Properties

Label 325.6.a.f.1.4
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 161x^{4} + 328x^{3} + 6584x^{2} - 10688x - 47440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.16876\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.16876 q^{2} +2.56930 q^{3} -27.2965 q^{4} +5.57220 q^{6} +75.5966 q^{7} -128.600 q^{8} -236.399 q^{9} +624.896 q^{11} -70.1329 q^{12} +169.000 q^{13} +163.951 q^{14} +594.585 q^{16} -2344.47 q^{17} -512.692 q^{18} -283.916 q^{19} +194.231 q^{21} +1355.25 q^{22} -2043.60 q^{23} -330.412 q^{24} +366.520 q^{26} -1231.72 q^{27} -2063.52 q^{28} +6172.51 q^{29} +687.967 q^{31} +5404.71 q^{32} +1605.55 q^{33} -5084.60 q^{34} +6452.85 q^{36} +2797.24 q^{37} -615.745 q^{38} +434.212 q^{39} +8236.40 q^{41} +421.239 q^{42} +13268.3 q^{43} -17057.5 q^{44} -4432.07 q^{46} +15489.4 q^{47} +1527.67 q^{48} -11092.1 q^{49} -6023.66 q^{51} -4613.11 q^{52} +9603.36 q^{53} -2671.30 q^{54} -9721.71 q^{56} -729.465 q^{57} +13386.7 q^{58} +40189.6 q^{59} +32587.1 q^{61} +1492.03 q^{62} -17870.9 q^{63} -7305.22 q^{64} +3482.05 q^{66} -15914.0 q^{67} +63995.9 q^{68} -5250.62 q^{69} +60206.9 q^{71} +30400.8 q^{72} +35469.1 q^{73} +6066.54 q^{74} +7749.90 q^{76} +47240.1 q^{77} +941.701 q^{78} +65026.6 q^{79} +54280.2 q^{81} +17862.8 q^{82} -86013.0 q^{83} -5301.81 q^{84} +28775.7 q^{86} +15859.1 q^{87} -80361.5 q^{88} -139114. q^{89} +12775.8 q^{91} +55783.0 q^{92} +1767.59 q^{93} +33592.8 q^{94} +13886.3 q^{96} +8013.02 q^{97} -24056.2 q^{98} -147725. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 20 q^{3} + 134 q^{4} - 52 q^{6} - 172 q^{7} + 138 q^{8} + 1034 q^{9} + 800 q^{11} + 832 q^{12} + 1014 q^{13} + 2108 q^{14} + 322 q^{16} - 4396 q^{17} - 6142 q^{18} + 5304 q^{19} + 1072 q^{21}+ \cdots + 301264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.16876 0.383386 0.191693 0.981455i \(-0.438602\pi\)
0.191693 + 0.981455i \(0.438602\pi\)
\(3\) 2.56930 0.164821 0.0824104 0.996598i \(-0.473738\pi\)
0.0824104 + 0.996598i \(0.473738\pi\)
\(4\) −27.2965 −0.853015
\(5\) 0 0
\(6\) 5.57220 0.0631900
\(7\) 75.5966 0.583119 0.291560 0.956553i \(-0.405826\pi\)
0.291560 + 0.956553i \(0.405826\pi\)
\(8\) −128.600 −0.710420
\(9\) −236.399 −0.972834
\(10\) 0 0
\(11\) 624.896 1.55713 0.778567 0.627561i \(-0.215947\pi\)
0.778567 + 0.627561i \(0.215947\pi\)
\(12\) −70.1329 −0.140595
\(13\) 169.000 0.277350
\(14\) 163.951 0.223560
\(15\) 0 0
\(16\) 594.585 0.580650
\(17\) −2344.47 −1.96754 −0.983769 0.179439i \(-0.942572\pi\)
−0.983769 + 0.179439i \(0.942572\pi\)
\(18\) −512.692 −0.372971
\(19\) −283.916 −0.180429 −0.0902143 0.995922i \(-0.528755\pi\)
−0.0902143 + 0.995922i \(0.528755\pi\)
\(20\) 0 0
\(21\) 194.231 0.0961102
\(22\) 1355.25 0.596984
\(23\) −2043.60 −0.805519 −0.402760 0.915306i \(-0.631949\pi\)
−0.402760 + 0.915306i \(0.631949\pi\)
\(24\) −330.412 −0.117092
\(25\) 0 0
\(26\) 366.520 0.106332
\(27\) −1231.72 −0.325164
\(28\) −2063.52 −0.497410
\(29\) 6172.51 1.36291 0.681455 0.731860i \(-0.261348\pi\)
0.681455 + 0.731860i \(0.261348\pi\)
\(30\) 0 0
\(31\) 687.967 0.128577 0.0642885 0.997931i \(-0.479522\pi\)
0.0642885 + 0.997931i \(0.479522\pi\)
\(32\) 5404.71 0.933033
\(33\) 1605.55 0.256648
\(34\) −5084.60 −0.754327
\(35\) 0 0
\(36\) 6452.85 0.829842
\(37\) 2797.24 0.335912 0.167956 0.985795i \(-0.446283\pi\)
0.167956 + 0.985795i \(0.446283\pi\)
\(38\) −615.745 −0.0691738
\(39\) 434.212 0.0457131
\(40\) 0 0
\(41\) 8236.40 0.765205 0.382602 0.923913i \(-0.375028\pi\)
0.382602 + 0.923913i \(0.375028\pi\)
\(42\) 421.239 0.0368473
\(43\) 13268.3 1.09432 0.547158 0.837029i \(-0.315710\pi\)
0.547158 + 0.837029i \(0.315710\pi\)
\(44\) −17057.5 −1.32826
\(45\) 0 0
\(46\) −4432.07 −0.308825
\(47\) 15489.4 1.02280 0.511400 0.859343i \(-0.329127\pi\)
0.511400 + 0.859343i \(0.329127\pi\)
\(48\) 1527.67 0.0957032
\(49\) −11092.1 −0.659972
\(50\) 0 0
\(51\) −6023.66 −0.324291
\(52\) −4613.11 −0.236584
\(53\) 9603.36 0.469606 0.234803 0.972043i \(-0.424556\pi\)
0.234803 + 0.972043i \(0.424556\pi\)
\(54\) −2671.30 −0.124663
\(55\) 0 0
\(56\) −9721.71 −0.414260
\(57\) −729.465 −0.0297384
\(58\) 13386.7 0.522521
\(59\) 40189.6 1.50308 0.751542 0.659685i \(-0.229310\pi\)
0.751542 + 0.659685i \(0.229310\pi\)
\(60\) 0 0
\(61\) 32587.1 1.12130 0.560649 0.828053i \(-0.310552\pi\)
0.560649 + 0.828053i \(0.310552\pi\)
\(62\) 1492.03 0.0492946
\(63\) −17870.9 −0.567278
\(64\) −7305.22 −0.222938
\(65\) 0 0
\(66\) 3482.05 0.0983953
\(67\) −15914.0 −0.433105 −0.216553 0.976271i \(-0.569481\pi\)
−0.216553 + 0.976271i \(0.569481\pi\)
\(68\) 63995.9 1.67834
\(69\) −5250.62 −0.132766
\(70\) 0 0
\(71\) 60206.9 1.41743 0.708713 0.705496i \(-0.249276\pi\)
0.708713 + 0.705496i \(0.249276\pi\)
\(72\) 30400.8 0.691121
\(73\) 35469.1 0.779010 0.389505 0.921024i \(-0.372646\pi\)
0.389505 + 0.921024i \(0.372646\pi\)
\(74\) 6066.54 0.128784
