Properties

Label 325.6.a.a.1.1
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000 q^{2} -6.00000 q^{3} -7.00000 q^{4} +30.0000 q^{6} +244.000 q^{7} +195.000 q^{8} -207.000 q^{9} +794.000 q^{11} +42.0000 q^{12} +169.000 q^{13} -1220.00 q^{14} -751.000 q^{16} +1534.00 q^{17} +1035.00 q^{18} +2706.00 q^{19} -1464.00 q^{21} -3970.00 q^{22} +702.000 q^{23} -1170.00 q^{24} -845.000 q^{26} +2700.00 q^{27} -1708.00 q^{28} -5038.00 q^{29} -3634.00 q^{31} -2485.00 q^{32} -4764.00 q^{33} -7670.00 q^{34} +1449.00 q^{36} +7058.00 q^{37} -13530.0 q^{38} -1014.00 q^{39} -294.000 q^{41} +7320.00 q^{42} -7618.00 q^{43} -5558.00 q^{44} -3510.00 q^{46} +3020.00 q^{47} +4506.00 q^{48} +42729.0 q^{49} -9204.00 q^{51} -1183.00 q^{52} -626.000 q^{53} -13500.0 q^{54} +47580.0 q^{56} -16236.0 q^{57} +25190.0 q^{58} -30066.0 q^{59} -5806.00 q^{61} +18170.0 q^{62} -50508.0 q^{63} +36457.0 q^{64} +23820.0 q^{66} +12436.0 q^{67} -10738.0 q^{68} -4212.00 q^{69} +4734.00 q^{71} -40365.0 q^{72} +14694.0 q^{73} -35290.0 q^{74} -18942.0 q^{76} +193736. q^{77} +5070.00 q^{78} -39804.0 q^{79} +34101.0 q^{81} +1470.00 q^{82} +41776.0 q^{83} +10248.0 q^{84} +38090.0 q^{86} +30228.0 q^{87} +154830. q^{88} +7970.00 q^{89} +41236.0 q^{91} -4914.00 q^{92} +21804.0 q^{93} -15100.0 q^{94} +14910.0 q^{96} +78050.0 q^{97} -213645. q^{98} -164358. q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.00000 −0.883883 −0.441942 0.897044i \(-0.645710\pi\)
−0.441942 + 0.897044i \(0.645710\pi\)
\(3\) −6.00000 −0.384900 −0.192450 0.981307i \(-0.561643\pi\)
−0.192450 + 0.981307i \(0.561643\pi\)
\(4\) −7.00000 −0.218750
\(5\) 0 0
\(6\) 30.0000 0.340207
\(7\) 244.000 1.88211 0.941054 0.338255i \(-0.109837\pi\)
0.941054 + 0.338255i \(0.109837\pi\)
\(8\) 195.000 1.07723
\(9\) −207.000 −0.851852
\(10\) 0 0
\(11\) 794.000 1.97851 0.989256 0.146192i \(-0.0467017\pi\)
0.989256 + 0.146192i \(0.0467017\pi\)
\(12\) 42.0000 0.0841969
\(13\) 169.000 0.277350
\(14\) −1220.00 −1.66356
\(15\) 0 0
\(16\) −751.000 −0.733398
\(17\) 1534.00 1.28737 0.643685 0.765291i \(-0.277405\pi\)
0.643685 + 0.765291i \(0.277405\pi\)
\(18\) 1035.00 0.752938
\(19\) 2706.00 1.71966 0.859832 0.510576i \(-0.170568\pi\)
0.859832 + 0.510576i \(0.170568\pi\)
\(20\) 0 0
\(21\) −1464.00 −0.724424
\(22\) −3970.00 −1.74877
\(23\) 702.000 0.276705 0.138353 0.990383i \(-0.455819\pi\)
0.138353 + 0.990383i \(0.455819\pi\)
\(24\) −1170.00 −0.414627
\(25\) 0 0
\(26\) −845.000 −0.245145
\(27\) 2700.00 0.712778
\(28\) −1708.00 −0.411711
\(29\) −5038.00 −1.11241 −0.556203 0.831047i \(-0.687742\pi\)
−0.556203 + 0.831047i \(0.687742\pi\)
\(30\) 0 0
\(31\) −3634.00 −0.679173 −0.339587 0.940575i \(-0.610287\pi\)
−0.339587 + 0.940575i \(0.610287\pi\)
\(32\) −2485.00 −0.428994
\(33\) −4764.00 −0.761530
\(34\) −7670.00 −1.13788
\(35\) 0 0
\(36\) 1449.00 0.186343
\(37\) 7058.00 0.847573 0.423787 0.905762i \(-0.360701\pi\)
0.423787 + 0.905762i \(0.360701\pi\)
\(38\) −13530.0 −1.51998
\(39\) −1014.00 −0.106752
\(40\) 0 0
\(41\) −294.000 −0.0273141 −0.0136571 0.999907i \(-0.504347\pi\)
−0.0136571 + 0.999907i \(0.504347\pi\)
\(42\) 7320.00 0.640306
\(43\) −7618.00 −0.628304 −0.314152 0.949373i \(-0.601720\pi\)
−0.314152 + 0.949373i \(0.601720\pi\)
\(44\) −5558.00 −0.432800
\(45\) 0 0
\(46\) −3510.00 −0.244575
\(47\) 3020.00 0.199417 0.0997085 0.995017i \(-0.468209\pi\)
0.0997085 + 0.995017i \(0.468209\pi\)
\(48\) 4506.00 0.282285
\(49\) 42729.0 2.54233
\(50\) 0 0
\(51\) −9204.00 −0.495509
\(52\) −1183.00 −0.0606703
\(53\) −626.000 −0.0306115 −0.0153058 0.999883i \(-0.504872\pi\)
−0.0153058 + 0.999883i \(0.504872\pi\)
\(54\) −13500.0 −0.630013
\(55\) 0 0
\(56\) 47580.0 2.02747
\(57\) −16236.0 −0.661899
\(58\) 25190.0 0.983237
\(59\) −30066.0 −1.12446 −0.562232 0.826979i \(-0.690057\pi\)
−0.562232 + 0.826979i \(0.690057\pi\)
\(60\) 0 0
\(61\) −5806.00 −0.199780 −0.0998901 0.994998i \(-0.531849\pi\)
−0.0998901 + 0.994998i \(0.531849\pi\)
\(62\) 18170.0 0.600310
\(63\) −50508.0 −1.60328
\(64\) 36457.0 1.11258
\(65\) 0 0
\(66\) 23820.0 0.673104
\(67\) 12436.0 0.338449 0.169225 0.985577i \(-0.445874\pi\)
0.169225 + 0.985577i \(0.445874\pi\)
\(68\) −10738.0 −0.281612
\(69\) −4212.00 −0.106504
\(70\) 0 0
\(71\) 4734.00 0.111451 0.0557253 0.998446i \(-0.482253\pi\)
0.0557253 + 0.998446i \(0.482253\pi\)
\(72\) −40365.0 −0.917643
\(73\) 14694.0 0.322725 0.161363 0.986895i \(-0.448411\pi\)
0.161363 + 0.986895i \(0.448411\pi\)
\(74\) −35290.0 −0.749156
\(75\) 0 0
\(76\) −18942.0 −0.376177
\(77\) 193736. 3.72378
\(78\) 5070.00 0.0943564
\(79\) −39804.0 −0.717561 −0.358781 0.933422i \(-0.616807\pi\)
−0.358781 + 0.933422i \(0.616807\pi\)
\(80\) 0 0
\(81\) 34101.0 0.577503
\(82\) 1470.00 0.0241425
\(83\) 41776.0 0.665628 0.332814 0.942992i \(-0.392002\pi\)
0.332814 + 0.942992i \(0.392002\pi\)
\(84\) 10248.0 0.158468
