Properties

Label 325.3.g.f.99.1
Level $325$
Weight $3$
Character 325.99
Analytic conductor $8.856$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(99,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.g (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,-6,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{17} + 336 x^{16} - 90 x^{15} + 18 x^{14} - 654 x^{13} + 30550 x^{12} - 9690 x^{11} + \cdots + 46656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 99.1
Root \(-2.80071 - 2.80071i\) of defining polynomial
Character \(\chi\) \(=\) 325.99
Dual form 325.3.g.f.174.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.80071 + 2.80071i) q^{2} -3.72091i q^{3} -11.6880i q^{4} +(10.4212 + 10.4212i) q^{6} +(4.32223 + 4.32223i) q^{7} +(21.5319 + 21.5319i) q^{8} -4.84515 q^{9} +(10.1737 - 10.1737i) q^{11} -43.4900 q^{12} +(-8.97368 + 9.40601i) q^{13} -24.2107 q^{14} -73.8573 q^{16} +4.58160 q^{17} +(13.5699 - 13.5699i) q^{18} +(8.66275 + 8.66275i) q^{19} +(16.0826 - 16.0826i) q^{21} +56.9872i q^{22} +4.10253 q^{23} +(80.1182 - 80.1182i) q^{24} +(-1.21085 - 51.4763i) q^{26} -15.4598i q^{27} +(50.5183 - 50.5183i) q^{28} +21.6657 q^{29} +(18.7114 + 18.7114i) q^{31} +(120.726 - 120.726i) q^{32} +(-37.8553 - 37.8553i) q^{33} +(-12.8317 + 12.8317i) q^{34} +56.6301i q^{36} +(3.49363 + 3.49363i) q^{37} -48.5237 q^{38} +(34.9989 + 33.3902i) q^{39} +(10.3761 + 10.3761i) q^{41} +90.0857i q^{42} +39.1435 q^{43} +(-118.910 - 118.910i) q^{44} +(-11.4900 + 11.4900i) q^{46} +(-12.3768 - 12.3768i) q^{47} +274.816i q^{48} -11.6366i q^{49} -17.0477i q^{51} +(109.937 + 104.884i) q^{52} -102.477i q^{53} +(43.2985 + 43.2985i) q^{54} +186.132i q^{56} +(32.2333 - 32.2333i) q^{57} +(-60.6796 + 60.6796i) q^{58} +(10.2757 - 10.2757i) q^{59} -0.0733554 q^{61} -104.811 q^{62} +(-20.9419 - 20.9419i) q^{63} +380.807i q^{64} +212.044 q^{66} +(6.11609 - 6.11609i) q^{67} -53.5497i q^{68} -15.2651i q^{69} +(-16.3303 - 16.3303i) q^{71} +(-104.325 - 104.325i) q^{72} +(-63.9462 - 63.9462i) q^{73} -19.5693 q^{74} +(101.250 - 101.250i) q^{76} +87.9461 q^{77} +(-191.538 + 4.50547i) q^{78} +128.156 q^{79} -101.131 q^{81} -58.1208 q^{82} +(54.7720 - 54.7720i) q^{83} +(-187.974 - 187.974i) q^{84} +(-109.630 + 109.630i) q^{86} -80.6162i q^{87} +438.117 q^{88} +(74.8403 - 74.8403i) q^{89} +(-79.4413 + 1.86866i) q^{91} -47.9504i q^{92} +(69.6234 - 69.6234i) q^{93} +69.3279 q^{94} +(-449.209 - 449.209i) q^{96} +(-97.6532 + 97.6532i) q^{97} +(32.5907 + 32.5907i) q^{98} +(-49.2930 + 49.2930i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{6} + 20 q^{7} + 18 q^{8} - 72 q^{9} + 6 q^{11} - 120 q^{12} - 18 q^{13} + 24 q^{14} - 128 q^{16} - 16 q^{17} - 58 q^{18} + 20 q^{19} + 90 q^{21} + 28 q^{23} + 28 q^{24} + 278 q^{28} + 40 q^{29}+ \cdots + 410 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.80071 + 2.80071i −1.40036 + 1.40036i −0.601436 + 0.798921i \(0.705405\pi\)
−0.798921 + 0.601436i \(0.794595\pi\)
\(3\) 3.72091i 1.24030i −0.784482 0.620151i \(-0.787071\pi\)
0.784482 0.620151i \(-0.212929\pi\)
\(4\) 11.6880i 2.92200i
\(5\) 0 0
\(6\) 10.4212 + 10.4212i 1.73687 + 1.73687i
\(7\) 4.32223 + 4.32223i 0.617462 + 0.617462i 0.944880 0.327418i \(-0.106178\pi\)
−0.327418 + 0.944880i \(0.606178\pi\)