\(75\) 0 0
\(76\) 7749.90 0.153908
\(77\) 47240.1 0.907995
\(78\) 941.701 0.0175258
\(79\) 65026.6 1.17226 0.586129 0.810218i \(-0.300651\pi\)
0.586129 + 0.810218i \(0.300651\pi\)
\(80\) 0 0
\(81\) 54280.2 0.919240
\(82\) 17862.8 0.293369
\(83\) −86013.0 −1.37047 −0.685234 0.728323i \(-0.740300\pi\)
−0.685234 + 0.728323i \(0.740300\pi\)
\(84\) −5301.81 −0.0819834
\(85\) 0 0
\(86\) 28775.7 0.419545
\(87\) 15859.1 0.224636
\(88\) −80361.5 −1.10622
\(89\) −139114. −1.86163 −0.930817 0.365485i \(-0.880903\pi\)
−0.930817 + 0.365485i \(0.880903\pi\)
\(90\) 0 0
\(91\) 12775.8 0.161728
\(92\) 55783.0 0.687120
\(93\) 1767.59 0.0211922
\(94\) 33592.8 0.392127
\(95\) 0 0
\(96\) 13886.3 0.153783
\(97\) 8013.02 0.0864703 0.0432351 0.999065i \(-0.486234\pi\)
0.0432351 + 0.999065i \(0.486234\pi\)
\(98\) −24056.2 −0.253024
\(99\) −147725. −1.51483
\(100\) 0 0
\(101\) 127679. 1.24542 0.622709 0.782454i \(-0.286032\pi\)
0.622709 + 0.782454i \(0.286032\pi\)
\(102\) −13063.9 −0.124329
\(103\) −136390. −1.26675 −0.633373 0.773847i \(-0.718330\pi\)
−0.633373 + 0.773847i \(0.718330\pi\)
\(104\) −21733.4 −0.197035
\(105\) 0 0
\(106\) 20827.4 0.180040
\(107\) −33127.6 −0.279725 −0.139862 0.990171i \(-0.544666\pi\)
−0.139862 + 0.990171i \(0.544666\pi\)
\(108\) 33621.6 0.277370
\(109\) 53441.1 0.430834 0.215417 0.976522i \(-0.430889\pi\)
0.215417 + 0.976522i \(0.430889\pi\)
\(110\) 0 0
\(111\) 7186.95 0.0553652
\(112\) 44948.7 0.338588
\(113\) 181691. 1.33855 0.669277 0.743013i \(-0.266604\pi\)
0.669277 + 0.743013i \(0.266604\pi\)
\(114\) −1582.03 −0.0114013
\(115\) 0 0
\(116\) −168488. −1.16258
\(117\) −39951.4 −0.269816
\(118\) 87161.5 0.576262
\(119\) −177234. −1.14731
\(120\) 0 0
\(121\) 229444. 1.42467
\(122\) 70673.6 0.429890
\(123\) 21161.8 0.126122
\(124\) −18779.1 −0.109678
\(125\) 0 0
\(126\) −38757.8 −0.217487
\(127\) 290716. 1.59941 0.799704 0.600395i \(-0.204990\pi\)
0.799704 + 0.600395i \(0.204990\pi\)
\(128\) −188794. −1.01850
\(129\) 34090.2 0.180366
\(130\) 0 0
\(131\) −216572. −1.10262 −0.551308 0.834302i \(-0.685871\pi\)
−0.551308 + 0.834302i \(0.685871\pi\)
\(132\) −43825.8 −0.218925
\(133\) −21463.1 −0.105211
\(134\) −34513.7 −0.166047
\(135\) 0 0
\(136\) 301499. 1.39778
\(137\) 200864. 0.914326 0.457163 0.889383i \(-0.348866\pi\)
0.457163 + 0.889383i \(0.348866\pi\)
\(138\) −11387.3 −0.0509008
\(139\) −11515.0 −0.0505508 −0.0252754 0.999681i \(-0.508046\pi\)
−0.0252754 + 0.999681i \(0.508046\pi\)
\(140\) 0 0
\(141\) 39797.0 0.168579
\(142\) 130574. 0.543422
\(143\) 105607. 0.431871
\(144\) −140559. −0.564876
\(145\) 0 0
\(146\) 76924.0 0.298662
\(147\) −28499.1 −0.108777
\(148\) −76354.7 −0.286538
\(149\) 386747. 1.42712 0.713561 0.700593i \(-0.247081\pi\)
0.713561 + 0.700593i \(0.247081\pi\)
\(150\) 0 0
\(151\) −22668.6 −0.0809062 −0.0404531 0.999181i \(-0.512880\pi\)
−0.0404531 + 0.999181i \(0.512880\pi\)
\(152\) 36511.5 0.128180
\(153\) 554231. 1.91409
\(154\) 102452. 0.348113
\(155\) 0 0
\(156\) −11852.5 −0.0389939
\(157\) 237735. 0.769741 0.384870 0.922971i \(-0.374246\pi\)
0.384870 + 0.922971i \(0.374246\pi\)
\(158\) 141027. 0.449427
\(159\) 24673.9 0.0774008
\(160\) 0 0
\(161\) −154489. −0.469714
\(162\) 117721. 0.352424
\(163\) −508182. −1.49813 −0.749066 0.662495i \(-0.769498\pi\)
−0.749066 + 0.662495i \(0.769498\pi\)
\(164\) −224825. −0.652731
\(165\) 0 0
\(166\) −186541. −0.525418
\(167\) −307248. −0.852507 −0.426253 0.904604i \(-0.640167\pi\)
−0.426253 + 0.904604i \(0.640167\pi\)
\(168\) −24978.0 −0.0682786
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 67117.3 0.175527
\(172\) −362177. −0.933468
\(173\) 4598.14 0.0116807 0.00584033 0.999983i \(-0.498141\pi\)
0.00584033 + 0.999983i \(0.498141\pi\)
\(174\) 34394.5 0.0861223
\(175\) 0 0
\(176\) 371554. 0.904150
\(177\) 103259. 0.247740
\(178\) −301704. −0.713725
\(179\) 557239. 1.29990 0.649948 0.759978i \(-0.274791\pi\)
0.649948 + 0.759978i \(0.274791\pi\)
\(180\) 0 0
\(181\) −410955. −0.932389 −0.466195 0.884682i \(-0.654375\pi\)
−0.466195 + 0.884682i \(0.654375\pi\)
\(182\) 27707.7 0.0620043
\(183\) 83726.1 0.184813
\(184\) 262806. 0.572257
\(185\) 0 0
\(186\) 3833.49 0.00812478
\(187\) −1.46505e6 −3.06372
\(188\) −422807. −0.872464
\(189\) −93113.9 −0.189609
\(190\) 0 0
\(191\) −361321. −0.716655 −0.358327 0.933596i \(-0.616653\pi\)
−0.358327 + 0.933596i \(0.616653\pi\)
\(192\) −18769.3 −0.0367448
\(193\) 149297. 0.288509 0.144254 0.989541i \(-0.453922\pi\)
0.144254 + 0.989541i \(0.453922\pi\)
\(194\) 17378.3 0.0331515
\(195\) 0 0
\(196\) 302777. 0.562966
\(197\) −139691. −0.256449 −0.128225 0.991745i \(-0.540928\pi\)
−0.128225 + 0.991745i \(0.540928\pi\)
\(198\) −320379. −0.580766
\(199\) −433871. −0.776655 −0.388327 0.921521i \(-0.626947\pi\)
−0.388327 + 0.921521i \(0.626947\pi\)
\(200\) 0 0
\(201\) −40888.0 −0.0713848
\(202\) 276904. 0.477476
\(203\) 466621. 0.794739