\(85\) 0 0
\(86\) 38090.0 0.555348
\(87\) 30228.0 0.428165
\(88\) 154830. 2.13132
\(89\) 7970.00 0.106656 0.0533278 0.998577i \(-0.483017\pi\)
0.0533278 + 0.998577i \(0.483017\pi\)
\(90\) 0 0
\(91\) 41236.0 0.522003
\(92\) −4914.00 −0.0605293
\(93\) 21804.0 0.261414
\(94\) −15100.0 −0.176261
\(95\) 0 0
\(96\) 14910.0 0.165120
\(97\) 78050.0 0.842255 0.421127 0.907001i \(-0.361634\pi\)
0.421127 + 0.907001i \(0.361634\pi\)
\(98\) −213645. −2.24713
\(99\) −164358. −1.68540
\(100\) 0 0
\(101\) −23010.0 −0.224447 −0.112223 0.993683i \(-0.535797\pi\)
−0.112223 + 0.993683i \(0.535797\pi\)
\(102\) 46020.0 0.437972
\(103\) −121706. −1.13037 −0.565183 0.824966i \(-0.691194\pi\)
−0.565183 + 0.824966i \(0.691194\pi\)
\(104\) 32955.0 0.298771
\(105\) 0 0
\(106\) 3130.00 0.0270570
\(107\) 70142.0 0.592269 0.296134 0.955146i \(-0.404302\pi\)
0.296134 + 0.955146i \(0.404302\pi\)
\(108\) −18900.0 −0.155920
\(109\) −195878. −1.57914 −0.789568 0.613663i \(-0.789695\pi\)
−0.789568 + 0.613663i \(0.789695\pi\)
\(110\) 0 0
\(111\) −42348.0 −0.326231
\(112\) −183244. −1.38034
\(113\) 100238. 0.738476 0.369238 0.929335i \(-0.379619\pi\)
0.369238 + 0.929335i \(0.379619\pi\)
\(114\) 81180.0 0.585042
\(115\) 0 0
\(116\) 35266.0 0.243339
\(117\) −34983.0 −0.236261
\(118\) 150330. 0.993895
\(119\) 374296. 2.42297
\(120\) 0 0
\(121\) 469385. 2.91451
\(122\) 29030.0 0.176582
\(123\) 1764.00 0.0105132
\(124\) 25438.0 0.148569
\(125\) 0 0
\(126\) 252540. 1.41711
\(127\) −39286.0 −0.216137 −0.108068 0.994143i \(-0.534467\pi\)
−0.108068 + 0.994143i \(0.534467\pi\)
\(128\) −102765. −0.554396
\(129\) 45708.0 0.241834
\(130\) 0 0
\(131\) 211460. 1.07659 0.538295 0.842757i \(-0.319069\pi\)
0.538295 + 0.842757i \(0.319069\pi\)
\(132\) 33348.0 0.166585
\(133\) 660264. 3.23660
\(134\) −62180.0 −0.299150
\(135\) 0 0
\(136\) 299130. 1.38680
\(137\) −26302.0 −0.119726 −0.0598628 0.998207i \(-0.519066\pi\)
−0.0598628 + 0.998207i \(0.519066\pi\)
\(138\) 21060.0 0.0941371
\(139\) 1344.00 0.00590014 0.00295007 0.999996i \(-0.499061\pi\)
0.00295007 + 0.999996i \(0.499061\pi\)
\(140\) 0 0
\(141\) −18120.0 −0.0767557
\(142\) −23670.0 −0.0985093
\(143\) 134186. 0.548741
\(144\) 155457. 0.624747
\(145\) 0 0
\(146\) −73470.0 −0.285251
\(147\) −256374. −0.978545
\(148\) −49406.0 −0.185407
\(149\) −49086.0 −0.181131 −0.0905653 0.995891i \(-0.528867\pi\)
−0.0905653 + 0.995891i \(0.528867\pi\)
\(150\) 0 0
\(151\) −357998. −1.27773 −0.638864 0.769320i \(-0.720595\pi\)
−0.638864 + 0.769320i \(0.720595\pi\)
\(152\) 527670. 1.85248
\(153\) −317538. −1.09665
\(154\) −968680. −3.29138
\(155\) 0 0
\(156\) 7098.00 0.0233520
\(157\) −45450.0 −0.147158 −0.0735791 0.997289i \(-0.523442\pi\)
−0.0735791 + 0.997289i \(0.523442\pi\)
\(158\) 199020. 0.634241
\(159\) 3756.00 0.0117824
\(160\) 0 0
\(161\) 171288. 0.520790
\(162\) −170505. −0.510446
\(163\) −5892.00 −0.0173698 −0.00868488 0.999962i \(-0.502765\pi\)
−0.00868488 + 0.999962i \(0.502765\pi\)
\(164\) 2058.00 0.00597497
\(165\) 0 0
\(166\) −208880. −0.588338
\(167\) −212772. −0.590369 −0.295184 0.955440i \(-0.595381\pi\)
−0.295184 + 0.955440i \(0.595381\pi\)
\(168\) −285480. −0.780373
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −560142. −1.46490
\(172\) 53326.0 0.137442
\(173\) −503178. −1.27822 −0.639111 0.769114i \(-0.720698\pi\)
−0.639111 + 0.769114i \(0.720698\pi\)
\(174\) −151140. −0.378448
\(175\) 0 0
\(176\) −596294. −1.45104
\(177\) 180396. 0.432806
\(178\) −39850.0 −0.0942710
\(179\) 581724. 1.35701 0.678507 0.734594i \(-0.262627\pi\)
0.678507 + 0.734594i \(0.262627\pi\)
\(180\) 0 0
\(181\) 202202. 0.458764 0.229382 0.973337i \(-0.426330\pi\)
0.229382 + 0.973337i \(0.426330\pi\)
\(182\) −206180. −0.461390
\(183\) 34836.0 0.0768954
\(184\) 136890. 0.298076
\(185\) 0 0
\(186\) −109020. −0.231059
\(187\) 1.21800e6 2.54708
\(188\) −21140.0 −0.0436225
\(189\) 658800. 1.34153
\(190\) 0 0
\(191\) −340608. −0.675572 −0.337786 0.941223i \(-0.609678\pi\)
−0.337786 + 0.941223i \(0.609678\pi\)
\(192\) −218742. −0.428232
\(193\) −275614. −0.532608 −0.266304 0.963889i \(-0.585803\pi\)
−0.266304 + 0.963889i \(0.585803\pi\)
\(194\) −390250. −0.744455
\(195\) 0 0
\(196\) −299103. −0.556135
\(197\) −538218. −0.988081 −0.494041 0.869439i \(-0.664481\pi\)
−0.494041 + 0.869439i \(0.664481\pi\)
\(198\) 821790. 1.48970
\(199\) −853840. −1.52842 −0.764212 0.644965i \(-0.776872\pi\)
−0.764212 + 0.644965i \(0.776872\pi\)
\(200\) 0 0
\(201\) −74616.0 −0.130269
\(202\) 115050. 0.198385
\(203\) −1.22927e6 −2.09367
\(204\) 64428.0 0.108392
\(205\) 0 0
\(206\) 608530. 0.999111
\(207\) −145314. −0.235712
\(208\) −126919. −0.203408
\(209\) 2.14856e6 3.40238
\(210\) 0 0
\(211\) −1.00112e6 −1.54804 −0.774019 0.633162i \(-0.781757\pi\)
−0.774019 + 0.633162i \(0.781757\pi\)
\(212\) 4382.00 0.00669627
