Properties

Label 325.6.a.b
Level $325$
Weight $6$
Character orbit 325.a
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 3) q^{2} + (6 \beta + 11) q^{3} + ( - 5 \beta - 19) q^{4} + (\beta + 9) q^{6} + (70 \beta - 17) q^{7} + (41 \beta - 133) q^{8} + (168 \beta + 22) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta + 3) q^{2} + (6 \beta + 11) q^{3} + ( - 5 \beta - 19) q^{4} + (\beta + 9) q^{6} + (70 \beta - 17) q^{7} + (41 \beta - 133) q^{8} + (168 \beta + 22) q^{9} + ( - 84 \beta - 146) q^{11} + ( - 199 \beta - 329) q^{12} + 169 q^{13} + (157 \beta - 331) q^{14} + (375 \beta + 45) q^{16} + (128 \beta + 1251) q^{17} + (314 \beta - 606) q^{18} + (28 \beta - 170) q^{19} + (1088 \beta + 1493) q^{21} + ( - 22 \beta - 102) q^{22} + ( - 1416 \beta + 2020) q^{23} + ( - 101 \beta - 479) q^{24} + ( - 169 \beta + 507) q^{26} + (1530 \beta + 1601) q^{27} + ( - 1595 \beta - 1077) q^{28} + (48 \beta - 430) q^{29} + ( - 448 \beta + 4084) q^{31} + ( - 607 \beta + 2891) q^{32} + ( - 2304 \beta - 3622) q^{33} + ( - 995 \beta + 3241) q^{34} + ( - 4142 \beta - 3778) q^{36} + (1840 \beta + 7509) q^{37} + (226 \beta - 622) q^{38} + (1014 \beta + 1859) q^{39} + ( - 1952 \beta + 4896) q^{41} + (683 \beta + 127) q^{42} + ( - 4718 \beta + 1149) q^{43} + (2746 \beta + 4454) q^{44} + ( - 4852 \beta + 11724) q^{46} + (9670 \beta - 9821) q^{47} + (6645 \beta + 9495) q^{48} + (2520 \beta + 3082) q^{49} + (9682 \beta + 16833) q^{51} + ( - 845 \beta - 3211) q^{52} + (6816 \beta + 18452) q^{53} + (1459 \beta - 1317) q^{54} + ( - 7137 \beta + 13741) q^{56} + ( - 544 \beta - 1198) q^{57} + (526 \beta - 1482) q^{58} + (8668 \beta - 23802) q^{59} + (9296 \beta - 3656) q^{61} + ( - 4980 \beta + 14044) q^{62} + (10444 \beta + 46666) q^{63} + ( - 16105 \beta + 9661) q^{64} + ( - 986 \beta - 1650) q^{66} + (196 \beta + 34866) q^{67} + ( - 9327 \beta - 26329) q^{68} + ( - 11952 \beta - 11764) q^{69} + ( - 3666 \beta + 35531) q^{71} + ( - 14554 \beta + 24626) q^{72} + ( - 18560 \beta - 27926) q^{73} + ( - 3829 \beta + 15167) q^{74} + (178 \beta + 2670) q^{76} + ( - 14672 \beta - 21038) q^{77} + (169 \beta + 1521) q^{78} + (9736 \beta - 32516) q^{79} + ( - 5208 \beta + 48985) q^{81} + ( - 8800 \beta + 22496) q^{82} + ( - 17920 \beta + 46816) q^{83} + ( - 33577 \beta - 50127) q^{84} + ( - 10585 \beta + 22319) q^{86} + ( - 1764 \beta - 3578) q^{87} + (1742 \beta + 5642) q^{88} + (23504 \beta + 46502) q^{89} + (11830 \beta - 2873) q^{91} + (23884 \beta - 10060) q^{92} + (16888 \beta + 34172) q^{93} + (29161 \beta - 68143) q^{94} + (7027 \beta + 17233) q^{96} + ( - 58720 \beta + 46738) q^{97} + (1958 \beta - 834) q^{98} + ( - 40488 \beta - 59660) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{2} + 28 q^{3} - 43 q^{4} + 19 q^{6} + 36 q^{7} - 225 q^{8} + 212 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 5 q^{2} + 28 q^{3} - 43 q^{4} + 19 q^{6} + 36 q^{7} - 225 q^{8} + 212 q^{9} - 376 q^{11} - 857 q^{12} + 338 q^{13} - 505 q^{14} + 465 q^{16} + 2630 q^{17} - 898 q^{18} - 312 q^{19} + 4074 q^{21} - 226 q^{22} + 2624 q^{23} - 1059 q^{24} + 845 q^{26} + 4732 q^{27} - 3749 q^{28} - 812 q^{29} + 7720 q^{31} + 5175 q^{32} - 9548 q^{33} + 5487 q^{34} - 11698 q^{36} + 16858 