\(204\) 164425. 0.276625
\(205\) 0 0
\(206\) −295797. −0.485653
\(207\) 483104. 0.783636
\(208\) 100485. 0.161043
\(209\) −177418. −0.280952
\(210\) 0 0
\(211\) 392100. 0.606305 0.303153 0.952942i \(-0.401961\pi\)
0.303153 + 0.952942i \(0.401961\pi\)
\(212\) −262138. −0.400581
\(213\) 154690. 0.233621
\(214\) −71845.8 −0.107243
\(215\) 0 0
\(216\) 158399. 0.231003
\(217\) 52008.0 0.0749757
\(218\) 115901. 0.165176
\(219\) 91130.9 0.128397
\(220\) 0 0
\(221\) −396216. −0.545697
\(222\) 15586.8 0.0212263
\(223\) 594720. 0.800848 0.400424 0.916330i \(-0.368863\pi\)
0.400424 + 0.916330i \(0.368863\pi\)
\(224\) 408578. 0.544070
\(225\) 0 0
\(226\) 394043. 0.513183
\(227\) −473048. −0.609313 −0.304657 0.952462i \(-0.598542\pi\)
−0.304657 + 0.952462i \(0.598542\pi\)
\(228\) 19911.8 0.0253673
\(229\) −905716. −1.14131 −0.570655 0.821190i \(-0.693311\pi\)
−0.570655 + 0.821190i \(0.693311\pi\)
\(230\) 0 0
\(231\) 121374. 0.149656
\(232\) −793784. −0.968239
\(233\) 746250. 0.900522 0.450261 0.892897i \(-0.351331\pi\)
0.450261 + 0.892897i \(0.351331\pi\)
\(234\) −86644.9 −0.103444
\(235\) 0 0
\(236\) −1.09703e6 −1.28215
\(237\) 167073. 0.193212
\(238\) −384379. −0.439863
\(239\) 909186. 1.02958 0.514788 0.857318i \(-0.327871\pi\)
0.514788 + 0.857318i \(0.327871\pi\)
\(240\) 0 0
\(241\) −575680. −0.638467 −0.319233 0.947676i \(-0.603425\pi\)
−0.319233 + 0.947676i \(0.603425\pi\)
\(242\) 497609. 0.546198
\(243\) 438770. 0.476674
\(244\) −889513. −0.956484
\(245\) 0 0
\(246\) 45894.8 0.0483533
\(247\) −47981.8 −0.0500419
\(248\) −88472.4 −0.0913437
\(249\) −220993. −0.225882
\(250\) 0 0
\(251\) −1.77777e6 −1.78111 −0.890555 0.454876i \(-0.849683\pi\)
−0.890555 + 0.454876i \(0.849683\pi\)
\(252\) 487814. 0.483897
\(253\) −1.27704e6 −1.25430
\(254\) 630492. 0.613191
\(255\) 0 0
\(256\) −175681. −0.167543
\(257\) −1.60384e6 −1.51470 −0.757352 0.653006i \(-0.773507\pi\)
−0.757352 + 0.653006i \(0.773507\pi\)
\(258\) 73933.3 0.0691498
\(259\) 211462. 0.195877
\(260\) 0 0
\(261\) −1.45917e6 −1.32589
\(262\) −469693. −0.422728
\(263\) −1.67245e6 −1.49095 −0.745477 0.666532i \(-0.767778\pi\)
−0.745477 + 0.666532i \(0.767778\pi\)
\(264\) −206473. −0.182328
\(265\) 0 0
\(266\) −46548.2 −0.0403366
\(267\) −357425. −0.306836
\(268\) 434397. 0.369445
\(269\) −64944.5 −0.0547220 −0.0273610 0.999626i \(-0.508710\pi\)
−0.0273610 + 0.999626i \(0.508710\pi\)
\(270\) 0 0
\(271\) 1.37951e6 1.14104 0.570519 0.821284i \(-0.306742\pi\)
0.570519 + 0.821284i \(0.306742\pi\)
\(272\) −1.39399e6 −1.14245
\(273\) 32825.0 0.0266562
\(274\) 435626. 0.350540
\(275\) 0 0
\(276\) 143323. 0.113252
\(277\) 2.40558e6 1.88374 0.941870 0.335978i \(-0.109067\pi\)
0.941870 + 0.335978i \(0.109067\pi\)
\(278\) −24973.3 −0.0193805
\(279\) −162634. −0.125084
\(280\) 0 0
\(281\) −1.70763e6 −1.29011 −0.645055 0.764136i \(-0.723166\pi\)
−0.645055 + 0.764136i \(0.723166\pi\)
\(282\) 86310.2 0.0646307
\(283\) −513628. −0.381226 −0.190613 0.981665i \(-0.561048\pi\)
−0.190613 + 0.981665i \(0.561048\pi\)
\(284\) −1.64344e6 −1.20909
\(285\) 0 0
\(286\) 229037. 0.165574
\(287\) 622644. 0.446206
\(288\) −1.27767e6 −0.907687
\(289\) 4.07670e6 2.87121
\(290\) 0 0
\(291\) 20587.9 0.0142521
\(292\) −968182. −0.664508
\(293\) 2.29105e6 1.55907 0.779535 0.626359i \(-0.215456\pi\)
0.779535 + 0.626359i \(0.215456\pi\)
\(294\) −61807.6 −0.0417036
\(295\) 0 0
\(296\) −359724. −0.238638
\(297\) −769697. −0.506324
\(298\) 838761. 0.547139
\(299\) −345368. −0.223411
\(300\) 0 0
\(301\) 1.00304e6 0.638117
\(302\) −49162.7 −0.0310183
\(303\) 328045. 0.205271
\(304\) −168812. −0.104766
\(305\) 0 0
\(306\) 1.20199e6 0.733835
\(307\) −244483. −0.148048 −0.0740240 0.997256i \(-0.523584\pi\)
−0.0740240 + 0.997256i \(0.523584\pi\)
\(308\) −1.28949e6 −0.774534
\(309\) −350427. −0.208786
\(310\) 0 0
\(311\) 1.21897e6 0.714648 0.357324 0.933981i \(-0.383689\pi\)
0.357324 + 0.933981i \(0.383689\pi\)
\(312\) −55839.6 −0.0324755
\(313\) 1.21980e6 0.703766 0.351883 0.936044i \(-0.385542\pi\)
0.351883 + 0.936044i \(0.385542\pi\)
\(314\) 515591. 0.295108
\(315\) 0 0
\(316\) −1.77500e6 −0.999954
\(317\) −2.20055e6 −1.22994 −0.614970 0.788551i \(-0.710832\pi\)
−0.614970 + 0.788551i \(0.710832\pi\)
\(318\) 53511.8 0.0296744
\(319\) 3.85718e6 2.12223
\(320\) 0 0
\(321\) −85114.9 −0.0461044
\(322\) −335050. −0.180082
\(323\) 665633. 0.355000
\(324\) −1.48166e6 −0.784126
\(325\) 0 0
\(326\) −1.10212e6 −0.574363
\(327\) 137306. 0.0710103
\(328\) −1.05920e6 −0.543617
\(329\) 1.17095e6 0.596414
\(330\) 0 0
\(331\) −755217. −0.378880 −0.189440 0.981892i \(-0.560667\pi\)
−0.189440 + 0.981892i \(0.560667\pi\)
\(332\) 2.34785e6 1.16903
\(333\) −661263. −0.326786
\(334\) −666347. −0.326839
\(335\) 0 0
\(336\) 115487. 0.0558064
\(337\) 1.10179e6 0.528475 0.264238 0.964458i \(-0.414880\pi\)
0.264238 + 0.964458i \(0.414880\pi\)