\(213\) −28404.0 −0.0428974
\(214\) −350710. −0.523496
\(215\) 0 0
\(216\) 526500. 0.767828
\(217\) −886696. −1.27828
\(218\) 979390. 1.39577
\(219\) −88164.0 −0.124217
\(220\) 0 0
\(221\) 259246. 0.357052
\(222\) 211740. 0.288350
\(223\) −21364.0 −0.0287687 −0.0143844 0.999897i \(-0.504579\pi\)
−0.0143844 + 0.999897i \(0.504579\pi\)
\(224\) −606340. −0.807414
\(225\) 0 0
\(226\) −501190. −0.652727
\(227\) 880748. 1.13445 0.567227 0.823561i \(-0.308016\pi\)
0.567227 + 0.823561i \(0.308016\pi\)
\(228\) 113652. 0.144790
\(229\) −13030.0 −0.0164193 −0.00820967 0.999966i \(-0.502613\pi\)
−0.00820967 + 0.999966i \(0.502613\pi\)
\(230\) 0 0
\(231\) −1.16242e6 −1.43328
\(232\) −982410. −1.19832
\(233\) 1.20700e6 1.45652 0.728260 0.685300i \(-0.240329\pi\)
0.728260 + 0.685300i \(0.240329\pi\)
\(234\) 174915. 0.208827
\(235\) 0 0
\(236\) 210462. 0.245977
\(237\) 238824. 0.276189
\(238\) −1.87148e6 −2.14162
\(239\) −187038. −0.211804 −0.105902 0.994377i \(-0.533773\pi\)
−0.105902 + 0.994377i \(0.533773\pi\)
\(240\) 0 0
\(241\) 271690. 0.301322 0.150661 0.988585i \(-0.451860\pi\)
0.150661 + 0.988585i \(0.451860\pi\)
\(242\) −2.34692e6 −2.57609
\(243\) −860706. −0.935059
\(244\) 40642.0 0.0437019
\(245\) 0 0
\(246\) −8820.00 −0.00929246
\(247\) 457314. 0.476949
\(248\) −708630. −0.731628
\(249\) −250656. −0.256200
\(250\) 0 0
\(251\) 102648. 0.102841 0.0514205 0.998677i \(-0.483625\pi\)
0.0514205 + 0.998677i \(0.483625\pi\)
\(252\) 353556. 0.350717
\(253\) 557388. 0.547465
\(254\) 196430. 0.191040
\(255\) 0 0
\(256\) −652799. −0.622558
\(257\) 221182. 0.208890 0.104445 0.994531i \(-0.466693\pi\)
0.104445 + 0.994531i \(0.466693\pi\)
\(258\) −228540. −0.213753
\(259\) 1.72215e6 1.59523
\(260\) 0 0
\(261\) 1.04287e6 0.947605
\(262\) −1.05730e6 −0.951579
\(263\) −1.40317e6 −1.25090 −0.625449 0.780265i \(-0.715084\pi\)
−0.625449 + 0.780265i \(0.715084\pi\)
\(264\) −928980. −0.820345
\(265\) 0 0
\(266\) −3.30132e6 −2.86077
\(267\) −47820.0 −0.0410517
\(268\) −87052.0 −0.0740358
\(269\) −582954. −0.491195 −0.245597 0.969372i \(-0.578984\pi\)
−0.245597 + 0.969372i \(0.578984\pi\)
\(270\) 0 0
\(271\) −1.04690e6 −0.865930 −0.432965 0.901411i \(-0.642533\pi\)
−0.432965 + 0.901411i \(0.642533\pi\)
\(272\) −1.15203e6 −0.944154
\(273\) −247416. −0.200919
\(274\) 131510. 0.105824
\(275\) 0 0
\(276\) 29484.0 0.0232977
\(277\) −1.10461e6 −0.864987 −0.432493 0.901637i \(-0.642366\pi\)
−0.432493 + 0.901637i \(0.642366\pi\)
\(278\) −6720.00 −0.00521504
\(279\) 752238. 0.578555
\(280\) 0 0
\(281\) 908826. 0.686618 0.343309 0.939223i \(-0.388452\pi\)
0.343309 + 0.939223i \(0.388452\pi\)
\(282\) 90600.0 0.0678431
\(283\) 449254. 0.333446 0.166723 0.986004i \(-0.446681\pi\)
0.166723 + 0.986004i \(0.446681\pi\)
\(284\) −33138.0 −0.0243798
\(285\) 0 0
\(286\) −670930. −0.485023
\(287\) −71736.0 −0.0514082
\(288\) 514395. 0.365440
\(289\) 933299. 0.657319
\(290\) 0 0
\(291\) −468300. −0.324184
\(292\) −102858. −0.0705961
\(293\) 1.96083e6 1.33435 0.667175 0.744901i \(-0.267503\pi\)
0.667175 + 0.744901i \(0.267503\pi\)
\(294\) 1.28187e6 0.864919
\(295\) 0 0
\(296\) 1.37631e6 0.913034
\(297\) 2.14380e6 1.41024
\(298\) 245430. 0.160098
\(299\) 118638. 0.0767442
\(300\) 0 0
\(301\) −1.85879e6 −1.18254
\(302\) 1.78999e6 1.12936
\(303\) 138060. 0.0863896
\(304\) −2.03221e6 −1.26120
\(305\) 0 0
\(306\) 1.58769e6 0.969309
\(307\) 1.79385e6 1.08627 0.543137 0.839644i \(-0.317236\pi\)
0.543137 + 0.839644i \(0.317236\pi\)
\(308\) −1.35615e6 −0.814576
\(309\) 730236. 0.435078
\(310\) 0 0
\(311\) 2.41233e6 1.41428 0.707141 0.707072i \(-0.249985\pi\)
0.707141 + 0.707072i \(0.249985\pi\)
\(312\) −197730. −0.114997
\(313\) 2.15436e6 1.24296 0.621480 0.783430i \(-0.286532\pi\)
0.621480 + 0.783430i \(0.286532\pi\)
\(314\) 227250. 0.130071
\(315\) 0 0
\(316\) 278628. 0.156967
\(317\) −2.59616e6 −1.45105 −0.725526 0.688195i \(-0.758403\pi\)
−0.725526 + 0.688195i \(0.758403\pi\)
\(318\) −18780.0 −0.0104142
\(319\) −4.00017e6 −2.20091
\(320\) 0 0
\(321\) −420852. −0.227964
\(322\) −856440. −0.460317
\(323\) 4.15100e6 2.21384
\(324\) −238707. −0.126329
\(325\) 0 0
\(326\) 29460.0 0.0153528
\(327\) 1.17527e6 0.607810
\(328\) −57330.0 −0.0294237
\(329\) 736880. 0.375325
\(330\) 0 0
\(331\) −917226. −0.460157 −0.230079 0.973172i \(-0.573898\pi\)
−0.230079 + 0.973172i \(0.573898\pi\)
\(332\) −292432. −0.145606
\(333\) −1.46101e6 −0.722007
\(334\) 1.06386e6 0.521817
\(335\) 0 0
\(336\) 1.09946e6 0.531291
\(337\) −2.23894e6 −1.07391 −0.536954 0.843611i \(-0.680425\pi\)
−0.536954 + 0.843611i \(0.680425\pi\)
\(338\) −142805. −0.0679910
\(339\) −601428. −0.284239
\(340\) 0 0
\(341\) −2.88540e6 −1.34375
\(342\) 2.80071e6 1.29480
\(343\) 6.32497e6 2.90284
\(344\) −1.48551e6 −0.676830
\(345\) 0 0
\(346\) 2.51589e6 1.12980