\(8\) 21.5319 + 21.5319i 2.69149 + 2.69149i
\(9\) −4.84515 −0.538350
\(10\) 0 0
\(11\) 10.1737 10.1737i 0.924880 0.924880i −0.0724888 0.997369i \(-0.523094\pi\)
0.997369 + 0.0724888i \(0.0230942\pi\)
\(12\) −43.4900 −3.62416
\(13\) −8.97368 + 9.40601i −0.690283 + 0.723540i
\(14\) −24.2107 −1.72933
\(15\) 0 0
\(16\) −73.8573 −4.61608
\(17\) 4.58160 0.269506 0.134753 0.990879i \(-0.456976\pi\)
0.134753 + 0.990879i \(0.456976\pi\)
\(18\) 13.5699 13.5699i 0.753882 0.753882i
\(19\) 8.66275 + 8.66275i 0.455934 + 0.455934i 0.897318 0.441384i \(-0.145512\pi\)
−0.441384 + 0.897318i \(0.645512\pi\)
\(20\) 0 0
\(21\) 16.0826 16.0826i 0.765840 0.765840i
\(22\) 56.9872i 2.59033i
\(23\) 4.10253 0.178371 0.0891855 0.996015i \(-0.471574\pi\)
0.0891855 + 0.996015i \(0.471574\pi\)
\(24\) 80.1182 80.1182i 3.33826 3.33826i
\(25\) 0 0
\(26\) −1.21085 51.4763i −0.0465712 1.97986i
\(27\) 15.4598i 0.572586i
\(28\) 50.5183 50.5183i 1.80422 1.80422i
\(29\) 21.6657 0.747095 0.373547 0.927611i \(-0.378141\pi\)
0.373547 + 0.927611i \(0.378141\pi\)
\(30\) 0 0
\(31\) 18.7114 + 18.7114i 0.603594 + 0.603594i 0.941264 0.337671i \(-0.109639\pi\)
−0.337671 + 0.941264i \(0.609639\pi\)
\(32\) 120.726 120.726i 3.77268 3.77268i
\(33\) −37.8553 37.8553i −1.14713 1.14713i
\(34\) −12.8317 + 12.8317i −0.377404 + 0.377404i
\(35\) 0 0
\(36\) 56.6301i 1.57306i
\(37\) 3.49363 + 3.49363i 0.0944225 + 0.0944225i 0.752740 0.658318i \(-0.228732\pi\)
−0.658318 + 0.752740i \(0.728732\pi\)
\(38\) −48.5237 −1.27694
\(39\) 34.9989 + 33.3902i 0.897408 + 0.856159i
\(40\) 0 0
\(41\) 10.3761 + 10.3761i 0.253075 + 0.253075i 0.822230 0.569155i \(-0.192730\pi\)
−0.569155 + 0.822230i \(0.692730\pi\)
\(42\) 90.0857i 2.14490i
\(43\) 39.1435 0.910313 0.455157 0.890411i \(-0.349583\pi\)
0.455157 + 0.890411i \(0.349583\pi\)
\(44\) −118.910 118.910i −2.70250 2.70250i
\(45\) 0 0
\(46\) −11.4900 + 11.4900i −0.249783 + 0.249783i
\(47\) −12.3768 12.3768i −0.263337 0.263337i 0.563071 0.826408i \(-0.309620\pi\)
−0.826408 + 0.563071i \(0.809620\pi\)
\(48\) 274.816i 5.72534i
\(49\) 11.6366i 0.237481i
\(50\) 0 0
\(51\) 17.0477i 0.334269i
\(52\) 109.937 + 104.884i 2.11418 + 2.01701i
\(53\) 102.477i 1.93353i −0.255669 0.966764i \(-0.582296\pi\)
0.255669 0.966764i \(-0.417704\pi\)
\(54\) 43.2985 + 43.2985i 0.801825 + 0.801825i
\(55\) 0 0
\(56\) 186.132i 3.32378i
\(57\) 32.2333 32.2333i 0.565496 0.565496i
\(58\) −60.6796 + 60.6796i −1.04620 + 1.04620i
\(59\) 10.2757 10.2757i 0.174165 0.174165i −0.614641 0.788807i \(-0.710699\pi\)
0.788807 + 0.614641i \(0.210699\pi\)
\(60\) 0 0
\(61\) −0.0733554 −0.00120255 −0.000601274 1.00000i \(-0.500191\pi\)
−0.000601274 1.00000i \(0.500191\pi\)
\(62\) −104.811 −1.69049
\(63\) −20.9419 20.9419i −0.332411 0.332411i
\(64\) 380.807i 5.95011i
\(65\) 0 0
\(66\) 212.044 3.21279
\(67\) 6.11609 6.11609i 0.0912849 0.0912849i −0.659990 0.751275i \(-0.729439\pi\)
0.751275 + 0.659990i \(0.229439\pi\)
\(68\) 53.5497i 0.787496i
\(69\) 15.2651i 0.221234i
\(70\) 0 0
\(71\) −16.3303 16.3303i −0.230004 0.230004i 0.582690 0.812694i \(-0.302000\pi\)
−0.812694 + 0.582690i \(0.802000\pi\)
\(72\) −104.325 104.325i −1.44896 1.44896i
\(73\) −63.9462 63.9462i −0.875975 0.875975i 0.117140 0.993115i \(-0.462627\pi\)
−0.993115 + 0.117140i \(0.962627\pi\)