\(338\) 61941.9 0.0294912
\(339\) 466818. 0.220622
\(340\) 0 0
\(341\) 429908. 0.200212
\(342\) 145561. 0.0672947
\(343\) −2.10908e6 −0.967962
\(344\) −1.70629e6 −0.777424
\(345\) 0 0
\(346\) 9972.27 0.00447820
\(347\) −1.25898e6 −0.561301 −0.280650 0.959810i \(-0.590550\pi\)
−0.280650 + 0.959810i \(0.590550\pi\)
\(348\) −432896. −0.191618
\(349\) −674977. −0.296637 −0.148318 0.988940i \(-0.547386\pi\)
−0.148318 + 0.988940i \(0.547386\pi\)
\(350\) 0 0
\(351\) −208161. −0.0901843
\(352\) 3.37738e6 1.45286
\(353\) −1.05470e6 −0.450496 −0.225248 0.974301i \(-0.572319\pi\)
−0.225248 + 0.974301i \(0.572319\pi\)
\(354\) 223944. 0.0949799
\(355\) 0 0
\(356\) 3.79731e6 1.58800
\(357\) −455369. −0.189100
\(358\) 1.20852e6 0.498362
\(359\) 1.94312e6 0.795728 0.397864 0.917444i \(-0.369752\pi\)
0.397864 + 0.917444i \(0.369752\pi\)
\(360\) 0 0
\(361\) −2.39549e6 −0.967446
\(362\) −891262. −0.357465
\(363\) 589511. 0.234815
\(364\) −348735. −0.137957
\(365\) 0 0
\(366\) 181582. 0.0708548
\(367\) 3.34298e6 1.29559 0.647797 0.761813i \(-0.275690\pi\)
0.647797 + 0.761813i \(0.275690\pi\)
\(368\) −1.21509e6 −0.467725
\(369\) −1.94707e6 −0.744417
\(370\) 0 0
\(371\) 725981. 0.273836
\(372\) −48249.1 −0.0180772
\(373\) 1.66367e6 0.619149 0.309575 0.950875i \(-0.399813\pi\)
0.309575 + 0.950875i \(0.399813\pi\)
\(374\) −3.17735e6 −1.17459
\(375\) 0 0
\(376\) −1.99194e6 −0.726618
\(377\) 1.04315e6 0.378003
\(378\) −201942. −0.0726936
\(379\) −5.46932e6 −1.95585 −0.977924 0.208962i \(-0.932991\pi\)
−0.977924 + 0.208962i \(0.932991\pi\)
\(380\) 0 0
\(381\) 746936. 0.263616
\(382\) −783619. −0.274756
\(383\) 1.39999e6 0.487674 0.243837 0.969816i \(-0.421594\pi\)
0.243837 + 0.969816i \(0.421594\pi\)
\(384\) −485068. −0.167871
\(385\) 0 0
\(386\) 323790. 0.110610
\(387\) −3.13660e6 −1.06459
\(388\) −218727. −0.0737605
\(389\) −296544. −0.0993607 −0.0496803 0.998765i \(-0.515820\pi\)
−0.0496803 + 0.998765i \(0.515820\pi\)
\(390\) 0 0
\(391\) 4.79116e6 1.58489
\(392\) 1.42645e6 0.468857
\(393\) −556439. −0.181734
\(394\) −302955. −0.0983191
\(395\) 0 0
\(396\) 4.03236e6 1.29218
\(397\) 1.62560e6 0.517653 0.258826 0.965924i \(-0.416664\pi\)
0.258826 + 0.965924i \(0.416664\pi\)
\(398\) −940962. −0.297759
\(399\) −55145.1 −0.0173410
\(400\) 0 0
\(401\) 870992. 0.270491 0.135246 0.990812i \(-0.456818\pi\)
0.135246 + 0.990812i \(0.456818\pi\)
\(402\) −88676.2 −0.0273679
\(403\) 116266. 0.0356608
\(404\) −3.48518e6 −1.06236
\(405\) 0 0
\(406\) 1.01199e6 0.304692
\(407\) 1.74798e6 0.523060
\(408\) 774642. 0.230383
\(409\) 478324. 0.141388 0.0706942 0.997498i \(-0.477479\pi\)
0.0706942 + 0.997498i \(0.477479\pi\)
\(410\) 0 0
\(411\) 516081. 0.150700
\(412\) 3.72297e6 1.08055
\(413\) 3.03820e6 0.876477
\(414\) 1.04774e6 0.300435
\(415\) 0 0
\(416\) 913395. 0.258777
\(417\) −29585.6 −0.00833182
\(418\) −384777. −0.107713
\(419\) 1.58332e6 0.440589 0.220295 0.975433i \(-0.429298\pi\)
0.220295 + 0.975433i \(0.429298\pi\)
\(420\) 0 0
\(421\) −2.63883e6 −0.725614 −0.362807 0.931864i \(-0.618182\pi\)
−0.362807 + 0.931864i \(0.618182\pi\)
\(422\) 850371. 0.232449
\(423\) −3.66168e6 −0.995015
\(424\) −1.23499e6 −0.333617
\(425\) 0 0
\(426\) 335485. 0.0895672
\(427\) 2.46348e6 0.653851
\(428\) 904268. 0.238609
\(429\) 271337. 0.0711814
\(430\) 0 0
\(431\) −2.05662e6 −0.533287 −0.266644 0.963795i \(-0.585915\pi\)
−0.266644 + 0.963795i \(0.585915\pi\)
\(432\) −732363. −0.188806
\(433\) 3.35571e6 0.860131 0.430066 0.902798i \(-0.358490\pi\)
0.430066 + 0.902798i \(0.358490\pi\)
\(434\) 112793. 0.0287447
\(435\) 0 0
\(436\) −1.45876e6 −0.367507
\(437\) 580210. 0.145339
\(438\) 197641. 0.0492257
\(439\) 594295. 0.147177 0.0735886 0.997289i \(-0.476555\pi\)
0.0735886 + 0.997289i \(0.476555\pi\)
\(440\) 0 0
\(441\) 2.62217e6 0.642043
\(442\) −859298. −0.209213
\(443\) 32710.8 0.00791921 0.00395960 0.999992i \(-0.498740\pi\)
0.00395960 + 0.999992i \(0.498740\pi\)
\(444\) −196178. −0.0472274
\(445\) 0 0
\(446\) 1.28980e6 0.307034
\(447\) 993669. 0.235219
\(448\) −552250. −0.129999
\(449\) 1.14362e6 0.267711 0.133856 0.991001i \(-0.457264\pi\)
0.133856 + 0.991001i \(0.457264\pi\)
\(450\) 0 0
\(451\) 5.14689e6 1.19153
\(452\) −4.95951e6 −1.14181
\(453\) −58242.4 −0.0133350
\(454\) −1.02593e6 −0.233602
\(455\) 0 0
\(456\) 93809.1 0.0211268
\(457\) 1.26412e6 0.283139 0.141569 0.989928i \(-0.454785\pi\)
0.141569 + 0.989928i \(0.454785\pi\)
\(458\) −1.96428e6 −0.437562
\(459\) 2.88774e6 0.639773
\(460\) 0 0
\(461\) 2.38521e6 0.522727 0.261364 0.965240i \(-0.415828\pi\)
0.261364 + 0.965240i \(0.415828\pi\)
\(462\) 263231. 0.0573762
\(463\) 5.27680e6 1.14398 0.571990 0.820261i \(-0.306172\pi\)
0.571990 + 0.820261i \(0.306172\pi\)
\(464\) 3.67009e6 0.791373
\(465\) 0 0
\(466\) 1.61844e6 0.345248
\(467\) 5.46999e6 1.16063 0.580316 0.814391i \(-0.302929\pi\)
0.580316 + 0.814391i \(0.302929\pi\)