\(347\) −3.41808e6 −1.52391 −0.761954 0.647631i \(-0.775760\pi\)
−0.761954 + 0.647631i \(0.775760\pi\)
\(348\) −211596. −0.0936611
\(349\) 2.35691e6 1.03581 0.517905 0.855438i \(-0.326712\pi\)
0.517905 + 0.855438i \(0.326712\pi\)
\(350\) 0 0
\(351\) 456300. 0.197689
\(352\) −1.97309e6 −0.848770
\(353\) 3.76395e6 1.60771 0.803854 0.594827i \(-0.202779\pi\)
0.803854 + 0.594827i \(0.202779\pi\)
\(354\) −901980. −0.382550
\(355\) 0 0
\(356\) −55790.0 −0.0233309
\(357\) −2.24578e6 −0.932601
\(358\) −2.90862e6 −1.19944
\(359\) 3.28216e6 1.34407 0.672037 0.740517i \(-0.265419\pi\)
0.672037 + 0.740517i \(0.265419\pi\)
\(360\) 0 0
\(361\) 4.84634e6 1.95725
\(362\) −1.01101e6 −0.405494
\(363\) −2.81631e6 −1.12180
\(364\) −288652. −0.114188
\(365\) 0 0
\(366\) −174180. −0.0679666
\(367\) 2.42605e6 0.940233 0.470116 0.882604i \(-0.344212\pi\)
0.470116 + 0.882604i \(0.344212\pi\)
\(368\) −527202. −0.202935
\(369\) 60858.0 0.0232676
\(370\) 0 0
\(371\) −152744. −0.0576142
\(372\) −152628. −0.0571843
\(373\) −2.80635e6 −1.04441 −0.522204 0.852820i \(-0.674890\pi\)
−0.522204 + 0.852820i \(0.674890\pi\)
\(374\) −6.08998e6 −2.25132
\(375\) 0 0
\(376\) 588900. 0.214819
\(377\) −851422. −0.308526
\(378\) −3.29400e6 −1.18575
\(379\) 3.15392e6 1.12785 0.563927 0.825825i \(-0.309290\pi\)
0.563927 + 0.825825i \(0.309290\pi\)
\(380\) 0 0
\(381\) 235716. 0.0831911
\(382\) 1.70304e6 0.597127
\(383\) 475044. 0.165477 0.0827384 0.996571i \(-0.473633\pi\)
0.0827384 + 0.996571i \(0.473633\pi\)
\(384\) 616590. 0.213387
\(385\) 0 0
\(386\) 1.37807e6 0.470764
\(387\) 1.57693e6 0.535222
\(388\) −546350. −0.184243
\(389\) 150566. 0.0504490 0.0252245 0.999682i \(-0.491970\pi\)
0.0252245 + 0.999682i \(0.491970\pi\)
\(390\) 0 0
\(391\) 1.07687e6 0.356222
\(392\) 8.33216e6 2.73869
\(393\) −1.26876e6 −0.414379
\(394\) 2.69109e6 0.873349
\(395\) 0 0
\(396\) 1.15051e6 0.368681
\(397\) −241686. −0.0769618 −0.0384809 0.999259i \(-0.512252\pi\)
−0.0384809 + 0.999259i \(0.512252\pi\)
\(398\) 4.26920e6 1.35095
\(399\) −3.96158e6 −1.24577
\(400\) 0 0
\(401\) −3.19679e6 −0.992780 −0.496390 0.868100i \(-0.665341\pi\)
−0.496390 + 0.868100i \(0.665341\pi\)
\(402\) 373080. 0.115143
\(403\) −614146. −0.188369
\(404\) 161070. 0.0490977
\(405\) 0 0
\(406\) 6.14636e6 1.85056
\(407\) 5.60405e6 1.67693
\(408\) −1.79478e6 −0.533778
\(409\) 423282. 0.125119 0.0625593 0.998041i \(-0.480074\pi\)
0.0625593 + 0.998041i \(0.480074\pi\)
\(410\) 0 0
\(411\) 157812. 0.0460824
\(412\) 851942. 0.247267
\(413\) −7.33610e6 −2.11636
\(414\) 726570. 0.208342
\(415\) 0 0
\(416\) −419965. −0.118982
\(417\) −8064.00 −0.00227096
\(418\) −1.07428e7 −3.00731
\(419\) −1.13159e6 −0.314887 −0.157444 0.987528i \(-0.550325\pi\)
−0.157444 + 0.987528i \(0.550325\pi\)
\(420\) 0 0
\(421\) 3.47699e6 0.956088 0.478044 0.878336i \(-0.341346\pi\)
0.478044 + 0.878336i \(0.341346\pi\)
\(422\) 5.00562e6 1.36829
\(423\) −625140. −0.169874
\(424\) −122070. −0.0329757
\(425\) 0 0
\(426\) 142020. 0.0379163
\(427\) −1.41666e6 −0.376008
\(428\) −490994. −0.129559
\(429\) −805116. −0.211210
\(430\) 0 0
\(431\) 3.41044e6 0.884335 0.442168 0.896932i \(-0.354210\pi\)
0.442168 + 0.896932i \(0.354210\pi\)
\(432\) −2.02770e6 −0.522750
\(433\) 3.40722e6 0.873335 0.436667 0.899623i \(-0.356159\pi\)
0.436667 + 0.899623i \(0.356159\pi\)
\(434\) 4.43348e6 1.12985
\(435\) 0 0
\(436\) 1.37115e6 0.345436
\(437\) 1.89961e6 0.475840
\(438\) 440820. 0.109793
\(439\) −7.09114e6 −1.75612 −0.878061 0.478549i \(-0.841163\pi\)
−0.878061 + 0.478549i \(0.841163\pi\)
\(440\) 0 0
\(441\) −8.84490e6 −2.16569
\(442\) −1.29623e6 −0.315592
\(443\) 8.23508e6 1.99369 0.996847 0.0793445i \(-0.0252827\pi\)
0.996847 + 0.0793445i \(0.0252827\pi\)
\(444\) 296436. 0.0713631
\(445\) 0 0
\(446\) 106820. 0.0254282
\(447\) 294516. 0.0697172
\(448\) 8.89551e6 2.09400
\(449\) −1.29601e6 −0.303383 −0.151691 0.988428i \(-0.548472\pi\)
−0.151691 + 0.988428i \(0.548472\pi\)
\(450\) 0 0
\(451\) −233436. −0.0540414
\(452\) −701666. −0.161542
\(453\) 2.14799e6 0.491798
\(454\) −4.40374e6 −1.00273
\(455\) 0 0
\(456\) −3.16602e6 −0.713020
\(457\) −1.68196e6 −0.376725 −0.188363 0.982100i \(-0.560318\pi\)
−0.188363 + 0.982100i \(0.560318\pi\)
\(458\) 65150.0 0.0145128
\(459\) 4.14180e6 0.917608
\(460\) 0 0
\(461\) −3.20663e6 −0.702743 −0.351372 0.936236i \(-0.614285\pi\)
−0.351372 + 0.936236i \(0.614285\pi\)
\(462\) 5.81208e6 1.26685
\(463\) 5.26370e6 1.14114 0.570570 0.821249i \(-0.306722\pi\)
0.570570 + 0.821249i \(0.306722\pi\)
\(464\) 3.78354e6 0.815837
\(465\) 0 0
\(466\) −6.03499e6 −1.28739
\(467\) 8.26813e6 1.75435 0.877173 0.480175i \(-0.159427\pi\)
0.877173 + 0.480175i \(0.159427\pi\)
\(468\) 244881. 0.0516821
\(469\) 3.03438e6 0.636999
\(470\) 0 0
\(471\) 272700. 0.0566413
\(472\) −5.86287e6 −1.21131
\(473\) −6.04869e6 −1.24311
\(474\) −1.19412e6 −0.244119
