Properties

Label 325.4.o
Level $325$
Weight $4$
Character orbit 325.o
Rep. character $\chi_{325}(74,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $124$
Sturm bound $140$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(140\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(325, [\chi])\).

Total New Old
Modular forms 220 132 88
Cusp forms 196 124 72
Eisenstein series 24 8 16

Trace form

\( 124 q + 250 q^{4} + 30 q^{6} + 592 q^{9} - 14 q^{11} - 440 q^{14} - 994 q^{16} - 150 q^{19} - 172 q^{21} + 184 q^{24} + 388 q^{26} + 306 q^{29} + 280 q^{31} - 1632 q^{34} - 2496 q^{36} - 358 q^{39} + 198 q^{41}+ \cdots + 13032 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(325, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(325, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)