\(468\) 1.09053e6 0.230157
\(469\) −1.20305e6 −0.252552
\(470\) 0 0
\(471\) 610814. 0.126869
\(472\) −5.16837e6 −1.06782
\(473\) 8.29128e6 1.70400
\(474\) 362341. 0.0740750
\(475\) 0 0
\(476\) 4.83788e6 0.978672
\(477\) −2.27022e6 −0.456848
\(478\) 1.97181e6 0.394725
\(479\) 8.31612e6 1.65608 0.828042 0.560666i \(-0.189455\pi\)
0.828042 + 0.560666i \(0.189455\pi\)
\(480\) 0 0
\(481\) 472733. 0.0931651
\(482\) −1.24851e6 −0.244779
\(483\) −396929. −0.0774186
\(484\) −6.26302e6 −1.21526
\(485\) 0 0
\(486\) 951587. 0.182750
\(487\) −1.23823e6 −0.236581 −0.118291 0.992979i \(-0.537741\pi\)
−0.118291 + 0.992979i \(0.537741\pi\)
\(488\) −4.19069e6 −0.796593
\(489\) −1.30567e6 −0.246923
\(490\) 0 0
\(491\) 472497. 0.0884494 0.0442247 0.999022i \(-0.485918\pi\)
0.0442247 + 0.999022i \(0.485918\pi\)
\(492\) −577643. −0.107584
\(493\) −1.44713e7 −2.68158
\(494\) −104061. −0.0191854
\(495\) 0 0
\(496\) 409055. 0.0746582
\(497\) 4.55144e6 0.826529
\(498\) −479281. −0.0865998
\(499\) 3.43591e6 0.617718 0.308859 0.951108i \(-0.400053\pi\)
0.308859 + 0.951108i \(0.400053\pi\)
\(500\) 0 0
\(501\) −789413. −0.140511
\(502\) −3.85555e6 −0.682853
\(503\) 9.25786e6 1.63151 0.815756 0.578396i \(-0.196321\pi\)
0.815756 + 0.578396i \(0.196321\pi\)
\(504\) 2.29820e6 0.403006
\(505\) 0 0
\(506\) −2.76959e6 −0.480882
\(507\) 73381.8 0.0126785
\(508\) −7.93552e6 −1.36432
\(509\) 3.39691e6 0.581152 0.290576 0.956852i \(-0.406153\pi\)
0.290576 + 0.956852i \(0.406153\pi\)
\(510\) 0 0
\(511\) 2.68135e6 0.454256
\(512\) 5.66039e6 0.954271
\(513\) 349705. 0.0586689
\(514\) −3.47834e6 −0.580717
\(515\) 0 0
\(516\) −930541. −0.153855
\(517\) 9.67928e6 1.59264
\(518\) 458610. 0.0750964
\(519\) 11814.0 0.00192522
\(520\) 0 0
\(521\) 7.22852e6 1.16669 0.583344 0.812225i \(-0.301744\pi\)
0.583344 + 0.812225i \(0.301744\pi\)
\(522\) −3.16460e6 −0.508326
\(523\) 5.69535e6 0.910471 0.455236 0.890371i \(-0.349555\pi\)
0.455236 + 0.890371i \(0.349555\pi\)
\(524\) 5.91166e6 0.940549
\(525\) 0 0
\(526\) −3.62714e6 −0.571611
\(527\) −1.61292e6 −0.252980
\(528\) 954635. 0.149023
\(529\) −2.26005e6 −0.351139
\(530\) 0 0
\(531\) −9.50076e6 −1.46225
\(532\) 585866. 0.0897469
\(533\) 1.39195e6 0.212230
\(534\) −775168. −0.117637
\(535\) 0 0
\(536\) 2.04654e6 0.307687
\(537\) 1.43171e6 0.214250
\(538\) −140849. −0.0209796
\(539\) −6.93144e6 −1.02767
\(540\) 0 0
\(541\) −3.69650e6 −0.542998 −0.271499 0.962439i \(-0.587519\pi\)
−0.271499 + 0.962439i \(0.587519\pi\)
\(542\) 2.99181e6 0.437458
\(543\) −1.05587e6 −0.153677
\(544\) −1.26712e7 −1.83578
\(545\) 0 0
\(546\) 71189.5 0.0102196
\(547\) −1.94896e6 −0.278507 −0.139253 0.990257i \(-0.544470\pi\)
−0.139253 + 0.990257i \(0.544470\pi\)
\(548\) −5.48288e6 −0.779934
\(549\) −7.70355e6 −1.09084
\(550\) 0 0
\(551\) −1.75247e6 −0.245908
\(552\) 675229. 0.0943199
\(553\) 4.91579e6 0.683566
\(554\) 5.21713e6 0.722200
\(555\) 0 0
\(556\) 314320. 0.0431206
\(557\) 508289. 0.0694180 0.0347090 0.999397i \(-0.488950\pi\)
0.0347090 + 0.999397i \(0.488950\pi\)
\(558\) −352715. −0.0479555
\(559\) 2.24234e6 0.303509
\(560\) 0 0
\(561\) −3.76416e6 −0.504965
\(562\) −3.70343e6 −0.494611
\(563\) 1.76345e6 0.234473 0.117237 0.993104i \(-0.462596\pi\)
0.117237 + 0.993104i \(0.462596\pi\)
\(564\) −1.08632e6 −0.143800
\(565\) 0 0
\(566\) −1.11394e6 −0.146157
\(567\) 4.10340e6 0.536027
\(568\) −7.74260e6 −1.00697
\(569\) 1.08114e7 1.39992 0.699960 0.714182i \(-0.253201\pi\)
0.699960 + 0.714182i \(0.253201\pi\)
\(570\) 0 0
\(571\) −8.48510e6 −1.08910 −0.544549 0.838729i \(-0.683299\pi\)
−0.544549 + 0.838729i \(0.683299\pi\)
\(572\) −2.88271e6 −0.368393
\(573\) −928343. −0.118120
\(574\) 1.35037e6 0.171069
\(575\) 0 0
\(576\) 1.72695e6 0.216881
\(577\) −8.97573e6 −1.12235 −0.561177 0.827695i \(-0.689651\pi\)
−0.561177 + 0.827695i \(0.689651\pi\)
\(578\) 8.84139e6 1.10078
\(579\) 383590. 0.0475523
\(580\) 0 0
\(581\) −6.50229e6 −0.799146
\(582\) 44650.1 0.00546406
\(583\) 6.00110e6 0.731239
\(584\) −4.56132e6 −0.553425
\(585\) 0 0
\(586\) 4.96874e6 0.597726
\(587\) −9.29097e6 −1.11293 −0.556463 0.830873i \(-0.687842\pi\)
−0.556463 + 0.830873i \(0.687842\pi\)
\(588\) 777925. 0.0927885
\(589\) −195325. −0.0231990
\(590\) 0 0
\(591\) −358907. −0.0422682
\(592\) 1.66320e6 0.195047
\(593\) −6.88126e6 −0.803584 −0.401792 0.915731i \(-0.631613\pi\)
−0.401792 + 0.915731i \(0.631613\pi\)
\(594\) −1.66929e6 −0.194118
\(595\) 0 0
\(596\) −1.05568e7 −1.21736
\(597\) −1.11475e6 −0.128009
\(598\) −749020. −0.0856526
\(599\) 2.36690e6 0.269533 0.134767 0.990877i \(-0.456972\pi\)
0.134767 + 0.990877i \(0.456972\pi\)
\(600\) 0 0
\(601\) −1.66780e7 −1.88346 −0.941731 0.336368i \(-0.890801\pi\)
−0.941731 + 0.336368i \(0.890801\pi\)
\(602\) 2.17534e6 0.244645
\(603\) 3.76206e6 0.421340
\(604\) 618772. 0.0690142
\(605\) 0 0
\(606\) 711451. 0.0786979
\(607\) −148356. −0.0163430 −0.00817152 0.999967i \(-0.502601\pi\)