\(475\) 0 0
\(476\) −2.62007e6 −0.530024
\(477\) 129582. 0.0260765
\(478\) 935190. 0.187210
\(479\) 3.65468e6 0.727797 0.363899 0.931439i \(-0.381445\pi\)
0.363899 + 0.931439i \(0.381445\pi\)
\(480\) 0 0
\(481\) 1.19280e6 0.235075
\(482\) −1.35845e6 −0.266334
\(483\) −1.02773e6 −0.200452
\(484\) −3.28570e6 −0.637549
\(485\) 0 0
\(486\) 4.30353e6 0.826483
\(487\) −7.13084e6 −1.36244 −0.681221 0.732077i \(-0.738551\pi\)
−0.681221 + 0.732077i \(0.738551\pi\)
\(488\) −1.13217e6 −0.215210
\(489\) 35352.0 0.00668562
\(490\) 0 0
\(491\) 5.72551e6 1.07179 0.535896 0.844284i \(-0.319974\pi\)
0.535896 + 0.844284i \(0.319974\pi\)
\(492\) −12348.0 −0.00229977
\(493\) −7.72829e6 −1.43208
\(494\) −2.28657e6 −0.421568
\(495\) 0 0
\(496\) 2.72913e6 0.498105
\(497\) 1.15510e6 0.209762
\(498\) 1.25328e6 0.226451
\(499\) −7.17251e6 −1.28950 −0.644748 0.764395i \(-0.723038\pi\)
−0.644748 + 0.764395i \(0.723038\pi\)
\(500\) 0 0
\(501\) 1.27663e6 0.227233
\(502\) −513240. −0.0908994
\(503\) 2.90611e6 0.512143 0.256072 0.966658i \(-0.417572\pi\)
0.256072 + 0.966658i \(0.417572\pi\)
\(504\) −9.84906e6 −1.72710
\(505\) 0 0
\(506\) −2.78694e6 −0.483895
\(507\) −171366. −0.0296077
\(508\) 275002. 0.0472799
\(509\) −8.37125e6 −1.43217 −0.716087 0.698011i \(-0.754069\pi\)
−0.716087 + 0.698011i \(0.754069\pi\)
\(510\) 0 0
\(511\) 3.58534e6 0.607404
\(512\) 6.55248e6 1.10466
\(513\) 7.30620e6 1.22574
\(514\) −1.10591e6 −0.184634
\(515\) 0 0
\(516\) −319956. −0.0529013
\(517\) 2.39788e6 0.394549
\(518\) −8.61076e6 −1.40999
\(519\) 3.01907e6 0.491988
\(520\) 0 0
\(521\) 5.37332e6 0.867258 0.433629 0.901092i \(-0.357233\pi\)
0.433629 + 0.901092i \(0.357233\pi\)
\(522\) −5.21433e6 −0.837572
\(523\) −5.26875e6 −0.842274 −0.421137 0.906997i \(-0.638369\pi\)
−0.421137 + 0.906997i \(0.638369\pi\)
\(524\) −1.48022e6 −0.235504
\(525\) 0 0
\(526\) 7.01587e6 1.10565
\(527\) −5.57456e6 −0.874347
\(528\) 3.57776e6 0.558505
\(529\) −5.94354e6 −0.923434
\(530\) 0 0
\(531\) 6.22366e6 0.957877
\(532\) −4.62185e6 −0.708005
\(533\) −49686.0 −0.00757558
\(534\) 239100. 0.0362849
\(535\) 0 0
\(536\) 2.42502e6 0.364589
\(537\) −3.49034e6 −0.522315
\(538\) 2.91477e6 0.434159
\(539\) 3.39268e7 5.03004
\(540\) 0 0
\(541\) −6.07956e6 −0.893056 −0.446528 0.894770i \(-0.647340\pi\)
−0.446528 + 0.894770i \(0.647340\pi\)
\(542\) 5.23451e6 0.765381
\(543\) −1.21321e6 −0.176578
\(544\) −3.81199e6 −0.552274
\(545\) 0 0
\(546\) 1.23708e6 0.177589
\(547\) 7.88715e6 1.12707 0.563536 0.826091i \(-0.309441\pi\)
0.563536 + 0.826091i \(0.309441\pi\)
\(548\) 184114. 0.0261900
\(549\) 1.20184e6 0.170183
\(550\) 0 0
\(551\) −1.36328e7 −1.91296
\(552\) −821340. −0.114730
\(553\) −9.71218e6 −1.35053
\(554\) 5.52305e6 0.764548
\(555\) 0 0
\(556\) −9408.00 −0.00129066
\(557\) 5.88545e6 0.803788 0.401894 0.915686i \(-0.368352\pi\)
0.401894 + 0.915686i \(0.368352\pi\)
\(558\) −3.76119e6 −0.511375
\(559\) −1.28744e6 −0.174260
\(560\) 0 0
\(561\) −7.30798e6 −0.980370
\(562\) −4.54413e6 −0.606890
\(563\) 3.91526e6 0.520583 0.260291 0.965530i \(-0.416181\pi\)
0.260291 + 0.965530i \(0.416181\pi\)
\(564\) 126840. 0.0167903
\(565\) 0 0
\(566\) −2.24627e6 −0.294728
\(567\) 8.32064e6 1.08692
\(568\) 923130. 0.120058
\(569\) 9.78180e6 1.26660 0.633298 0.773908i \(-0.281701\pi\)
0.633298 + 0.773908i \(0.281701\pi\)
\(570\) 0 0
\(571\) −1.08198e7 −1.38877 −0.694386 0.719603i \(-0.744324\pi\)
−0.694386 + 0.719603i \(0.744324\pi\)
\(572\) −939302. −0.120037
\(573\) 2.04365e6 0.260028
\(574\) 358680. 0.0454389
\(575\) 0 0
\(576\) −7.54660e6 −0.947753
\(577\) −1.48792e7 −1.86055 −0.930274 0.366865i \(-0.880431\pi\)
−0.930274 + 0.366865i \(0.880431\pi\)
\(578\) −4.66650e6 −0.580993
\(579\) 1.65368e6 0.205001
\(580\) 0 0
\(581\) 1.01933e7 1.25278
\(582\) 2.34150e6 0.286541
\(583\) −497044. −0.0605652
\(584\) 2.86533e6 0.347650
\(585\) 0 0
\(586\) −9.80413e6 −1.17941
\(587\) −1.22649e7 −1.46916 −0.734578 0.678525i \(-0.762620\pi\)
−0.734578 + 0.678525i \(0.762620\pi\)
\(588\) 1.79462e6 0.214057
\(589\) −9.83360e6 −1.16795
\(590\) 0 0
\(591\) 3.22931e6 0.380313
\(592\) −5.30056e6 −0.621609
\(593\) 1.54878e7 1.80864 0.904320 0.426856i \(-0.140379\pi\)
0.904320 + 0.426856i \(0.140379\pi\)
\(594\) −1.07190e7 −1.24649
\(595\) 0 0
\(596\) 343602. 0.0396223
\(597\) 5.12304e6 0.588291
\(598\) −593190. −0.0678330
\(599\) 9.75710e6 1.11110 0.555551 0.831483i \(-0.312507\pi\)
0.555551 + 0.831483i \(0.312507\pi\)
\(600\) 0 0
\(601\) −7.57967e6 −0.855981 −0.427990 0.903783i \(-0.640778\pi\)
−0.427990 + 0.903783i \(0.640778\pi\)
\(602\) 9.29396e6 1.04522
\(603\) −2.57425e6 −0.288309
\(604\) 2.50599e6 0.279503
\(605\) 0 0
\(606\) −690300. −0.0763583
\(607\) −1.36231e7 −1.50073 −0.750367 0.661022i \(-0.770123\pi\)
−0.750367 + 0.661022i \(0.770123\pi\)
\(608\) −6.72441e6 −0.737726