\(74\) −19.5693 −0.264451
\(75\) 0 0
\(76\) 101.250 101.250i 1.33224 1.33224i
\(77\) 87.9461 1.14216
\(78\) −191.538 + 4.50547i −2.45562 + 0.0577624i
\(79\) 128.156 1.62223 0.811114 0.584888i \(-0.198862\pi\)
0.811114 + 0.584888i \(0.198862\pi\)
\(80\) 0 0
\(81\) −101.131 −1.24853
\(82\) −58.1208 −0.708790
\(83\) 54.7720 54.7720i 0.659904 0.659904i −0.295453 0.955357i \(-0.595471\pi\)
0.955357 + 0.295453i \(0.0954707\pi\)
\(84\) −187.974 187.974i −2.23778 2.23778i
\(85\) 0 0
\(86\) −109.630 + 109.630i −1.27476 + 1.27476i
\(87\) 80.6162i 0.926623i
\(88\) 438.117 4.97861
\(89\) 74.8403 74.8403i 0.840902 0.840902i −0.148074 0.988976i \(-0.547307\pi\)
0.988976 + 0.148074i \(0.0473075\pi\)
\(90\) 0 0
\(91\) −79.4413 + 1.86866i −0.872982 + 0.0205347i
\(92\) 47.9504i 0.521200i
\(93\) 69.6234 69.6234i 0.748639 0.748639i
\(94\) 69.3279 0.737531
\(95\) 0 0
\(96\) −449.209 449.209i −4.67926 4.67926i
\(97\) −97.6532 + 97.6532i −1.00673 + 1.00673i −0.00675648 + 0.999977i \(0.502151\pi\)
−0.999977 + 0.00675648i \(0.997849\pi\)
\(98\) 32.5907 + 32.5907i 0.332558 + 0.332558i
\(99\) −49.2930 + 49.2930i −0.497909 + 0.497909i
\(100\) 0 0
\(101\) 92.2491i 0.913357i −0.889632 0.456679i \(-0.849039\pi\)
0.889632 0.456679i \(-0.150961\pi\)
\(102\) 47.7457 + 47.7457i 0.468095 + 0.468095i
\(103\) 8.26839 0.0802757 0.0401378 0.999194i \(-0.487220\pi\)
0.0401378 + 0.999194i \(0.487220\pi\)
\(104\) −395.750 + 9.30903i −3.80528 + 0.0895099i
\(105\) 0 0
\(106\) 287.009 + 287.009i 2.70763 + 2.70763i
\(107\) 33.2484i 0.310732i 0.987857 + 0.155366i \(0.0496557\pi\)
−0.987857 + 0.155366i \(0.950344\pi\)
\(108\) −180.694 −1.67310
\(109\) 48.6760 + 48.6760i 0.446569 + 0.446569i 0.894212 0.447643i \(-0.147736\pi\)
−0.447643 + 0.894212i \(0.647736\pi\)
\(110\) 0 0
\(111\) 12.9995 12.9995i 0.117112 0.117112i
\(112\) −319.229 319.229i −2.85026 2.85026i
\(113\) 83.3899i 0.737964i 0.929437 + 0.368982i \(0.120294\pi\)
−0.929437 + 0.368982i \(0.879706\pi\)
\(114\) 180.552i 1.58379i
\(115\) 0 0
\(116\) 253.229i 2.18301i
\(117\) 43.4788 45.5735i 0.371614 0.389517i
\(118\) 57.5589i 0.487787i
\(119\) 19.8027 + 19.8027i 0.166410 + 0.166410i
\(120\) 0 0
\(121\) 86.0077i 0.710807i
\(122\) 0.205448 0.205448i 0.00168400 0.00168400i
\(123\) 38.6084 38.6084i 0.313889 0.313889i
\(124\) 218.699 218.699i 1.76370 1.76370i
\(125\) 0 0
\(126\) 117.304 0.930987
\(127\) −25.9910 −0.204653 −0.102327 0.994751i \(-0.532629\pi\)
−0.102327 + 0.994751i \(0.532629\pi\)
\(128\) −583.629 583.629i −4.55960 4.55960i
\(129\) 145.649i 1.12906i
\(130\) 0 0
\(131\) 8.68740 0.0663160 0.0331580 0.999450i \(-0.489444\pi\)
0.0331580 + 0.999450i \(0.489444\pi\)
\(132\) −442.453 + 442.453i −3.35192 + 3.35192i
\(133\) 74.8848i 0.563044i
\(134\) 34.2588i 0.255663i
\(135\) 0 0
\(136\) 98.6504 + 98.6504i 0.725371 + 0.725371i
\(137\) 134.508 + 134.508i 0.981808 + 0.981808i 0.999837 0.0180299i \(-0.00573940\pi\)
−0.0180299 + 0.999837i \(0.505739\pi\)
\(138\) 42.7533 + 42.7533i 0.309807 + 0.309807i
\(139\) −208.063 −1.49686 −0.748429 0.663215i \(-0.769192\pi\)
−0.748429 + 0.663215i \(0.769192\pi\)
\(140\) 0 0
\(141\) −46.0530 + 46.0530i −0.326617 + 0.326617i
\(142\) 91.4731 0.644177
\(143\) 4.39846 + 186.989i 0.0307584 + 1.30762i