−0.00817152 + 0.999967i \(0.502601\pi\)
\(608\) −1.53448e6 −0.168346
\(609\) 1.19889e6 0.130989
\(610\) 0 0
\(611\) 2.61771e6 0.283674
\(612\) −1.51285e7 −1.63275
\(613\) −1.61218e7 −1.73286 −0.866429 0.499301i \(-0.833590\pi\)
−0.866429 + 0.499301i \(0.833590\pi\)
\(614\) −530225. −0.0567595
\(615\) 0 0
\(616\) −6.07506e6 −0.645058
\(617\) 9.27027e6 0.980346 0.490173 0.871625i \(-0.336934\pi\)
0.490173 + 0.871625i \(0.336934\pi\)
\(618\) −759992. −0.0800457
\(619\) −2.39889e6 −0.251643 −0.125821 0.992053i \(-0.540157\pi\)
−0.125821 + 0.992053i \(0.540157\pi\)
\(620\) 0 0
\(621\) 2.51714e6 0.261926
\(622\) 2.64365e6 0.273986
\(623\) −1.05165e7 −1.08555
\(624\) 258176. 0.0265433
\(625\) 0 0
\(626\) 2.64546e6 0.269814
\(627\) −455840. −0.0463067
\(628\) −6.48934e6 −0.656600
\(629\) −6.55805e6 −0.660919
\(630\) 0 0
\(631\) 5.93145e6 0.593045 0.296523 0.955026i \(-0.404173\pi\)
0.296523 + 0.955026i \(0.404173\pi\)
\(632\) −8.36240e6 −0.832796
\(633\) 1.00742e6 0.0999317
\(634\) −4.77247e6 −0.471542
\(635\) 0 0
\(636\) −673511. −0.0660240
\(637\) −1.87457e6 −0.183043
\(638\) 8.36530e6 0.813635
\(639\) −1.42328e7 −1.37892
\(640\) 0 0
\(641\) −1.85865e7 −1.78670 −0.893351 0.449360i \(-0.851652\pi\)
−0.893351 + 0.449360i \(0.851652\pi\)
\(642\) −184594. −0.0176758
\(643\) −1.36174e7 −1.29887 −0.649437 0.760416i \(-0.724995\pi\)
−0.649437 + 0.760416i \(0.724995\pi\)
\(644\) 4.21701e6 0.400673
\(645\) 0 0
\(646\) 1.44360e6 0.136102
\(647\) −1.49003e6 −0.139937 −0.0699686 0.997549i \(-0.522290\pi\)
−0.0699686 + 0.997549i \(0.522290\pi\)
\(648\) −6.98043e6 −0.653047
\(649\) 2.51143e7 2.34050
\(650\) 0 0
\(651\) 133624. 0.0123576
\(652\) 1.38716e7 1.27793
\(653\) 1.02829e7 0.943698 0.471849 0.881679i \(-0.343587\pi\)
0.471849 + 0.881679i \(0.343587\pi\)
\(654\) 297785. 0.0272244
\(655\) 0 0
\(656\) 4.89724e6 0.444316
\(657\) −8.38485e6 −0.757848
\(658\) 2.53951e6 0.228657
\(659\) 1.29392e7 1.16063 0.580313 0.814393i \(-0.302930\pi\)
0.580313 + 0.814393i \(0.302930\pi\)
\(660\) 0 0
\(661\) 1.78038e7 1.58492 0.792461 0.609922i \(-0.208799\pi\)
0.792461 + 0.609922i \(0.208799\pi\)
\(662\) −1.63788e6 −0.145257
\(663\) −1.01800e6 −0.0899422
\(664\) 1.10613e7 0.973608
\(665\) 0 0
\(666\) −1.43412e6 −0.125285
\(667\) −1.26141e7 −1.09785
\(668\) 8.38679e6 0.727201
\(669\) 1.52801e6 0.131996
\(670\) 0 0
\(671\) 2.03636e7 1.74601
\(672\) 1.04976e6 0.0896740
\(673\) −5.55797e6 −0.473019 −0.236509 0.971629i \(-0.576003\pi\)
−0.236509 + 0.971629i \(0.576003\pi\)
\(674\) 2.38952e6 0.202610
\(675\) 0 0
\(676\) −779615. −0.0656165
\(677\) −1.41700e7 −1.18822 −0.594110 0.804384i \(-0.702496\pi\)
−0.594110 + 0.804384i \(0.702496\pi\)
\(678\) 1.01242e6 0.0845833
\(679\) 605757. 0.0504225
\(680\) 0 0
\(681\) −1.21540e6 −0.100427
\(682\) 932367. 0.0767584
\(683\) 2.01906e7 1.65614 0.828072 0.560621i \(-0.189438\pi\)
0.828072 + 0.560621i \(0.189438\pi\)
\(684\) −1.83207e6 −0.149727
\(685\) 0 0
\(686\) −4.57409e6 −0.371103
\(687\) −2.32706e6 −0.188112
\(688\) 7.88911e6 0.635414
\(689\) 1.62297e6 0.130245
\(690\) 0 0
\(691\) −8.18523e6 −0.652132 −0.326066 0.945347i \(-0.605723\pi\)
−0.326066 + 0.945347i \(0.605723\pi\)
\(692\) −125513. −0.00996378
\(693\) −1.11675e7 −0.883329
\(694\) −2.73043e6 −0.215195
\(695\) 0 0
\(696\) −2.03947e6 −0.159586
\(697\) −1.93100e7 −1.50557
\(698\) −1.46386e6 −0.113726
\(699\) 1.91734e6 0.148425
\(700\) 0 0
\(701\) −6.38587e6 −0.490823 −0.245411 0.969419i \(-0.578923\pi\)
−0.245411 + 0.969419i \(0.578923\pi\)
\(702\) −451450. −0.0345754
\(703\) −794180. −0.0606081
\(704\) −4.56501e6 −0.347144
\(705\) 0 0
\(706\) −2.28739e6 −0.172714
\(707\) 9.65208e6 0.726227
\(708\) −2.81861e6 −0.211326
\(709\) 1.36770e7 1.02182 0.510911 0.859633i \(-0.329308\pi\)
0.510911 + 0.859633i \(0.329308\pi\)
\(710\) 0 0
\(711\) −1.53722e7 −1.14041
\(712\) 1.78900e7 1.32254
\(713\) −1.40593e6 −0.103571
\(714\) −987585. −0.0724985
\(715\) 0 0
\(716\) −1.52107e7 −1.10883
\(717\) 2.33597e6 0.169695
\(718\) 4.21417e6 0.305071
\(719\) 1.17397e6 0.0846907 0.0423453 0.999103i \(-0.486517\pi\)
0.0423453 + 0.999103i \(0.486517\pi\)
\(720\) 0 0
\(721\) −1.03106e7 −0.738664
\(722\) −5.19524e6 −0.370905
\(723\) −1.47910e6 −0.105233
\(724\) 1.12176e7 0.795342
\(725\) 0 0
\(726\) 1.27851e6 0.0900248
\(727\) −2.09397e7 −1.46938 −0.734691 0.678402i \(-0.762673\pi\)
−0.734691 + 0.678402i \(0.762673\pi\)
\(728\) −1.64297e6 −0.114895
\(729\) −1.20628e7 −0.840675
\(730\) 0 0
\(731\) −3.11071e7 −2.15311
\(732\) −2.28543e6 −0.157648
\(733\) 8.07907e6 0.555394 0.277697 0.960669i \(-0.410429\pi\)
0.277697 + 0.960669i \(0.410429\pi\)
\(734\) 7.25013e6 0.496713
\(735\) 0 0
\(736\) −1.10450e7 −0.751576
\(737\) −9.94462e6 −0.674403
\(738\) −4.22273e6 −0.285399
\(739\) −1.66515e7 −1.12161 −0.560806 0.827947i \(-0.689509\pi\)
−0.560806 + 0.827947i \(0.689509\pi\)