\(609\) 7.37563e6 0.805853
\(610\) 0 0
\(611\) 510380. 0.0553083
\(612\) 2.22277e6 0.239892
\(613\) 1.20366e7 1.29376 0.646880 0.762592i \(-0.276073\pi\)
0.646880 + 0.762592i \(0.276073\pi\)
\(614\) −8.96924e6 −0.960140
\(615\) 0 0
\(616\) 3.77785e7 4.01137
\(617\) −8.55509e6 −0.904715 −0.452358 0.891837i \(-0.649417\pi\)
−0.452358 + 0.891837i \(0.649417\pi\)
\(618\) −3.65118e6 −0.384558
\(619\) −1.33018e7 −1.39535 −0.697675 0.716414i \(-0.745782\pi\)
−0.697675 + 0.716414i \(0.745782\pi\)
\(620\) 0 0
\(621\) 1.89540e6 0.197230
\(622\) −1.20617e7 −1.25006
\(623\) 1.94468e6 0.200737
\(624\) 761514. 0.0782918
\(625\) 0 0
\(626\) −1.07718e7 −1.09863
\(627\) −1.28914e7 −1.30958
\(628\) 318150. 0.0321909
\(629\) 1.08270e7 1.09114
\(630\) 0 0
\(631\) 9.16681e6 0.916526 0.458263 0.888817i \(-0.348472\pi\)
0.458263 + 0.888817i \(0.348472\pi\)
\(632\) −7.76178e6 −0.772981
\(633\) 6.00674e6 0.595840
\(634\) 1.29808e7 1.28256
\(635\) 0 0
\(636\) −26292.0 −0.00257739
\(637\) 7.22120e6 0.705116
\(638\) 2.00009e7 1.94535
\(639\) −979938. −0.0949394
\(640\) 0 0
\(641\) 9.96437e6 0.957866 0.478933 0.877851i \(-0.341024\pi\)
0.478933 + 0.877851i \(0.341024\pi\)
\(642\) 2.10426e6 0.201494
\(643\) −6.64194e6 −0.633530 −0.316765 0.948504i \(-0.602597\pi\)
−0.316765 + 0.948504i \(0.602597\pi\)
\(644\) −1.19902e6 −0.113923
\(645\) 0 0
\(646\) −2.07550e7 −1.95678
\(647\) −844766. −0.0793370 −0.0396685 0.999213i \(-0.512630\pi\)
−0.0396685 + 0.999213i \(0.512630\pi\)
\(648\) 6.64969e6 0.622106
\(649\) −2.38724e7 −2.22477
\(650\) 0 0
\(651\) 5.32018e6 0.492010
\(652\) 41244.0 0.00379963
\(653\) −5.79681e6 −0.531993 −0.265997 0.963974i \(-0.585701\pi\)
−0.265997 + 0.963974i \(0.585701\pi\)
\(654\) −5.87634e6 −0.537233
\(655\) 0 0
\(656\) 220794. 0.0200322
\(657\) −3.04166e6 −0.274914
\(658\) −3.68440e6 −0.331743
\(659\) −1.12406e7 −1.00827 −0.504136 0.863624i \(-0.668189\pi\)
−0.504136 + 0.863624i \(0.668189\pi\)
\(660\) 0 0
\(661\) −1.54928e7 −1.37920 −0.689599 0.724191i \(-0.742213\pi\)
−0.689599 + 0.724191i \(0.742213\pi\)
\(662\) 4.58613e6 0.406725
\(663\) −1.55548e6 −0.137429
\(664\) 8.14632e6 0.717037
\(665\) 0 0
\(666\) 7.30503e6 0.638170
\(667\) −3.53668e6 −0.307809
\(668\) 1.48940e6 0.129143
\(669\) 128184. 0.0110731
\(670\) 0 0
\(671\) −4.60996e6 −0.395268
\(672\) 3.63804e6 0.310774
\(673\) 723294. 0.0615570 0.0307785 0.999526i \(-0.490201\pi\)
0.0307785 + 0.999526i \(0.490201\pi\)
\(674\) 1.11947e7 0.949210
\(675\) 0 0
\(676\) −199927. −0.0168269
\(677\) 7.57359e6 0.635082 0.317541 0.948244i \(-0.397143\pi\)
0.317541 + 0.948244i \(0.397143\pi\)
\(678\) 3.00714e6 0.251235
\(679\) 1.90442e7 1.58522
\(680\) 0 0
\(681\) −5.28449e6 −0.436652
\(682\) 1.44270e7 1.18772
\(683\) 1.65552e7 1.35794 0.678972 0.734164i \(-0.262426\pi\)
0.678972 + 0.734164i \(0.262426\pi\)
\(684\) 3.92099e6 0.320447
\(685\) 0 0
\(686\) −3.16248e7 −2.56577
\(687\) 78180.0 0.00631981
\(688\) 5.72112e6 0.460797
\(689\) −105794. −0.00849010
\(690\) 0 0
\(691\) −2.04593e7 −1.63003 −0.815016 0.579438i \(-0.803272\pi\)
−0.815016 + 0.579438i \(0.803272\pi\)
\(692\) 3.52225e6 0.279611
\(693\) −4.01034e7 −3.17211
\(694\) 1.70904e7 1.34696
\(695\) 0 0
\(696\) 5.89446e6 0.461234
\(697\) −450996. −0.0351634
\(698\) −1.17846e7 −0.915535
\(699\) −7.24199e6 −0.560615
\(700\) 0 0
\(701\) 1.52050e7 1.16867 0.584334 0.811514i \(-0.301356\pi\)
0.584334 + 0.811514i \(0.301356\pi\)
\(702\) −2.28150e6 −0.174734
\(703\) 1.90989e7 1.45754
\(704\) 2.89469e7 2.20125
\(705\) 0 0
\(706\) −1.88198e7 −1.42103
\(707\) −5.61444e6 −0.422433
\(708\) −1.26277e6 −0.0946764
\(709\) −1.80833e7 −1.35102 −0.675509 0.737351i \(-0.736076\pi\)
−0.675509 + 0.737351i \(0.736076\pi\)
\(710\) 0 0
\(711\) 8.23943e6 0.611256
\(712\) 1.55415e6 0.114893
\(713\) −2.55107e6 −0.187931
\(714\) 1.12289e7 0.824311
\(715\) 0 0
\(716\) −4.07207e6 −0.296847
\(717\) 1.12223e6 0.0815236
\(718\) −1.64108e7 −1.18801
\(719\) −2.08096e7 −1.50121 −0.750604 0.660752i \(-0.770237\pi\)
−0.750604 + 0.660752i \(0.770237\pi\)
\(720\) 0 0
\(721\) −2.96963e7 −2.12747
\(722\) −2.42317e7 −1.72998
\(723\) −1.63014e6 −0.115979
\(724\) −1.41541e6 −0.100355
\(725\) 0 0
\(726\) 1.40816e7 0.991537
\(727\) 2.59006e7 1.81750 0.908749 0.417344i \(-0.137039\pi\)
0.908749 + 0.417344i \(0.137039\pi\)
\(728\) 8.04102e6 0.562319
\(729\) −3.12231e6 −0.217599
\(730\) 0 0
\(731\) −1.16860e7 −0.808859
\(732\) −243852. −0.0168209
\(733\) 1.96307e7 1.34951 0.674754 0.738043i \(-0.264250\pi\)
0.674754 + 0.738043i \(0.264250\pi\)
\(734\) −1.21303e7 −0.831056
\(735\) 0 0
\(736\) −1.74447e6 −0.118705
\(737\) 9.87418e6 0.669626
\(738\) −304290. −0.0205659
\(739\) −1.67436e7 −1.12781 −0.563906 0.825839i \(-0.690702\pi\)
−0.563906 + 0.825839i \(0.690702\pi\)
\(740\) 0 0
\(741\) −2.74388e6 −0.183578
\(742\) 763720. 0.0509242