\(144\) 357.850 2.48507
\(145\) 0 0
\(146\) 358.190 2.45336
\(147\) −43.2986 −0.294548
\(148\) 40.8336 40.8336i 0.275903 0.275903i
\(149\) 49.5038 + 49.5038i 0.332240 + 0.332240i 0.853437 0.521197i \(-0.174514\pi\)
−0.521197 + 0.853437i \(0.674514\pi\)
\(150\) 0 0
\(151\) −59.0365 + 59.0365i −0.390970 + 0.390970i −0.875033 0.484063i \(-0.839161\pi\)
0.484063 + 0.875033i \(0.339161\pi\)
\(152\) 373.051i 2.45428i
\(153\) −22.1985 −0.145088
\(154\) −246.312 + 246.312i −1.59943 + 1.59943i
\(155\) 0 0
\(156\) 390.265 409.067i 2.50170 2.62223i
\(157\) 151.047i 0.962083i 0.876698 + 0.481041i \(0.159741\pi\)
−0.876698 + 0.481041i \(0.840259\pi\)
\(158\) −358.928 + 358.928i −2.27170 + 2.27170i
\(159\) −381.307 −2.39816
\(160\) 0 0
\(161\) 17.7321 + 17.7321i 0.110137 + 0.110137i
\(162\) 283.239 283.239i 1.74839 1.74839i
\(163\) −72.2498 72.2498i −0.443250 0.443250i 0.449853 0.893103i \(-0.351476\pi\)
−0.893103 + 0.449853i \(0.851476\pi\)
\(164\) 121.275 121.275i 0.739484 0.739484i
\(165\) 0 0
\(166\) 306.802i 1.84820i
\(167\) −178.495 178.495i −1.06883 1.06883i −0.997449 0.0713849i \(-0.977258\pi\)
−0.0713849 0.997449i \(-0.522742\pi\)
\(168\) 692.579 4.12249
\(169\) −7.94622 168.813i −0.0470190 0.998894i
\(170\) 0 0
\(171\) −41.9723 41.9723i −0.245452 0.245452i
\(172\) 457.509i 2.65994i
\(173\) 165.934 0.959155 0.479577 0.877500i \(-0.340790\pi\)
0.479577 + 0.877500i \(0.340790\pi\)
\(174\) 225.783 + 225.783i 1.29760 + 1.29760i
\(175\) 0 0
\(176\) −751.401 + 751.401i −4.26933 + 4.26933i
\(177\) −38.2351 38.2351i −0.216018 0.216018i
\(178\) 419.212i 2.35513i
\(179\) 147.688i 0.825073i 0.910941 + 0.412537i \(0.135357\pi\)
−0.910941 + 0.412537i \(0.864643\pi\)
\(180\) 0 0
\(181\) 107.361i 0.593154i −0.955009 0.296577i \(-0.904155\pi\)
0.955009 0.296577i \(-0.0958451\pi\)
\(182\) 217.259 227.726i 1.19373 1.25124i
\(183\) 0.272949i 0.00149152i
\(184\) 88.3353 + 88.3353i 0.480083 + 0.480083i
\(185\) 0 0
\(186\) 389.990i 2.09672i
\(187\) 46.6117 46.6117i 0.249261 0.249261i
\(188\) −144.660 + 144.660i −0.769470 + 0.769470i
\(189\) 66.8210 66.8210i 0.353550 0.353550i
\(190\) 0 0
\(191\) −60.7495 −0.318060 −0.159030 0.987274i \(-0.550837\pi\)
−0.159030 + 0.987274i \(0.550837\pi\)
\(192\) 1416.95 7.37994
\(193\) 120.907 + 120.907i 0.626460 + 0.626460i 0.947176 0.320715i \(-0.103923\pi\)
−0.320715 + 0.947176i \(0.603923\pi\)
\(194\) 546.997i 2.81957i
\(195\) 0 0
\(196\) −136.008 −0.693920
\(197\) 182.704 182.704i 0.927432 0.927432i −0.0701072 0.997539i \(-0.522334\pi\)
0.997539 + 0.0701072i \(0.0223341\pi\)
\(198\) 276.111i 1.39450i
\(199\) 245.127i 1.23179i 0.787827 + 0.615897i \(0.211206\pi\)
−0.787827 + 0.615897i \(0.788794\pi\)
\(200\) 0 0
\(201\) −22.7574 22.7574i −0.113221 0.113221i
\(202\) 258.363 + 258.363i 1.27903 + 1.27903i
\(203\) 93.6444 + 93.6444i 0.461303 + 0.461303i
\(204\) −199.253 −0.976733
\(205\) 0 0
\(206\) −23.1574 + 23.1574i −0.112415 + 0.112415i
\(207\) −19.8774 −0.0960260
\(208\) 662.772 694.703i 3.18640 3.33992i
\(209\) 176.264 0.843369
\(210\) 0 0
\(211\) −270.312 −1.28110 −0.640550 0.767916i \(-0.721294\pi\)
−0.640550 + 0.767916i \(0.721294\pi\)
\(212\) −1197.75 −5.64977
\(213\) −60.7636 + 60.7636i −0.285275 + 0.285275i
\(214\) −93.1191 93.1191i −0.435136 0.435136i
