.67555e7 −0.934555
\(962\) −1.94256e7 −0.676764
\(963\) 1.73725e7 0.603664
\(964\) −4.63786e7 −1.60740
\(965\) 0 0
\(966\) 2.29702e6 0.0791992
\(967\) −4.83225e7 −1.66182 −0.830908 0.556409i \(-0.812179\pi\)
−0.830908 + 0.556409i \(0.812179\pi\)
\(968\) 2.18529e6 0.0749585
\(969\) 1.40376e7 0.480269
\(970\) 0 0
\(971\) 4.13992e7 1.40911 0.704553 0.709652i \(-0.251148\pi\)
0.704553 + 0.709652i \(0.251148\pi\)
\(972\) −1.82898e7 −0.620931
\(973\) −7.60345e6 −0.257471
\(974\) −2.95322e7 −0.997468
\(975\) 0 0
\(976\) −1.56464e7 −0.525764
\(977\) −2.77983e7 −0.931713 −0.465856 0.884860i \(-0.654254\pi\)
−0.465856 + 0.884860i \(0.654254\pi\)
\(978\) 3.39483e6 0.113494
\(979\) −6.72472e6 −0.224242
\(980\) 0 0
\(981\) 1.97041e7 0.653709
\(982\) −6.85891e7 −2.26974
\(983\) 2.08694e7 0.688853 0.344426 0.938813i \(-0.388073\pi\)
0.344426 + 0.938813i \(0.388073\pi\)
\(984\) 580430. 0.0191100
\(985\) 0 0
\(986\) −4.53395e7 −1.48520
\(987\) −992202. −0.0324196
\(988\) −1.13496e7 −0.369904
\(989\) −2.80185e7 −0.910866
\(990\) 0 0
\(991\) 5.53538e7 1.79045 0.895227 0.445611i \(-0.147014\pi\)
0.895227 + 0.445611i \(0.147014\pi\)
\(992\) −1.13377e7 −0.365802
\(993\) 9.41101e6 0.302875
\(994\) 4.56787e6 0.146638
\(995\) 0 0
\(996\) 1.32741e7 0.423990
\(997\) −3.35323e6 −0.106838 −0.0534189 0.998572i \(-0.517012\pi\)
−0.0534189 + 0.998572i \(0.517012\pi\)
\(998\) 5.09973e7 1.62077
\(999\) 2.17523e7 0.689590
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.h.1.2 9
5.2 odd 4 325.6.b.h.274.3 18
5.3 odd 4 325.6.b.h.274.16 18
5.4 even 2 325.6.a.i.1.8 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.6.a.h.1.2 9 1.1 even 1 trivial
325.6.a.i.1.8 yes 9 5.4 even 2
325.6.b.h.274.3 18 5.2 odd 4
325.6.b.h.274.16 18 5.3 odd 4