\(743\) −5.57725e6 −0.370637 −0.185318 0.982679i \(-0.559332\pi\)
−0.185318 + 0.982679i \(0.559332\pi\)
\(744\) 4.25178e6 0.281604
\(745\) 0 0
\(746\) 1.40318e7 0.923135
\(747\) −8.64763e6 −0.567016
\(748\) −8.52597e6 −0.557173
\(749\) 1.71146e7 1.11471
\(750\) 0 0
\(751\) 1.24035e7 0.802499 0.401250 0.915969i \(-0.368576\pi\)
0.401250 + 0.915969i \(0.368576\pi\)
\(752\) −2.26802e6 −0.146252
\(753\) −615888. −0.0395835
\(754\) 4.25711e6 0.272701
\(755\) 0 0
\(756\) −4.61160e6 −0.293459
\(757\) −4.37170e6 −0.277275 −0.138637 0.990343i \(-0.544272\pi\)
−0.138637 + 0.990343i \(0.544272\pi\)
\(758\) −1.57696e7 −0.996892
\(759\) −3.34433e6 −0.210719
\(760\) 0 0
\(761\) −2.10490e7 −1.31756 −0.658780 0.752335i \(-0.728927\pi\)
−0.658780 + 0.752335i \(0.728927\pi\)
\(762\) −1.17858e6 −0.0735312
\(763\) −4.77942e7 −2.97210
\(764\) 2.38426e6 0.147781
\(765\) 0 0
\(766\) −2.37522e6 −0.146262
\(767\) −5.08115e6 −0.311870
\(768\) 3.91679e6 0.239623
\(769\) 2.26551e7 1.38150 0.690748 0.723096i \(-0.257282\pi\)
0.690748 + 0.723096i \(0.257282\pi\)
\(770\) 0 0
\(771\) −1.32709e6 −0.0804017
\(772\) 1.92930e6 0.116508
\(773\) −1.15053e7 −0.692545 −0.346272 0.938134i \(-0.612553\pi\)
−0.346272 + 0.938134i \(0.612553\pi\)
\(774\) −7.88463e6 −0.473074
\(775\) 0 0
\(776\) 1.52198e7 0.907305
\(777\) −1.03329e7 −0.614003
\(778\) −752830. −0.0445911
\(779\) −795564. −0.0469712
\(780\) 0 0
\(781\) 3.75880e6 0.220506
\(782\) −5.38434e6 −0.314859
\(783\) −1.36026e7 −0.792898
\(784\) −3.20895e7 −1.86454
\(785\) 0 0
\(786\) 6.34380e6 0.366263
\(787\) −967112. −0.0556596 −0.0278298 0.999613i \(-0.508860\pi\)
−0.0278298 + 0.999613i \(0.508860\pi\)
\(788\) 3.76753e6 0.216143
\(789\) 8.41904e6 0.481471
\(790\) 0 0
\(791\) 2.44581e7 1.38989
\(792\) −3.20498e7 −1.81557
\(793\) −981214. −0.0554091
\(794\) 1.20843e6 0.0680253
\(795\) 0 0
\(796\) 5.97688e6 0.334343
\(797\) 2.85072e7 1.58968 0.794838 0.606821i \(-0.207556\pi\)
0.794838 + 0.606821i \(0.207556\pi\)
\(798\) 1.98079e7 1.10111
\(799\) 4.63268e6 0.256723
\(800\) 0 0
\(801\) −1.64979e6 −0.0908547
\(802\) 1.59840e7 0.877502
\(803\) 1.16670e7 0.638516
\(804\) 522312. 0.0284964
\(805\) 0 0
\(806\) 3.07073e6 0.166496
\(807\) 3.49772e6 0.189061
\(808\) −4.48695e6 −0.241781
\(809\) 1.08912e7 0.585065 0.292533 0.956256i \(-0.405502\pi\)
0.292533 + 0.956256i \(0.405502\pi\)
\(810\) 0 0
\(811\) 1.28535e7 0.686228 0.343114 0.939294i \(-0.388518\pi\)
0.343114 + 0.939294i \(0.388518\pi\)
\(812\) 8.60490e6 0.457990
\(813\) 6.28141e6 0.333297
\(814\) −2.80203e7 −1.48221
\(815\) 0 0
\(816\) 6.91220e6 0.363405
\(817\) −2.06143e7 −1.08047
\(818\) −2.11641e6 −0.110590
\(819\) −8.53585e6 −0.444669
\(820\) 0 0
\(821\) −9.60605e6 −0.497378 −0.248689 0.968583i \(-0.580000\pi\)
−0.248689 + 0.968583i \(0.580000\pi\)
\(822\) −789060. −0.0407315
\(823\) −1.42909e7 −0.735460 −0.367730 0.929933i \(-0.619865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(824\) −2.37327e7 −1.21767
\(825\) 0 0
\(826\) 3.66805e7 1.87062
\(827\) −2.40317e7 −1.22186 −0.610930 0.791685i \(-0.709204\pi\)
−0.610930 + 0.791685i \(0.709204\pi\)
\(828\) 1.01720e6 0.0515620
\(829\) 1.10830e7 0.560107 0.280053 0.959984i \(-0.409648\pi\)
0.280053 + 0.959984i \(0.409648\pi\)
\(830\) 0 0
\(831\) 6.62766e6 0.332934
\(832\) 6.16123e6 0.308574
\(833\) 6.55463e7 3.27292
\(834\) 40320.0 0.00200727
\(835\) 0 0
\(836\) −1.50399e7 −0.744270
\(837\) −9.81180e6 −0.484100
\(838\) 5.65796e6 0.278323
\(839\) −6.89303e6 −0.338069 −0.169034 0.985610i \(-0.554065\pi\)
−0.169034 + 0.985610i \(0.554065\pi\)
\(840\) 0 0
\(841\) 4.87030e6 0.237446
\(842\) −1.73849e7 −0.845070
\(843\) −5.45296e6 −0.264279
\(844\) 7.00787e6 0.338633
\(845\) 0 0
\(846\) 3.12570e6 0.150149
\(847\) 1.14530e8 5.48543
\(848\) 470126. 0.0224504
\(849\) −2.69552e6 −0.128344
\(850\) 0 0
\(851\) 4.95472e6 0.234528
\(852\) 198828. 0.00938380
\(853\) 683466. 0.0321621 0.0160810 0.999871i \(-0.494881\pi\)
0.0160810 + 0.999871i \(0.494881\pi\)
\(854\) 7.08332e6 0.332347
\(855\) 0 0
\(856\) 1.36777e7 0.638011
\(857\) 7.89742e6 0.367310 0.183655 0.982991i \(-0.441207\pi\)
0.183655 + 0.982991i \(0.441207\pi\)
\(858\) 4.02558e6 0.186685
\(859\) 3.52556e7 1.63021 0.815107 0.579310i \(-0.196678\pi\)
0.815107 + 0.579310i \(0.196678\pi\)
\(860\) 0 0
\(861\) 430416. 0.0197870
\(862\) −1.70522e7 −0.781649
\(863\) −1.76565e7 −0.807007 −0.403503 0.914978i \(-0.632208\pi\)
−0.403503 + 0.914978i \(0.632208\pi\)
\(864\) −6.70950e6 −0.305778
\(865\) 0 0
\(866\) −1.70361e7 −0.771926
\(867\) −5.59979e6 −0.253002
\(868\) 6.20687e6 0.279623
\(869\) −3.16044e7 −1.41970
\(870\) 0 0
\(871\) 2.10168e6 0.0938690
\(872\) −3.81962e7 −1.70110
\(873\) −1.61564e7 −0.717476
\(874\) −9.49806e6 −0.420587
\(875\) 0 0
\(876\) 617148. 0.0271725
\(877\) 6.40016e6 0.280991 0.140495 0.990081i \(-0.455131\pi\)