\(215\) 0 0
\(216\) 332.879 332.879i 1.54111 1.54111i
\(217\) 161.750i 0.745393i
\(218\) −272.655 −1.25071
\(219\) −237.938 + 237.938i −1.08647 + 1.08647i
\(220\) 0 0
\(221\) −41.1138 + 43.0946i −0.186035 + 0.194998i
\(222\) 72.8157i 0.327999i
\(223\) 268.392 268.392i 1.20355 1.20355i 0.230475 0.973078i \(-0.425972\pi\)
0.973078 0.230475i \(-0.0740279\pi\)
\(224\) 1043.61 4.65897
\(225\) 0 0
\(226\) −233.551 233.551i −1.03341 1.03341i
\(227\) −17.2819 + 17.2819i −0.0761315 + 0.0761315i −0.744147 0.668016i \(-0.767144\pi\)
0.668016 + 0.744147i \(0.267144\pi\)
\(228\) −376.742 376.742i −1.65238 1.65238i
\(229\) −15.3900 + 15.3900i −0.0672054 + 0.0672054i −0.739911 0.672705i \(-0.765132\pi\)
0.672705 + 0.739911i \(0.265132\pi\)
\(230\) 0 0
\(231\) 327.239i 1.41662i
\(232\) 466.504 + 466.504i 2.01079 + 2.01079i
\(233\) −419.048 −1.79849 −0.899245 0.437445i \(-0.855883\pi\)
−0.899245 + 0.437445i \(0.855883\pi\)
\(234\) 5.86676 + 249.410i 0.0250716 + 1.06586i
\(235\) 0 0
\(236\) −120.103 120.103i −0.508911 0.508911i
\(237\) 476.856i 2.01205i
\(238\) −110.924 −0.466066
\(239\) 210.184 + 210.184i 0.879431 + 0.879431i 0.993476 0.114045i \(-0.0363807\pi\)
−0.114045 + 0.993476i \(0.536381\pi\)
\(240\) 0 0
\(241\) −149.026 + 149.026i −0.618364 + 0.618364i −0.945112 0.326747i \(-0.894047\pi\)
0.326747 + 0.945112i \(0.394047\pi\)
\(242\) 240.883 + 240.883i 0.995384 + 0.995384i
\(243\) 237.160i 0.975968i
\(244\) 0.857378i 0.00351384i
\(245\) 0 0
\(246\) 216.262i 0.879114i
\(247\) −159.219 + 3.74522i −0.644610 + 0.0151628i
\(248\) 805.784i 3.24913i
\(249\) −203.802 203.802i −0.818480 0.818480i
\(250\) 0 0
\(251\) 323.149i 1.28745i 0.765258 + 0.643724i \(0.222611\pi\)
−0.765258 + 0.643724i \(0.777389\pi\)
\(252\) −244.769 + 244.769i −0.971304 + 0.971304i
\(253\) 41.7379 41.7379i 0.164972 0.164972i
\(254\) 72.7933 72.7933i 0.286588 0.286588i
\(255\) 0 0
\(256\) 1745.93 6.82003
\(257\) −84.1773 −0.327538 −0.163769 0.986499i \(-0.552365\pi\)
−0.163769 + 0.986499i \(0.552365\pi\)
\(258\) 407.922 + 407.922i 1.58109 + 1.58109i
\(259\) 30.2006i 0.116605i
\(260\) 0 0
\(261\) −104.974 −0.402198
\(262\) −24.3309 + 24.3309i −0.0928661 + 0.0928661i
\(263\) 173.935i 0.661351i 0.943745 + 0.330675i \(0.107277\pi\)
−0.943745 + 0.330675i \(0.892723\pi\)
\(264\) 1630.19i 6.17498i
\(265\) 0 0
\(266\) −209.731 209.731i −0.788463 0.788463i
\(267\) −278.474 278.474i −1.04297 1.04297i
\(268\) −71.4848 71.4848i −0.266734 0.266734i
\(269\) 305.410 1.13535 0.567676 0.823252i \(-0.307843\pi\)
0.567676 + 0.823252i \(0.307843\pi\)
\(270\) 0 0
\(271\) −295.817 + 295.817i −1.09158 + 1.09158i −0.0962150 + 0.995361i \(0.530674\pi\)
−0.995361 + 0.0962150i \(0.969326\pi\)
\(272\) −338.385 −1.24406
\(273\) 6.95311 + 295.594i 0.0254693 + 1.08276i
\(274\) −753.435 −2.74976
\(275\) 0 0
\(276\) −178.419 −0.646446
\(277\) 205.098 0.740426 0.370213 0.928947i \(-0.379285\pi\)
0.370213 + 0.928947i \(0.379285\pi\)
\(278\) 582.726 582.726i 2.09614 2.09614i
\(279\) −90.6595 90.6595i −0.324945 0.324945i
\(280\) 0 0
\(281\) 97.1896 97.1896i 0.345870 0.345870i −0.512698 0.858569i \(-0.671354\pi\)
0.858569 + 0.512698i \(0.171354\pi\)
\(282\) 257.963i 0.914762i
\(283\) −251.591 −0.889014 −0.444507 0.895775i \(-0.646621\pi\)