\(740\) 0 0
\(741\) −123280. −0.00824794
\(742\) 1.57448e6 0.104985
\(743\) −6.99037e6 −0.464545 −0.232273 0.972651i \(-0.574616\pi\)
−0.232273 + 0.972651i \(0.574616\pi\)
\(744\) −227312. −0.0150553
\(745\) 0 0
\(746\) 3.60810e6 0.237373
\(747\) 2.03334e7 1.33324
\(748\) 3.99908e7 2.61340
\(749\) −2.50434e6 −0.163113
\(750\) 0 0
\(751\) 1.16465e7 0.753520 0.376760 0.926311i \(-0.377038\pi\)
0.376760 + 0.926311i \(0.377038\pi\)
\(752\) 9.20979e6 0.593889
\(753\) −4.56762e6 −0.293564
\(754\) 2.26235e6 0.144921
\(755\) 0 0
\(756\) 2.54168e6 0.161740
\(757\) 905942. 0.0574593 0.0287297 0.999587i \(-0.490854\pi\)
0.0287297 + 0.999587i \(0.490854\pi\)
\(758\) −1.18616e7 −0.749845
\(759\) −3.28109e6 −0.206735
\(760\) 0 0
\(761\) 1.01329e7 0.634267 0.317134 0.948381i \(-0.397280\pi\)
0.317134 + 0.948381i \(0.397280\pi\)
\(762\) 1.61993e6 0.101067
\(763\) 4.03997e6 0.251227
\(764\) 9.86280e6 0.611317
\(765\) 0 0
\(766\) 3.03625e6 0.186967
\(767\) 6.79204e6 0.416881
\(768\) −451378. −0.0276145
\(769\) 1.25661e7 0.766274 0.383137 0.923692i \(-0.374844\pi\)
0.383137 + 0.923692i \(0.374844\pi\)
\(770\) 0 0
\(771\) −4.12075e6 −0.249655
\(772\) −4.07529e6 −0.246102
\(773\) 3.34145e6 0.201135 0.100567 0.994930i \(-0.467934\pi\)
0.100567 + 0.994930i \(0.467934\pi\)
\(774\) −6.80253e6 −0.408148
\(775\) 0 0
\(776\) −1.03047e6 −0.0614302
\(777\) 543309. 0.0322845
\(778\) −643132. −0.0380935
\(779\) −2.33844e6 −0.138065
\(780\) 0 0
\(781\) 3.76231e7 2.20712
\(782\) 1.03909e7 0.607625
\(783\) −7.60281e6 −0.443169
\(784\) −6.59523e6 −0.383213
\(785\) 0 0
\(786\) −1.20678e6 −0.0696743
\(787\) −1.19270e7 −0.686424 −0.343212 0.939258i \(-0.611515\pi\)
−0.343212 + 0.939258i \(0.611515\pi\)
\(788\) 3.81306e6 0.218755
\(789\) −4.29703e6 −0.245740
\(790\) 0 0
\(791\) 1.37352e7 0.780537
\(792\) 1.89974e7 1.07617
\(793\) 5.50722e6 0.310992
\(794\) 3.52554e6 0.198461
\(795\) 0 0
\(796\) 1.18432e7 0.662498
\(797\) 1.42516e7 0.794729 0.397365 0.917661i \(-0.369925\pi\)
0.397365 + 0.917661i \(0.369925\pi\)
\(798\) −119596. −0.00664831
\(799\) −3.63146e7 −2.01240
\(800\) 0 0
\(801\) 3.28863e7 1.81106
\(802\) 1.88897e6 0.103703
\(803\) 2.21645e7 1.21302
\(804\) 1.11610e6 0.0608923
\(805\) 0 0
\(806\) 252154. 0.0136719
\(807\) −166862. −0.00901932
\(808\) −1.64194e7 −0.884770
\(809\) −2.13109e7 −1.14480 −0.572400 0.819974i \(-0.693988\pi\)
−0.572400 + 0.819974i \(0.693988\pi\)
\(810\) 0 0
\(811\) 1.86425e7 0.995294 0.497647 0.867380i \(-0.334198\pi\)
0.497647 + 0.867380i \(0.334198\pi\)
\(812\) −1.27371e7 −0.677924
\(813\) 3.54437e6 0.188067
\(814\) 3.79095e6 0.200534
\(815\) 0 0
\(816\) −3.58158e6 −0.188300
\(817\) −3.76707e6 −0.197446
\(818\) 1.03737e6 0.0542064
\(819\) −3.02019e6 −0.157335
\(820\) 0 0
\(821\) −3.17151e7 −1.64213 −0.821066 0.570833i \(-0.806620\pi\)
−0.821066 + 0.570833i \(0.806620\pi\)
\(822\) 1.11925e6 0.0577762
\(823\) −3.21047e7 −1.65222 −0.826112 0.563506i \(-0.809452\pi\)
−0.826112 + 0.563506i \(0.809452\pi\)
\(824\) 1.75397e7 0.899922
\(825\) 0 0
\(826\) 6.58912e6 0.336029
\(827\) 3.37394e7 1.71543 0.857717 0.514123i \(-0.171882\pi\)
0.857717 + 0.514123i \(0.171882\pi\)
\(828\) −1.31870e7 −0.668454
\(829\) 7.35563e6 0.371735 0.185868 0.982575i \(-0.440490\pi\)
0.185868 + 0.982575i \(0.440490\pi\)
\(830\) 0 0
\(831\) 6.18067e6 0.310480
\(832\) −1.23458e6 −0.0618318
\(833\) 2.60053e7 1.29852
\(834\) −64164.0 −0.00319430
\(835\) 0 0
\(836\) 4.84288e6 0.239656
\(837\) −847383. −0.0418086
\(838\) 3.43384e6 0.168916
\(839\) −1.82258e7 −0.893885 −0.446942 0.894563i \(-0.647487\pi\)
−0.446942 + 0.894563i \(0.647487\pi\)
\(840\) 0 0
\(841\) 1.75888e7 0.857523
\(842\) −5.72298e6 −0.278190
\(843\) −4.38741e6 −0.212637
\(844\) −1.07030e7 −0.517187
\(845\) 0 0
\(846\) −7.94130e6 −0.381475
\(847\) 1.73452e7 0.830751
\(848\) 5.71001e6 0.272676
\(849\) −1.31967e6 −0.0628340
\(850\) 0 0
\(851\) −5.71643e6 −0.270583
\(852\) −4.22249e6 −0.199283
\(853\) −1.85516e7 −0.872987 −0.436494 0.899707i \(-0.643780\pi\)
−0.436494 + 0.899707i \(0.643780\pi\)
\(854\) 5.34269e6 0.250677
\(855\) 0 0
\(856\) 4.26021e6 0.198722
\(857\) 710710. 0.0330552 0.0165276 0.999863i \(-0.494739\pi\)
0.0165276 + 0.999863i \(0.494739\pi\)
\(858\) 588466. 0.0272900
\(859\) −2.15616e7 −0.997006 −0.498503 0.866888i \(-0.666117\pi\)
−0.498503 + 0.866888i \(0.666117\pi\)
\(860\) 0 0
\(861\) 1.59976e6 0.0735440
\(862\) −4.46032e6 −0.204455
\(863\) 1.43049e7 0.653817 0.326909 0.945056i \(-0.393993\pi\)
0.326909 + 0.945056i \(0.393993\pi\)
\(864\) −6.65708e6 −0.303389
\(865\) 0 0
\(866\) 7.27773e6 0.329762
\(867\) 1.04743e7 0.473235
\(868\) −1.41964e6 −0.0639554
\(869\) 4.06349e7 1.82536
\(870\) 0 0
\(871\) −2.68947e6 −0.120122
\(872\) −6.87252e6 −0.306073
\(873\) −1.89427e6 −0.0841212
\(874\) 1.25833e6 0.0557208
\(875\) 0 0
\(876\) −2.48755e6 −0.109525