0.140495 + 0.990081i \(0.455131\pi\)
\(878\) 3.54557e7 1.55221
\(879\) −1.17650e7 −0.513592
\(880\) 0 0
\(881\) −1.14571e7 −0.497318 −0.248659 0.968591i \(-0.579990\pi\)
−0.248659 + 0.968591i \(0.579990\pi\)
\(882\) 4.42245e7 1.91422
\(883\) −2.42296e7 −1.04579 −0.522896 0.852397i \(-0.675148\pi\)
−0.522896 + 0.852397i \(0.675148\pi\)
\(884\) −1.81472e6 −0.0781051
\(885\) 0 0
\(886\) −4.11754e7 −1.76219
\(887\) −8.66087e6 −0.369617 −0.184809 0.982775i \(-0.559167\pi\)
−0.184809 + 0.982775i \(0.559167\pi\)
\(888\) −8.25786e6 −0.351427
\(889\) −9.58578e6 −0.406793
\(890\) 0 0
\(891\) 2.70762e7 1.14260
\(892\) 149548. 0.00629316
\(893\) 8.17212e6 0.342930
\(894\) −1.47258e6 −0.0616219
\(895\) 0 0
\(896\) −2.50747e7 −1.04343
\(897\) −711828. −0.0295389
\(898\) 6.48003e6 0.268155
\(899\) 1.83081e7 0.755516
\(900\) 0 0
\(901\) −960284. −0.0394083
\(902\) 1.16718e6 0.0477663
\(903\) 1.11528e7 0.455159
\(904\) 1.95464e7 0.795511
\(905\) 0 0
\(906\) −1.07399e7 −0.434692
\(907\) 7.84287e6 0.316561 0.158280 0.987394i \(-0.449405\pi\)
0.158280 + 0.987394i \(0.449405\pi\)
\(908\) −6.16524e6 −0.248162
\(909\) 4.76307e6 0.191195
\(910\) 0 0
\(911\) −942576. −0.0376288 −0.0188144 0.999823i \(-0.505989\pi\)
−0.0188144 + 0.999823i \(0.505989\pi\)
\(912\) 1.21932e7 0.485436
\(913\) 3.31701e7 1.31695
\(914\) 8.40979e6 0.332981
\(915\) 0 0
\(916\) 91210.0 0.00359173
\(917\) 5.15962e7 2.02626
\(918\) −2.07090e7 −0.811059
\(919\) −2.00734e7 −0.784030 −0.392015 0.919959i \(-0.628222\pi\)
−0.392015 + 0.919959i \(0.628222\pi\)
\(920\) 0 0
\(921\) −1.07631e7 −0.418107
\(922\) 1.60332e7 0.621143
\(923\) 800046. 0.0309108
\(924\) 8.13691e6 0.313530
\(925\) 0 0
\(926\) −2.63185e7 −1.00863
\(927\) 2.51931e7 0.962904
\(928\) 1.25194e7 0.477216
\(929\) 1.10181e7 0.418858 0.209429 0.977824i \(-0.432840\pi\)
0.209429 + 0.977824i \(0.432840\pi\)
\(930\) 0 0
\(931\) 1.15625e8 4.37196
\(932\) −8.44899e6 −0.318614
\(933\) −1.44740e7 −0.544358
\(934\) −4.13406e7 −1.55064
\(935\) 0 0
\(936\) −6.82168e6 −0.254508
\(937\) −3.59532e7 −1.33779 −0.668896 0.743356i \(-0.733233\pi\)
−0.668896 + 0.743356i \(0.733233\pi\)
\(938\) −1.51719e7 −0.563032
\(939\) −1.29261e7 −0.478415
\(940\) 0 0
\(941\) 1.28845e7 0.474345 0.237172 0.971468i \(-0.423779\pi\)
0.237172 + 0.971468i \(0.423779\pi\)
\(942\) −1.36350e6 −0.0500643
\(943\) −206388. −0.00755797
\(944\) 2.25796e7 0.824680
\(945\) 0 0
\(946\) 3.02435e7 1.09876
\(947\) 1.18911e7 0.430871 0.215436 0.976518i \(-0.430883\pi\)
0.215436 + 0.976518i \(0.430883\pi\)
\(948\) −1.67177e6 −0.0604164
\(949\) 2.48329e6 0.0895079
\(950\) 0 0
\(951\) 1.55769e7 0.558510
\(952\) 7.29877e7 2.61010
\(953\) −4.40094e7 −1.56969 −0.784844 0.619694i \(-0.787257\pi\)
−0.784844 + 0.619694i \(0.787257\pi\)
\(954\) −647910. −0.0230486
\(955\) 0 0
\(956\) 1.30927e6 0.0463322
\(957\) 2.40010e7 0.847130
\(958\) −1.82734e7 −0.643288
\(959\) −6.41769e6 −0.225337
\(960\) 0 0
\(961\) −1.54232e7 −0.538723
\(962\) −5.96401e6 −0.207779
\(963\) −1.45194e7 −0.504525
\(964\) −1.90183e6 −0.0659142
\(965\) 0 0
\(966\) 5.13864e6 0.177176
\(967\) −2.11144e7 −0.726128 −0.363064 0.931764i \(-0.618269\pi\)
−0.363064 + 0.931764i \(0.618269\pi\)
\(968\) 9.15301e7 3.13961
\(969\) −2.49060e7 −0.852109
\(970\) 0 0
\(971\) 2.44293e7 0.831502 0.415751 0.909478i \(-0.363519\pi\)
0.415751 + 0.909478i \(0.363519\pi\)
\(972\) 6.02494e6 0.204544
\(973\) 327936. 0.0111047
\(974\) 3.56542e7 1.20424
\(975\) 0 0
\(976\) 4.36031e6 0.146518
\(977\) −5.15549e7 −1.72796 −0.863980 0.503527i \(-0.832036\pi\)
−0.863980 + 0.503527i \(0.832036\pi\)
\(978\) −176760. −0.00590931
\(979\) 6.32818e6 0.211019
\(980\) 0 0
\(981\) 4.05467e7 1.34519
\(982\) −2.86276e7 −0.947339
\(983\) 1.38938e7 0.458604 0.229302 0.973355i \(-0.426356\pi\)
0.229302 + 0.973355i \(0.426356\pi\)
\(984\) 343980. 0.0113252
\(985\) 0 0
\(986\) 3.86415e7 1.26579
\(987\) −4.42128e6 −0.144463
\(988\) −3.20120e6 −0.104333
\(989\) −5.34784e6 −0.173855
\(990\) 0 0
\(991\) 3.31496e7 1.07225 0.536123 0.844140i \(-0.319888\pi\)
0.536123 + 0.844140i \(0.319888\pi\)
\(992\) 9.03049e6 0.291361
\(993\) 5.50336e6 0.177115
\(994\) −5.77548e6 −0.185405
\(995\) 0 0
\(996\) 1.75459e6 0.0560438
\(997\) −9.45871e6 −0.301366 −0.150683 0.988582i \(-0.548147\pi\)
−0.150683 + 0.988582i \(0.548147\pi\)
\(998\) 3.58626e7 1.13976
\(999\) 1.90566e7 0.604132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.a.1.1 1
5.2 odd 4 325.6.b.a.274.1 2
5.3 odd 4 325.6.b.a.274.2 2
5.4 even 2 65.6.a.a.1.1 1
15.14 odd 2 585.6.a.a.1.1 1
20.19 odd 2 1040.6.a.a.1.1 1
65.64 even 2 845.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.a.1.1 1 5.4 even 2
325.6.a.a.1.1 1 1.1 even 1 trivial
325.6.b.a.274.1 2 5.2 odd 4
325.6.b.a.274.2 2 5.3 odd 4
585.6.a.a.1.1 1 15.14 odd 2
845.6.a.a.1.1 1 65.64 even 2
1040.6.a.a.1.1 1 20.19 odd 2