−0.444507 + 0.895775i \(0.646621\pi\)
\(284\) −190.869 + 190.869i −0.672073 + 0.672073i
\(285\) 0 0
\(286\) −536.022 511.384i −1.87420 1.78806i
\(287\) 89.6955i 0.312528i
\(288\) −584.934 + 584.934i −2.03102 + 2.03102i
\(289\) −268.009 −0.927367
\(290\) 0 0
\(291\) 363.358 + 363.358i 1.24865 + 1.24865i
\(292\) −747.403 + 747.403i −2.55960 + 2.55960i
\(293\) 253.522 + 253.522i 0.865262 + 0.865262i 0.991943 0.126682i \(-0.0404327\pi\)
−0.126682 + 0.991943i \(0.540433\pi\)
\(294\) 121.267 121.267i 0.412473 0.412473i
\(295\) 0 0
\(296\) 150.449i 0.508274i
\(297\) −157.283 157.283i −0.529573 0.529573i
\(298\) −277.292 −0.930510
\(299\) −36.8148 + 38.5885i −0.123126 + 0.129058i
\(300\) 0 0
\(301\) 169.187 + 169.187i 0.562084 + 0.562084i
\(302\) 330.689i 1.09500i
\(303\) −343.250 −1.13284
\(304\) −639.807 639.807i −2.10463 2.10463i
\(305\) 0 0
\(306\) 62.1717 62.1717i 0.203176 0.203176i
\(307\) 139.751 + 139.751i 0.455216 + 0.455216i 0.897081 0.441865i \(-0.145683\pi\)
−0.441865 + 0.897081i \(0.645683\pi\)
\(308\) 1027.91i 3.33738i
\(309\) 30.7659i 0.0995661i
\(310\) 0 0
\(311\) 458.676i 1.47484i −0.675434 0.737421i \(-0.736043\pi\)
0.675434 0.737421i \(-0.263957\pi\)
\(312\) 34.6380 + 1472.55i 0.111019 + 4.71970i
\(313\) 379.531i 1.21256i −0.795251 0.606280i \(-0.792661\pi\)
0.795251 0.606280i \(-0.207339\pi\)
\(314\) −423.039 423.039i −1.34726 1.34726i
\(315\) 0 0
\(316\) 1497.89i 4.74015i
\(317\) −88.5600 + 88.5600i −0.279369 + 0.279369i −0.832857 0.553488i \(-0.813296\pi\)
0.553488 + 0.832857i \(0.313296\pi\)
\(318\) 1067.93 1067.93i 3.35828 3.35828i
\(319\) 220.420 220.420i 0.690973 0.690973i
\(320\) 0 0
\(321\) 123.714 0.385402
\(322\) −99.3251 −0.308463
\(323\) 39.6892 + 39.6892i 0.122877 + 0.122877i
\(324\) 1182.02i 3.64820i
\(325\) 0 0
\(326\) 404.702 1.24142
\(327\) 181.119 181.119i 0.553881 0.553881i
\(328\) 446.832i 1.36229i
\(329\) 106.991i 0.325201i
\(330\) 0 0
\(331\) 168.982 + 168.982i 0.510521 + 0.510521i 0.914686 0.404165i \(-0.132438\pi\)
−0.404165 + 0.914686i \(0.632438\pi\)
\(332\) −640.175 640.175i −1.92824 1.92824i
\(333\) −16.9272 16.9272i −0.0508324 0.0508324i
\(334\) 999.828 2.99350
\(335\) 0 0
\(336\) −1187.82 + 1187.82i −3.53518 + 3.53518i
\(337\) 530.169 1.57320 0.786601 0.617462i \(-0.211839\pi\)
0.786601 + 0.617462i \(0.211839\pi\)
\(338\) 495.052 + 450.542i 1.46465 + 1.33296i
\(339\) 310.286 0.915298
\(340\) 0 0
\(341\) 380.728 1.11650
\(342\) 235.105 0.687441
\(343\) 262.086 262.086i 0.764098 0.764098i
\(344\) 842.833 + 842.833i 2.45010 + 2.45010i
\(345\) 0 0
\(346\) −464.733 + 464.733i −1.34316 + 1.34316i
\(347\) 318.306i 0.917308i 0.888615 + 0.458654i \(0.151668\pi\)
−0.888615 + 0.458654i \(0.848332\pi\)
\(348\) −942.242 −2.70759
\(349\) 155.842 155.842i 0.446539 0.446539i −0.447663 0.894202i \(-0.647744\pi\)
0.894202 + 0.447663i \(0.147744\pi\)
\(350\) 0 0
\(351\) 145.415 + 138.731i 0.414288 + 0.395246i
\(352\) 2456.45i 6.97855i
\(353\) 128.784 128.784i 0.364827 0.364827i −0.500759 0.865587i \(-0.666946\pi\)
0.865587 + 0.500759i \(0.166946\pi\)
\(354\) 214.171 0.605003
\(355\) 0 0
\(356\) −874.733 874.733i −2.45712 2.45712i
\(357\) 73.6841 73.6841i 0.206398 0.206398i
\(358\) −413.632 413.632i −1.15540 1.15540i
