Properties

Label 325.6.a.d
Level $325$
Weight $6$
Character orbit 325.a
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.49857.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 42x - 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{2} + 5) q^{3} + (\beta_{2} + \beta_1 - 4) q^{4} + (3 \beta_{2} - 14 \beta_1 + 11) q^{6} + ( - 6 \beta_{2} + 16 \beta_1 + 66) q^{7} + (2 \beta_{2} + 25 \beta_1 - 57) q^{8} + (2 \beta_{2} - 24 \beta_1 + 55) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 + 1) q^{2} + (\beta_{2} + 5) q^{3} + (\beta_{2} + \beta_1 - 4) q^{4} + (3 \beta_{2} - 14 \beta_1 + 11) q^{6} + ( - 6 \beta_{2} + 16 \beta_1 + 66) q^{7} + (2 \beta_{2} + 25 \beta_1 - 57) q^{8} + (2 \beta_{2} - 24 \beta_1 + 55) q^{9} + (5 \beta_{2} + 24 \beta_1 - 215) q^{11} + ( - 9 \beta_{2} - 10 \beta_1 + 247) q^{12} - 169 q^{13} + ( - 34 \beta_{2} - 44 \beta_1 - 402) q^{14} + ( - 51 \beta_{2} - 43 \beta_1 - 592) q^{16} + ( - 60 \beta_{2} + 32 \beta_1 + 274) q^{17} + (30 \beta_{2} - 25 \beta_1 + 715) q^{18} + ( - 35 \beta_{2} - 136 \beta_1 - 1063) q^{19} + (52 \beta_{2} + 368 \beta_1 - 1404) q^{21} + ( - 9 \beta_{2} + 122 \beta_1 - 833) q^{22} + ( - 61 \beta_{2} - 120 \beta_1 + 2419) q^{23} + ( - 113 \beta_{2} + 302 \beta_1 + 111) q^{24} + (169 \beta_1 - 169) q^{26} + ( - 146 \beta_{2} - 384 \beta_1 - 250) q^{27} + (134 \beta_{2} + 284 \beta_1 - 1530) q^{28} + ( - 2 \beta_{2} - 8 \beta_1 + 772) q^{29} + (83 \beta_{2} + 896 \beta_1 - 2453) q^{31} + ( - 174 \beta_{2} + 337 \beta_1 + 2087) q^{32} + ( - 278 \beta_{2} + 216 \beta_1 + 146) q^{33} + ( - 212 \beta_{2} + 202 \beta_1 - 950) q^{34} + (51 \beta_{2} - 167 \beta_1 - 190) q^{36} + (82 \beta_{2} - 1224 \beta_1 - 4956) q^{37} + (31 \beta_{2} + 1650 \beta_1 + 2399) q^{38} + ( - 169 \beta_{2} - 845) q^{39} + ( - 632 \beta_{2} - 352 \beta_1 + 3090) q^{41} + ( - 212 \beta_{2} + 200 \beta_1 - 11028) q^{42} + (303 \beta_{2} + 1392 \beta_1 - 2837) q^{43} + ( - 309 \beta_{2} - 98 \beta_1 + 2699) q^{44} + ( - 63 \beta_{2} - 1630 \beta_1 + 5293) q^{46} + (226 \beta_{2} - 1536 \beta_1 - 2110) q^{47} + ( - 353 \beta_{2} + 622 \beta_1 - 16625) q^{48} + ( - 440 \beta_{2} + 288 \beta_1 + 5441) q^{49} + (390 \beta_{2} + 1888 \beta_1 - 15202) q^{51} + ( - 169 \beta_{2} - 169 \beta_1 + 676) q^{52} + (1312 \beta_{2} + 3056 \beta_1 - 4662) q^{53} + ( - 54 \beta_{2} + 2332 \beta_1 + 9242) q^{54} + (1206 \beta_{2} + 1164 \beta_1 + 4470) q^{56} + ( - 686 \beta_{2} - 1064 \beta_1 - 14054) q^{57} + (2 \beta_{2} - 738 \beta_1 + 976) q^{58} + (1367 \beta_{2} - 3752 \beta_1 + 2379) q^{59} + (802 \beta_{2} + 6216 \beta_1 - 31304) q^{61} + ( - 647 \beta_{2} - 86 \beta_1 - 26147) q^{62} + ( - 838 \beta_{2} + 16 \beta_1 - 11070) q^{63} + (773 \beta_{2} + 181 \beta_1 + 10888) q^{64} + ( - 1050 \beta_{2} + 1924 \beta_1 - 7354) q^{66} + (2796 \beta_{2} + 1440 \beta_1 + 29128) q^{67} + (1082 \beta_{2} + 1430 \beta_1 - 16444) q^{68} + (2842 \beta_{2} - 216 \beta_1 - 3838) q^{69} + ( - 2669 \beta_{2} - 784 \beta_1 - 39933) q^{71} + ( - 640 \beta_{2} + 865 \beta_1 - 18255) q^{72} + ( - 502 \beta_{2} - 6616 \beta_1 + 28584) q^{73} + (1470 \beta_{2} + 6666 \beta_1 + 28584) q^{74} + ( - 437 \beta_{2} - 1626 \beta_1 - 7949) q^{76} + (2372 \beta_{2} - 560 \beta_1 - 11628) q^{77} + ( - 507 \beta_{2} + 2366 \beta_1 - 1859) q^{78} + ( - 2462 \beta_{2} - 1776 \beta_1 - 35486) q^{79} + (470 \beta_{2} + 3960 \beta_1 - 52169) q^{81} + ( - 1544 \beta_{2} + 3302 \beta_1 + 8802) q^{82} + (366 \beta_{2} + 9296 \beta_1 + 3082) q^{83} + ( - 2500 \beta_{2} + 760 \beta_1 + 27228) q^{84} + ( - 483 \beta_{2} - 2674 \beta_1 - 38603) q^{86} + (794 \beta_{2} - 64 \beta_1 + 3362) q^{87} + ( - 541 \beta_{2} - 3626 \beta_1 + 30147) q^{88} + (2376 \beta_{2} - 10576 \beta_1 - 34670) q^{89} + (1014 \beta_{2} - 2704 \beta_1 - 11154) q^{91} + (3393 \beta_{2} + 2374 \beta_1 - 28483) q^{92} + ( - 4494 \beta_{2} + 10552 \beta_1 + 5018) q^{93} + (2214 \beta_{2} + 3148 \beta_1 + 40718) q^{94} + (1935 \beta_{2} + 8894 \beta_1 - 39089) q^{96} + (3304 \beta_{2} + 6864 \beta_1 - 59658) q^{97} + ( - 1608 \beta_{2} - 2057 \beta_1 - 