Properties

Label 325.3.w.b
Level 325325
Weight 33
Character orbit 325.w
Analytic conductor 8.8568.856
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(24,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 325=5213 325 = 5^{2} \cdot 13
Weight: k k == 3 3
Character orbit: [χ][\chi] == 325.w (of order 1212, degree 44, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.855608591718.85560859171
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ12+1)q2+(ζ123ζ122++2)q3+(ζ122+2ζ12+1)q4+(2ζ123ζ122++3)q6+(6ζ123+2ζ122++4)q7++(26ζ12352ζ122+26)q99+O(q100) q + ( - \zeta_{12} + 1) q^{2} + (\zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 2) q^{3} + (\zeta_{12}^{2} + 2 \zeta_{12} + 1) q^{4} + (2 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 3) q^{6} + (6 \zeta_{12}^{3} + 2 \zeta_{12}^{2} + \cdots + 4) q^{7}+ \cdots + ( - 26 \zeta_{12}^{3} - 52 \zeta_{12}^{2} + \cdots - 26) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q2+6q3+6q4+10q6+20q76q810q9+4q11+4q12+40q142q16+30q17+2q1810q19+40q21+36q2230q2342q24+208q99+O(q100) 4 q + 4 q^{2} + 6 q^{3} + 6 q^{4} + 10 q^{6} + 20 q^{7} - 6 q^{8} - 10 q^{9} + 4 q^{11} + 4 q^{12} + 40 q^{14} - 2 q^{16} + 30 q^{17} + 2 q^{18} - 10 q^{19} + 40 q^{21} + 36 q^{22} - 30 q^{23} - 42 q^{24}+ \cdots - 208 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/325Z)×\left(\mathbb{Z}/325\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 ζ12\zeta_{12}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
24.1
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
1.86603 + 0.500000i 2.36603 1.36603i −0.232051 0.133975i 0 5.09808 1.36603i 8.46410 2.26795i −5.83013 5.83013i −0.767949 + 1.33013i 0
124.1 0.133975 + 0.500000i 0.633975 + 0.366025i 3.23205 1.86603i 0 −0.0980762 + 0.366025i 1.53590 5.73205i 2.83013 + 2.83013i −4.23205 7.33013i 0
149.1 1.86603 0.500000i 2.36603 + 1.36603i −0.232051 + 0.133975i 0 5.09808 + 1.36603i 8.46410 + 2.26795i −5.83013 + 5.83013i −0.767949 1.33013i 0
249.1 0.133975 0.500000i 0.633975 0.366025i 3.23205 + 1.86603i 0 −0.0980762 0.366025i 1.53590 + 5.73205i 2.83013 2.83013i −4.23205 + 7.33013i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.s odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.3.w.b 4
5.b even 2 1 325.3.w.a 4
5.c odd 4 1 13.3.f.a 4
5.c odd 4 1 325.3.t.a 4
13.f odd 12 1 325.3.w.a 4
15.e even 4 1 117.3.bd.b 4
20.e even 4 1 208.3.bd.d 4
65.f even 4 1 169.3.f.a 4
65.h odd 4 1 169.3.f.b 4
65.k even 4 1 169.3.f.c 4
65.o even 12 1 13.3.f.a 4
65.o even 12 1 169.3.d.a 4
65.q odd 12 1 169.3.d.a 4
65.q odd 12 1 169.3.f.c 4
65.r odd 12 1 169.3.d.c 4
65.r odd 12 1 169.3.f.a 4
65.s odd 12 1 inner 325.3.w.b 4
65.t even 12 1 169.3.d.c 4
65.t even 12 1 169.3.f.b 4
65.t even 12 1 325.3.t.a 4
195.bn odd 12 1 117.3.bd.b 4
260.be odd 12 1 208.3.bd.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.3.f.a 4 5.c odd 4 1