\(359\) −381.022 + 381.022i −1.06134 + 1.06134i −0.0633515 + 0.997991i \(0.520179\pi\)
−0.997991 + 0.0633515i \(0.979821\pi\)
\(360\) 0 0
\(361\) 210.914i 0.584248i
\(362\) 300.687 + 300.687i 0.830627 + 0.830627i
\(363\) −320.027 −0.881616
\(364\) 21.8409 + 928.510i 0.0600025 + 2.55085i
\(365\) 0 0
\(366\) −0.764451 0.764451i −0.00208866 0.00208866i
\(367\) 393.203i 1.07140i 0.844409 + 0.535699i \(0.179952\pi\)
−0.844409 + 0.535699i \(0.820048\pi\)
\(368\) −303.002 −0.823375
\(369\) −50.2736 50.2736i −0.136243 0.136243i
\(370\) 0 0
\(371\) 442.930 442.930i 1.19388 1.19388i
\(372\) −813.758 813.758i −2.18752 2.18752i
\(373\) 346.362i 0.928586i 0.885682 + 0.464293i \(0.153691\pi\)
−0.885682 + 0.464293i \(0.846309\pi\)
\(374\) 261.092i 0.698108i
\(375\) 0 0
\(376\) 532.993i 1.41754i
\(377\) −194.421 + 203.788i −0.515707 + 0.540553i
\(378\) 374.293i 0.990193i
\(379\) −243.538 243.538i −0.642581 0.642581i 0.308608 0.951189i \(-0.400137\pi\)
−0.951189 + 0.308608i \(0.900137\pi\)
\(380\) 0 0
\(381\) 96.7100i 0.253832i
\(382\) 170.142 170.142i 0.445398 0.445398i
\(383\) −213.304 + 213.304i −0.556929 + 0.556929i −0.928432 0.371502i \(-0.878843\pi\)
0.371502 + 0.928432i \(0.378843\pi\)
\(384\) −2171.63 + 2171.63i −5.65529 + 5.65529i
\(385\) 0 0
\(386\) −677.251 −1.75454
\(387\) −189.656 −0.490067
\(388\) 1141.37 + 1141.37i 2.94168 + 2.94168i
\(389\) 183.135i 0.470783i −0.971901 0.235392i \(-0.924363\pi\)
0.971901 0.235392i \(-0.0756372\pi\)
\(390\) 0 0
\(391\) 18.7962 0.0480720
\(392\) 250.557 250.557i 0.639177 0.639177i
\(393\) 32.3250i 0.0822519i
\(394\) 1023.40i 2.59747i
\(395\) 0 0
\(396\) 576.137 + 576.137i 1.45489 + 1.45489i
\(397\) 221.860 + 221.860i 0.558840 + 0.558840i 0.928977 0.370137i \(-0.120689\pi\)
−0.370137 + 0.928977i \(0.620689\pi\)
\(398\) −686.530 686.530i −1.72495 1.72495i
\(399\) 278.640 0.698345
\(400\) 0 0
\(401\) −247.392 + 247.392i −0.616937 + 0.616937i −0.944745 0.327807i \(-0.893690\pi\)
0.327807 + 0.944745i \(0.393690\pi\)
\(402\) 127.474 0.317099
\(403\) −343.910 + 8.08963i −0.853374 + 0.0200735i
\(404\) −1078.21 −2.66883
\(405\) 0 0
\(406\) −524.543 −1.29198
\(407\) 71.0863 0.174659
\(408\) 367.069 367.069i 0.899679 0.899679i
\(409\) −330.958 330.958i −0.809189 0.809189i 0.175322 0.984511i \(-0.443903\pi\)
−0.984511 + 0.175322i \(0.943903\pi\)
\(410\) 0 0
\(411\) 500.490 500.490i 1.21774 1.21774i
\(412\) 96.6410i 0.234566i
\(413\) 88.8284 0.215081
\(414\) 55.6709 55.6709i 0.134471 0.134471i
\(415\) 0 0
\(416\) 52.1942 + 2218.90i 0.125467 + 5.33390i
\(417\) 774.184i 1.85656i
\(418\) −493.665 + 493.665i −1.18102 + 1.18102i
\(419\) −27.5079 −0.0656513 −0.0328256 0.999461i \(-0.510451\pi\)
−0.0328256 + 0.999461i \(0.510451\pi\)
\(420\) 0 0
\(421\) 371.548 + 371.548i 0.882537 + 0.882537i 0.993792 0.111255i \(-0.0354871\pi\)
−0.111255 + 0.993792i \(0.535487\pi\)
\(422\) 757.067 757.067i 1.79400 1.79400i
\(423\) 59.9676 + 59.9676i 0.141767 + 0.141767i
\(424\) 2206.52 2206.52i 5.20407 5.20407i
\(425\) 0 0
\(426\) 340.363i 0.798974i
\(427\) −0.317059 0.317059i −0.000742528 0.000742528i
\(428\) 388.607 0.907960
\(429\) 695.769 16.3663i 1.62184 0.0381498i
\(430\) 0 0
\(431\) 11.9557 + 11.9557i 0.0277393 + 0.0277393i 0.720840 0.693101i \(-0.243756\pi\)
−0.693101 + 0.720840i \(0.743756\pi\)
