Properties

Label 325.6.a.c
Level $325$
Weight $6$
Character orbit 325.a
Self dual yes
Analytic conductor $52.125$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.168897.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 100x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 2) q^{2} + (\beta_{2} + \beta_1 - 3) q^{3} + (4 \beta_{2} + \beta_1 + 40) q^{4} + ( - 10 \beta_{2} - \beta_1 - 66) q^{6} + (3 \beta_{2} + 3 \beta_1 + 19) q^{7} + ( - 28 \beta_{2} - 27 \beta_1 - 100) q^{8} + (\beta_{2} + 7 \beta_1 - 66) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 - 2) q^{2} + (\beta_{2} + \beta_1 - 3) q^{3} + (4 \beta_{2} + \beta_1 + 40) q^{4} + ( - 10 \beta_{2} - \beta_1 - 66) q^{6} + (3 \beta_{2} + 3 \beta_1 + 19) q^{7} + ( - 28 \beta_{2} - 27 \beta_1 - 100) q^{8} + (\beta_{2} + 7 \beta_1 - 66) q^{9} + (30 \beta_{2} - 26 \beta_1 + 194) q^{11} + (32 \beta_{2} + 83 \beta_1 + 336) q^{12} - 169 q^{13} + ( - 30 \beta_{2} - 31 \beta_1 - 254) q^{14} + (148 \beta_{2} + 181 \beta_1 + 868) q^{16} + (93 \beta_{2} - 77 \beta_1 - 277) q^{17} + ( - 34 \beta_{2} + 68 \beta_1 - 348) q^{18} + ( - 134 \beta_{2} + 178 \beta_1 - 10) q^{19} + (31 \beta_{2} + 49 \beta_1 + 447) q^{21} + ( - 76 \beta_{2} - 370 \beta_1 + 1260) q^{22} + ( - 152 \beta_{2} + 72 \beta_1 - 1232) q^{23} + ( - 204 \beta_{2} - 381 \beta_1 - 4332) q^{24} + (169 \beta_1 + 338) q^{26} + ( - 257 \beta_{2} - 305 \beta_1 + 1527) q^{27} + (208 \beta_{2} + 277 \beta_1 + 2128) q^{28} + ( - 584 \beta_{2} + 56 \beta_1 - 2938) q^{29} + ( - 268 \beta_{2} - 148 \beta_1 - 820) q^{31} + ( - 716 \beta_{2} - 563 \beta_1 - 11436) q^{32} + ( - 134 \beta_{2} + 550 \beta_1 + 426) q^{33} + ( - 250 \beta_{2} - 265 \beta_1 + 5418) q^{34} + ( - 100 \beta_{2} + 362 \beta_1 - 1680) q^{36} + ( - 419 \beta_{2} + 451 \beta_1 + 6727) q^{37} + (92 \beta_{2} + 858 \beta_1 - 11548) q^{38} + ( - 169 \beta_{2} - 169 \beta_1 + 507) q^{39} + ( - 250 \beta_{2} + 858 \beta_1 - 3952) q^{41} + ( - 382 \beta_{2} - 553 \beta_1 - 4350) q^{42} + ( - 697 \beta_{2} + 431 \beta_1 - 821) q^{43} + (976 \beta_{2} - 418 \beta_1 + 16736) q^{44} + (624 \beta_{2} + 2064 \beta_1 - 1824) q^{46} + (807 \beta_{2} - 33 \beta_1 - 11409) q^{47} + (1724 \beta_{2} + 2315 \beta_1 + 24636) q^{48} + (177 \beta_{2} + 231 \beta_1 - 14934) q^{49} + ( - 1265 \beta_{2} + 823 \beta_1 + 4215) q^{51} + ( - 676 \beta_{2} - 169 \beta_1 - 6760) q^{52} + ( - 2154 \beta_{2} - 822 \beta_1 + 4464) q^{53} + (2762 \beta_{2} - 547 \beta_1 + 18714) q^{54} + ( - 1396 \beta_{2} - 1899 \beta_1 - 15796) q^{56} + (1950 \beta_{2} - 1662 \beta_1 - 18) q^{57} + (3280 \beta_{2} + 5914 \beta_1 + 4404) q^{58} + ( - 950 \beta_{2} + 1458 \beta_1 + 20830) q^{59} + (2330 \beta_{2} + 1910 \beta_1 - 4888) q^{61} + (2200 \beta_{2} + 2012 \beta_1 + 12776) q^{62} + ( - 14 \beta_{2} + 10 \beta_1 + 546) q^{63} + (1812 \beta_{2} + 8661 \beta_1 + 36244) q^{64} + ( - 1396 \beta_{2} + 794 \beta_1 - 37716) q^{66} + (1666 \beta_{2} - 1478 \beta_1 - 18218) q^{67} + ( - 416 \beta_{2} - 1969 \beta_1 + 17048) q^{68} + ( - 48 \beta_{2} - 2976 \beta_1 - 5712) q^{69} + (3127 \beta_{2} - 633 \beta_1 + 26071) q^{71} + (240 \beta_{2} + 366 \beta_1 - 9720) q^{72} + (2568 \beta_{2} + 2712 \beta_1 + 13438) q^{73} + (710 \beta_{2} - 4181 \beta_1 - 42446) q^{74} + (304 \beta_{2} + 6250 \beta_1 - 35296) q^{76} + (438 \beta_{2} + 922 \beta_1 + 6710) q^{77} + (1690 \beta_{2} + 169 \beta_1 + 11154) q^{78} + ( - 3576 \beta_{2} - 2856 \beta_1 - 19672) q^{79} + ( - 128 \beta_{2} - 2696 \beta_1 - 35175) q^{81} + ( - 1932 \beta_{2} + 6060 \beta_1 - 49440) q^{82} + ( - 4840 \beta_{2} - 3808 \beta_1 - 31428) q^{83} + (3512 \beta_{2} + 4139 \beta_1 + 33528) q^{84} + (2458 \beta_{2} + 4737 \beta_1 - 24878) q^{86} + ( - 154 \beta_{2} - 9418 \beta_1 - 43218) q^{87} + ( - 1752 \beta_{2} - 10194 \beta_1 - 49272) q^{88} + ( - 432 \beta_{2} - 8864 \beta_1 + 14186) q^{89} + ( - 507 \beta_{2} - 507 \beta_1 - 3211) q^{91} + ( - 7136 \beta_{2} - 1536 \beta_1 - 99776) q^{92} + ( - 932 \beta_{2} - 3620 \beta_1 - 33924) q^{93} + ( - 4710 \beta_{2} + 7341 \beta_1 + 21834) q^{94} + ( - 13076 \beta_{2} - 18749 \beta_1 - 74964) q^{96} + ( - 500 \beta_{2} + 1396 \beta_1 - 25910) q^{97} + ( - 1986 \beta_{2} + 14280 \beta_1 + 13452) q^{98} + ( - 1928 \beta_{2} + 4720 \beta_1 - 21684) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 7 q^{2} - 8 q^{3} + 121 q^{4} - 199 q^{6} + 60 q^{7} - 327 q^{8} - 191 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 7 q^{2} - 8 q^{3} + 121 q^{4} - 199 q^{6} + 60 q^{7} - 327 q^{8} - 191 q^{9} + 556 q^{11} + 1091 q^{12} - 507 q^{13} - 793 q^{14} + 2785 q^{16} - 908 q^{17} - 976 q^{18} + 148 q^{19} + 1390 q^{21} + 3410 q^{22} - 3624 q^{23} - 13377 q^{24} + 1183 q^{26} + 4276 q^{27} + 6661 q^{28} - 8758 q^{29} - 2608 q^{31} - 34871 q^{32} + 1828 q^{33} + 15989 q^{34} - 4678 q^{36} + 20632 q^{37} - 33786 q^{38} + 1352 q^{39} - 10998 q^{41} - 13603 q^{42} - 2032 q^{43} + 49790 q^{44} - 3408 q^{46} - 34260 q^{47} + 76223 q^{48} - 44571 q^{49} + 13468 q^{51} - 20449 q^{52} + 12570 q^{53} + 55595 q^{54} - 49287 q^{56} - 1716 q^{57} + 19126 q^{58} + 63948 q^{59} - 12754 q^{61} + 40340 q^{62} + 1648 q^{63} + 117393 q^{64} - 112354 q^{66} - 56132 q^{67} + 49175 q^{68} - 20112 q^{69} + 77580 q^{71} - 28794 q^{72} + 43026 q^{73} - 131519 q^{74} - 99638 q^{76} + 21052 q^{77} + 33631 q^{78} - 61872 q^{79} - 108221 q^{81} - 142260 q^{82} - 98092 q^{83} + 104723 q^{84} - 69897 q^{86} - 139072 q^{87} - 158010 q^{88} + 33694 q^{89} - 10140 q^{91} - 300864 q^{92} - 105392 q^{93} + 72843 q^{94} - 243641 q^{96} - 76334 q^{97} + 54636 q^{98} - 60332 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 100x + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + 3\nu - 68 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 4\beta_{2} - 3\beta _1 + 68 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.96778
2.68079
−10.6486
−10.9678 15.7989 88.2923 0 −173.279 75.3967 −617.402 6.60562 0
1.2 −4.68079 −13.5120 −10.0902 0 63.2466 −12.5359 197.015 −60.4272 0
1.3 8.64858 −10.2870 42.7979 0 −88.9676 −2.86088 93.3863 −137.178 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.6.a.c 3
5.b even 2 1 13.6.a.b 3
5.c odd 4 2 325.6.b.c 6
15.d odd 2 1 117.6.a.d 3
20.d odd 2 1 208.6.a.j 3
35.c odd 2 1 637.6.a.b 3
40.e odd 2 1 832.6.a.t 3
40.f even 2 1 832.6.a.s 3
65.d even 2 1 169.6.a.b 3
65.g odd 4 2 169.6.b.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.6.a.b 3 5.b even 2 1
117.6.a.d 3 15.d odd 2 1
169.6.a.b 3 65.d even 2 1
169.6.b.b 6 65.g odd 4 2
208.6.a.j 3 20.d odd 2 1
325.6.a.c 3 1.a even 1 1 trivial
325.6.b.c 6 5.c odd 4 2
637.6.a.b 3 35.c odd 2 1
832.6.a.s 3 40.f even 2 1
832.6.a.t 3 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + 7T_{2}^{2} - 84T_{2} - 444 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(325))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 7 T^{2} + \cdots - 444 \) Copy content Toggle raw display
$3$ \( T^{3} + 8 T^{2} + \cdots - 2196 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 60 T^{2} + \cdots - 2704 \) Copy content Toggle raw display
$11$ \( T^{3} - 556 T^{2} + \cdots + 39698256 \) Copy content Toggle raw display
$13$ \( (T + 169)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 908 T^{2} + \cdots - 77884638 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 1415854512 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 5045833728 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 221025174456 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 1607044480 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 46212896426 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 29456898048 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 281385762060 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 696870885384 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 4415410372608 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 1932677407728 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 18650455523968 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 2080268535536 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 37395101110464 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 5649650834008 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 2044988893184 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 17971240920768 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 28887869991912 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 12102379894216 \) Copy content Toggle raw display
show more
show less