13.3.f.a 4 65.o even 12 1
117.3.bd.b 4 15.e even 4 1
117.3.bd.b 4 195.bn odd 12 1
169.3.d.a 4 65.o even 12 1
169.3.d.a 4 65.q odd 12 1
169.3.d.c 4 65.r odd 12 1
169.3.d.c 4 65.t even 12 1
169.3.f.a 4 65.f even 4 1
169.3.f.a 4 65.r odd 12 1
169.3.f.b 4 65.h odd 4 1
169.3.f.b 4 65.t even 12 1
169.3.f.c 4 65.k even 4 1
169.3.f.c 4 65.q odd 12 1
208.3.bd.d 4 20.e even 4 1
208.3.bd.d 4 260.be odd 12 1
325.3.t.a 4 5.c odd 4 1
325.3.t.a 4 65.t even 12 1
325.3.w.a 4 5.b even 2 1
325.3.w.a 4 13.f odd 12 1
325.3.w.b 4 1.a even 1 1 trivial
325.3.w.b 4 65.s odd 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T244T23+5T222T2+1 T_{2}^{4} - 4T_{2}^{3} + 5T_{2}^{2} - 2T_{2} + 1 acting on S3new(325,[χ])S_{3}^{\mathrm{new}}(325, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T44T3++1 T^{4} - 4 T^{3} + \cdots + 1 Copy content Toggle raw display
33 T46T3++4 T^{4} - 6 T^{3} + \cdots + 4 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T420T3++2704 T^{4} - 20 T^{3} + \cdots + 2704 Copy content Toggle raw display
1111 T44T3++10816 T^{4} - 4 T^{3} + \cdots + 10816 Copy content Toggle raw display
1313 T4169T2+28561 T^{4} - 169 T^{2} + 28561 Copy content Toggle raw display
1717 T430T3++45369 T^{4} - 30 T^{3} + \cdots + 45369 Copy content Toggle raw display
1919 T4+10T3++484 T^{4} + 10 T^{3} + \cdots + 484 Copy content Toggle raw display
2323 T4+30T3++39204 T^{4} + 30 T^{3} + \cdots + 39204 Copy content Toggle raw display
2929 T4+2T3++11449 T^{4} + 2 T^{3} + \cdots + 11449 Copy content Toggle raw display
3131 T4+20T3++2116 T^{4} + 20 T^{3} + \cdots + 2116 Copy content Toggle raw display
3737 T438T3++1868689 T^{4} - 38 T^{3} + \cdots + 1868689 Copy content Toggle raw display
4141 T4100T3++833569 T^{4} - 100 T^{3} + \cdots + 833569 Copy content Toggle raw display
4343 T4+2700T2+7290000 T^{4} + 2700 T^{2} + 7290000 Copy content Toggle raw display
4747 T468T3++484 T^{4} - 68 T^{3} + \cdots + 484 Copy content Toggle raw display
5353 T4+6422T2+1352569 T^{4} + 6422 T^{2} + 1352569 Copy content Toggle raw display
5959 T4164T3++16613776 T^{4} - 164 T^{3} + \cdots + 16613776 Copy content Toggle raw display
6161 T4+124T3++6355441 T^{4} + 124 T^{3} + \cdots + 6355441 Copy content Toggle raw display
6767 T4+170T3++9721924 T^{4} + 170 T^{3} + \cdots + 9721924 Copy content Toggle raw display
7171 T4+86T3++2208196 T^{4} + 86 T^{3} + \cdots + 2208196 Copy content Toggle raw display
7373 T458T3++3463321 T^{4} - 58 T^{3} + \cdots + 3463321 Copy content Toggle raw display
7979 (T220T5192)2 (T^{2} - 20 T - 5192)^{2} Copy content Toggle raw display
8383 T4188T3++11587216 T^{4} - 188 T^{3} + \cdots + 11587216 Copy content Toggle raw display
8989 T4110T3++8702500 T^{4} - 110 T^{3} + \cdots + 8702500 Copy content Toggle raw display
9797 T4+146T3++18028516 T^{4} + 146 T^{3} + \cdots + 18028516 Copy content Toggle raw display
show more
show less