4975) q^{98} + ( - 667 \beta_{2} + 3864 \beta_1 - 24215) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 16 q^{3} - 10 q^{4} + 22 q^{6} + 208 q^{7} - 144 q^{8} + 143 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 2 q^{2} + 16 q^{3} - 10 q^{4} + 22 q^{6} + 208 q^{7} - 144 q^{8} + 143 q^{9} - 616 q^{11} + 722 q^{12} - 507 q^{13} - 1284 q^{14} - 1870 q^{16} + 794 q^{17} + 2150 q^{18} - 3360 q^{19} - 3792 q^{21} - 2386 q^{22} + 7076 q^{23} + 522 q^{24} - 338 q^{26} - 1280 q^{27} - 4172 q^{28} + 2306 q^{29} - 6380 q^{31} + 6424 q^{32} + 376 q^{33} - 2860 q^{34} - 686 q^{36} - 16010 q^{37} + 8878 q^{38} - 2704 q^{39} + 8286 q^{41} - 33096 q^{42} - 6816 q^{43} + 7690 q^{44} + 14186 q^{46} - 7640 q^{47} - 49606 q^{48} + 16171 q^{49} - 43328 q^{51} + 1690 q^{52} - 9618 q^{53} + 30004 q^{54} + 15780 q^{56} - 43912 q^{57} + 2192 q^{58} + 4752 q^{59} - 86894 q^{61} - 79174 q^{62} - 34032 q^{63} + 33618 q^{64} - 21188 q^{66} + 91620 q^{67} - 46820 q^{68} - 8888 q^{69} - 123252 q^{71} - 54540 q^{72} + 78634 q^{73} + 93888 q^{74} - 25910 q^{76} - 33072 q^{77} - 3718 q^{78} - 110696 q^{79} - 152077 q^{81} + 28164 q^{82} + 18908 q^{83} + 79944 q^{84} - 118966 q^{86} + 10816 q^{87} + 86274 q^{88} - 112210 q^{89} - 35152 q^{91} - 79682 q^{92} + 21112 q^{93} + 127516 q^{94} - 106438 q^{96} - 168806 q^{97} - 18590 q^{98} - 69448 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 42x - 48 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3\nu - 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3\beta _1 + 27 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.47640
−1.22183
−5.25457
−6.47640 11.4674 9.94380 0 −74.2675 146.818 142.845 −111.499 0
1.2 2.22183 −16.8416 −27.0635 0 −37.4193 177.501 −131.229 40.6407 0
1.3 6.25457 21.3742 7.11967 0 133.687 −116.319 −155.616 213.858 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.6.a.d 3
5.b even 2 1 65.6.a.b 3
5.c odd 4 2 325.6.b.d 6
15.d odd 2 1 585.6.a.c 3
20.d odd 2 1 1040.6.a.k 3
65.d even 2 1 845.6.a.c 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.6.a.b 3 5.b even 2 1
325.6.a.d 3 1.a even 1 1 trivial
325.6.b.d 6 5.c odd 4 2
585.6.a.c 3 15.d odd 2 1
845.6.a.c 3 65.d even 2 1
1040.6.a.k 3 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 2T_{2}^{2} - 41T_{2} + 90 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(325))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} + \cdots + 90 \) Copy content Toggle raw display
$3$ \( T^{3} - 16 T^{2} + \cdots + 4128 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 208 T^{2} + \cdots + 3031296 \) Copy content Toggle raw display
$11$ \( T^{3} + 616 T^{2} + \cdots + 295968 \) Copy content Toggle raw display
$13$ \( (T + 169)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 794 T^{2} + \cdots + 169609992 \) Copy content Toggle raw display
$19$ \( T^{3} + 3360 T^{2} + \cdots + 281302528 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 9011376144 \) Copy content Toggle raw display
$29$ \( T^{3} - 2306 T^{2} + \cdots - 450963192 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 148752304496 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 200939185512 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 340059823848 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 551757458848 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 605944083840 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 754046116056 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 17139260691072 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 58378672604984 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 131580185301056 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 96871211913744 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 63353389001064 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 87960642878336 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 48499203492864 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 433282552140840 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 76035768760440 \) Copy content Toggle raw display
show more
show less