\(877\) −3.64324e7 −1.59952 −0.799759 0.600322i \(-0.795039\pi\)
−0.799759 + 0.600322i \(0.795039\pi\)
\(878\) 1.28888e6 0.0564257
\(879\) 5.88640e6 0.256967
\(880\) 0 0
\(881\) −1.29195e7 −0.560797 −0.280398 0.959884i \(-0.590467\pi\)
−0.280398 + 0.959884i \(0.590467\pi\)
\(882\) 5.68685e6 0.246150
\(883\) −1.74399e7 −0.752735 −0.376367 0.926471i \(-0.622827\pi\)
−0.376367 + 0.926471i \(0.622827\pi\)
\(884\) 1.08153e7 0.465488
\(885\) 0 0
\(886\) 70941.9 0.00303612
\(887\) −5.45819e6 −0.232938 −0.116469 0.993194i \(-0.537157\pi\)
−0.116469 + 0.993194i \(0.537157\pi\)
\(888\) −924240. −0.0393326
\(889\) 2.19771e7 0.932645
\(890\) 0 0
\(891\) 3.39195e7 1.43138
\(892\) −1.62338e7 −0.683136
\(893\) −4.39769e6 −0.184542
\(894\) 2.15503e6 0.0901798
\(895\) 0 0
\(896\) −1.42722e7 −0.593910
\(897\) −887355. −0.0368227
\(898\) 2.48024e6 0.102637
\(899\) 4.24649e6 0.175239
\(900\) 0 0
\(901\) −2.25148e7 −0.923967
\(902\) 1.11624e7 0.456815
\(903\) 2.57710e6 0.105175
\(904\) −2.33654e7 −0.950937
\(905\) 0 0
\(906\) −126314. −0.00511246
\(907\) 3.84724e7 1.55285 0.776427 0.630207i \(-0.217030\pi\)
0.776427 + 0.630207i \(0.217030\pi\)
\(908\) 1.29125e7 0.519753
\(909\) −3.01831e7 −1.21158
\(910\) 0 0
\(911\) 2.86336e7 1.14309 0.571543 0.820572i \(-0.306345\pi\)
0.571543 + 0.820572i \(0.306345\pi\)
\(912\) −433729. −0.0172676
\(913\) −5.37492e7 −2.13400
\(914\) 2.74158e6 0.108551
\(915\) 0 0
\(916\) 2.47229e7 0.973555
\(917\) −1.63721e7 −0.642957
\(918\) 6.26280e6 0.245280
\(919\) −2.14158e7 −0.836460 −0.418230 0.908341i \(-0.637349\pi\)
−0.418230 + 0.908341i \(0.637349\pi\)
\(920\) 0 0
\(921\) −628150. −0.0244014
\(922\) 5.17296e6 0.200406
\(923\) 1.01750e7 0.393123
\(924\) −3.31308e6 −0.127659
\(925\) 0 0
\(926\) 1.14441e7 0.438586
\(927\) 3.22424e7 1.23233
\(928\) 3.33606e7 1.27164
\(929\) 1.93670e6 0.0736245 0.0368123 0.999322i \(-0.488280\pi\)
0.0368123 + 0.999322i \(0.488280\pi\)
\(930\) 0 0
\(931\) 3.14923e6 0.119078
\(932\) −2.03700e7 −0.768159
\(933\) 3.13190e6 0.117789
\(934\) 1.18631e7 0.444970
\(935\) 0 0
\(936\) 5.13774e6 0.191683
\(937\) −5.93574e6 −0.220865 −0.110432 0.993884i \(-0.535224\pi\)
−0.110432 + 0.993884i \(0.535224\pi\)
\(938\) −2.60912e6 −0.0968249
\(939\) 3.13404e6 0.115995
\(940\) 0 0
\(941\) 4.84523e7 1.78378 0.891888 0.452256i \(-0.149381\pi\)
0.891888 + 0.452256i \(0.149381\pi\)
\(942\) 1.32471e6 0.0486399
\(943\) −1.68319e7 −0.616387
\(944\) 2.38961e7 0.872766
\(945\) 0 0
\(946\) 1.79818e7 0.653289
\(947\) 1.16568e7 0.422382 0.211191 0.977445i \(-0.432266\pi\)
0.211191 + 0.977445i \(0.432266\pi\)
\(948\) −4.56050e6 −0.164813
\(949\) 5.99428e6 0.216059
\(950\) 0 0
\(951\) −5.65389e6 −0.202720
\(952\) 2.27923e7 0.815072
\(953\) 2.70508e7 0.964825 0.482413 0.875944i \(-0.339761\pi\)
0.482413 + 0.875944i \(0.339761\pi\)
\(954\) −4.92356e6 −0.175149
\(955\) 0 0
\(956\) −2.48176e7 −0.878243
\(957\) 9.91026e6 0.349788
\(958\) 1.80357e7 0.634919
\(959\) 1.51847e7 0.533161
\(960\) 0 0
\(961\) −2.81559e7 −0.983468
\(962\) 1.02524e6 0.0357182
\(963\) 7.83133e6 0.272126
\(964\) 1.57140e7 0.544622
\(965\) 0 0
\(966\) −860844. −0.0296812
\(967\) 6.67822e6 0.229665 0.114832 0.993385i \(-0.463367\pi\)
0.114832 + 0.993385i \(0.463367\pi\)
\(968\) −2.95065e7 −1.01211
\(969\) 1.71021e6 0.0585114
\(970\) 0 0
\(971\) −1.10643e7 −0.376597 −0.188298 0.982112i \(-0.560297\pi\)
−0.188298 + 0.982112i \(0.560297\pi\)
\(972\) −1.19769e7 −0.406610
\(973\) −870497. −0.0294771
\(974\) −2.68543e6 −0.0907020
\(975\) 0 0
\(976\) 1.93758e7 0.651082
\(977\) 4.37043e7 1.46483 0.732416 0.680857i \(-0.238393\pi\)
0.732416 + 0.680857i \(0.238393\pi\)
\(978\) −2.83169e6 −0.0946670
\(979\) −8.69315e7 −2.89882
\(980\) 0 0
\(981\) −1.26334e7 −0.419130
\(982\) 1.02473e6 0.0339103
\(983\) 5.65161e7 1.86547 0.932735 0.360563i \(-0.117415\pi\)
0.932735 + 0.360563i \(0.117415\pi\)
\(984\) −2.72140e6 −0.0895994
\(985\) 0 0
\(986\) −3.13848e7 −1.02808
\(987\) 3.00852e6 0.0983015
\(988\) 1.30973e6 0.0426865
\(989\) −2.71150e7 −0.881492
\(990\) 0 0
\(991\) 2.40368e7 0.777487 0.388744 0.921346i \(-0.372909\pi\)
0.388744 + 0.921346i \(0.372909\pi\)
\(992\) 3.71826e6 0.119967
\(993\) −1.94038e6 −0.0624473
\(994\) 9.87098e6 0.316880
\(995\) 0 0
\(996\) 6.03234e6 0.192680
\(997\) 4.18542e7 1.33353 0.666763 0.745270i \(-0.267679\pi\)
0.666763 + 0.745270i \(0.267679\pi\)
\(998\) 7.45166e6 0.236825
\(999\) −3.44541e6 −0.109226
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.f.1.4 6
5.2 odd 4 325.6.b.f.274.7 12
5.3 odd 4 325.6.b.f.274.6 12
5.4 even 2 65.6.a.e.1.3 6
15.14 odd 2 585.6.a.k.1.4 6
20.19 odd 2 1040.6.a.r.1.4 6
65.64 even 2 845.6.a.g.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.e.1.3 6 5.4 even 2
325.6.a.f.1.4 6 1.1 even 1 trivial
325.6.b.f.274.6 12 5.3 odd 4
325.6.b.f.274.7 12 5.2 odd 4
585.6.a.k.1.4 6 15.14 odd 2
845.6.a.g.1.4 6 65.64 even 2
1040.6.a.r.1.4 6 20.19 odd 2