q^{37} - 1018 q^{38} + 4732 q^{39} + 7840 q^{41} + 937 q^{42} - 2420 q^{43} + 11654 q^{44} + 18596 q^{46} - 9972 q^{47} + 25635 q^{48} + 8684 q^{49} + 43348 q^{51} - 7267 q^{52} + 43720 q^{53} - 1175 q^{54} + 20345 q^{56} - 2940 q^{57} - 2438 q^{58} - 38936 q^{59} + 1984 q^{61} + 23108 q^{62} + 103776 q^{63} + 3217 q^{64} - 4286 q^{66} + 69928 q^{67} - 61985 q^{68} - 35480 q^{69} + 67396 q^{71} + 34698 q^{72} - 74412 q^{73} + 26505 q^{74} + 5518 q^{76} - 56748 q^{77} + 3211 q^{78} - 55296 q^{79} + 92762 q^{81} + 36192 q^{82} + 75712 q^{83} - 133831 q^{84} + 34053 q^{86} - 8920 q^{87} + 13026 q^{88} + 116508 q^{89} + 6084 q^{91} + 3764 q^{92} + 85232 q^{93} - 107125 q^{94} + 41493 q^{96} + 34756 q^{97} + 290 q^{98} - 159808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
0.438447 26.3693 −31.8078 0 11.5616 162.309 −27.9763 452.341 0
1.2 4.56155 1.63068 −11.1922 0 7.43845 −126.309 −197.024 −240.341 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.6.a.b 2
5.b even 2 1 13.6.a.a 2
5.c odd 4 2 325.6.b.b 4
15.d odd 2 1 117.6.a.c 2
20.d odd 2 1 208.6.a.h 2
35.c odd 2 1 637.6.a.a 2
40.e odd 2 1 832.6.a.i 2
40.f even 2 1 832.6.a.p 2
65.d even 2 1 169.6.a.a 2
65.g odd 4 2 169.6.b.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.6.a.a 2 5.b even 2 1
117.6.a.c 2 15.d odd 2 1
169.6.a.a 2 65.d even 2 1
169.6.b.a 4 65.g odd 4 2
208.6.a.h 2 20.d odd 2 1
325.6.a.b 2 1.a even 1 1 trivial
325.6.b.b 4 5.c odd 4 2
637.6.a.a 2 35.c odd 2 1
832.6.a.i 2 40.e odd 2 1
832.6.a.p 2 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 5T_{2} + 2 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(325))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} - 28T + 43 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 36T - 20501 \) Copy content Toggle raw display
$11$ \( T^{2} + 376T + 5356 \) Copy content Toggle raw display
$13$ \( (T - 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2630 T + 1659593 \) Copy content Toggle raw display
$19$ \( T^{2} + 312T + 21004 \) Copy content Toggle raw display
$23$ \( T^{2} - 2624 T - 6800144 \) Copy content Toggle raw display
$29$ \( T^{2} + 812T + 155044 \) Copy content Toggle raw display
$31$ \( T^{2} - 7720 T + 14046608 \) Copy content Toggle raw display
$37$ \( T^{2} - 16858 T + 56659241 \) Copy content Toggle raw display
$41$ \( T^{2} - 7840 T - 827392 \) Copy content Toggle raw display
$43$ \( T^{2} + 2420 T - 93138877 \) Copy content Toggle raw display
$47$ \( T^{2} + 9972 T - 372552629 \) Copy content Toggle raw display
$53$ \( T^{2} - 43720 T + 280413712 \) Copy content Toggle raw display
$59$ \( T^{2} + 38936 T + 59682572 \) Copy content Toggle raw display
$61$ \( T^{2} - 1984 T - 366282304 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1222318028 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 1078437091 \) Copy content Toggle raw display
$73$ \( T^{2} + 74412 T - 79726364 \) Copy content Toggle raw display
$79$ \( T^{2} + 55296 T + 361555696 \) Copy content Toggle raw display
$83$ \( T^{2} - 75712 T + 68289536 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 1045666948 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 14352168316 \) Copy content Toggle raw display
show more
show less