\(432\) 1141.82i 2.64310i
\(433\) 213.638 0.493390 0.246695 0.969093i \(-0.420655\pi\)
0.246695 + 0.969093i \(0.420655\pi\)
\(434\) −453.016 453.016i −1.04382 1.04382i
\(435\) 0 0
\(436\) 568.926 568.926i 1.30488 1.30488i
\(437\) 35.5392 + 35.5392i 0.0813254 + 0.0813254i
\(438\) 1332.79i 3.04290i
\(439\) 715.658i 1.63020i 0.579320 + 0.815101i \(0.303318\pi\)
−0.579320 + 0.815101i \(0.696682\pi\)
\(440\) 0 0
\(441\) 56.3809i 0.127848i
\(442\) −5.54764 235.844i −0.0125512 0.533583i
\(443\) 267.997i 0.604960i −0.953156 0.302480i \(-0.902185\pi\)
0.953156 0.302480i \(-0.0978145\pi\)
\(444\) −151.938 151.938i −0.342203 0.342203i
\(445\) 0 0
\(446\) 1503.38i 3.37081i
\(447\) 184.199 184.199i 0.412078 0.412078i
\(448\) −1645.94 + 1645.94i −3.67397 + 3.67397i
\(449\) 525.677 525.677i 1.17077 1.17077i 0.188746 0.982026i \(-0.439558\pi\)
0.982026 0.188746i \(-0.0604424\pi\)
\(450\) 0 0
\(451\) 211.126 0.468128
\(452\) 974.661 2.15633
\(453\) 219.669 + 219.669i 0.484921 + 0.484921i
\(454\) 96.8031i 0.213223i
\(455\) 0 0
\(456\) 1388.09 3.04405
\(457\) −380.148 + 380.148i −0.831833 + 0.831833i −0.987767 0.155934i \(-0.950161\pi\)
0.155934 + 0.987767i \(0.450161\pi\)
\(458\) 86.2062i 0.188223i
\(459\) 70.8306i 0.154315i
\(460\) 0 0
\(461\) 607.424 + 607.424i 1.31762 + 1.31762i 0.915652 + 0.401971i \(0.131675\pi\)
0.401971 + 0.915652i \(0.368325\pi\)
\(462\) 916.504 + 916.504i 1.98377 + 1.98377i
\(463\) −553.304 553.304i −1.19504 1.19504i −0.975633 0.219407i \(-0.929588\pi\)
−0.219407 0.975633i \(-0.570412\pi\)
\(464\) −1600.17 −3.44865
\(465\) 0 0
\(466\) 1173.63 1173.63i 2.51853 2.51853i
\(467\) −616.765 −1.32070 −0.660348 0.750960i \(-0.729591\pi\)
−0.660348 + 0.750960i \(0.729591\pi\)
\(468\) −532.663 508.180i −1.13817 1.08586i
\(469\) 52.8703 0.112730
\(470\) 0 0
\(471\) 562.032 1.19327
\(472\) 442.513 0.937527
\(473\) 398.233 398.233i 0.841931 0.841931i
\(474\) 1335.54 + 1335.54i 2.81759 + 2.81759i
\(475\) 0 0
\(476\) 231.454 231.454i 0.486249 0.486249i
\(477\) 496.516i 1.04091i
\(478\) −1177.33 −2.46303
\(479\) −106.901 + 106.901i −0.223176 + 0.223176i −0.809834 0.586659i \(-0.800443\pi\)
0.586659 + 0.809834i \(0.300443\pi\)
\(480\) 0 0
\(481\) −64.2119 + 1.51043i −0.133497 + 0.00314018i
\(482\) 834.757i 1.73186i
\(483\) 65.9795 65.9795i 0.136604 0.136604i
\(484\) −1005.26 −2.07698
\(485\) 0 0
\(486\) −664.218 664.218i −1.36670 1.36670i
\(487\) 234.252 234.252i 0.481010 0.481010i −0.424444 0.905454i \(-0.639530\pi\)
0.905454 + 0.424444i \(0.139530\pi\)
\(488\) −1.57948 1.57948i −0.00323664 0.00323664i
\(489\) −268.835 + 268.835i −0.549764 + 0.549764i
\(490\) 0 0
\(491\) 652.284i 1.32848i −0.747519 0.664240i \(-0.768755\pi\)
0.747519 0.664240i \(-0.231245\pi\)
\(492\) −451.254 451.254i −0.917184 0.917184i
\(493\) 99.2637 0.201346
\(494\) 435.436 456.415i 0.881450 0.923917i
\(495\) 0 0
\(496\) −1381.97 1381.97i −2.78624 2.78624i
\(497\) 141.167i 0.284038i
\(498\) 1141.58 2.29233
\(499\) −248.398 248.398i −0.497791 0.497791i 0.412959 0.910750i \(-0.364495\pi\)
−0.910750 + 0.412959i \(0.864495\pi\)
\(500\) 0 0
\(501\) −664.164 + 664.164i −1.32568 + 1.32568i
\(502\) −905.049 905.049i −1.80289 1.80289i
\(503\) 185.135i 0.368062i −0.982920 0.184031i \(-0.941085\pi\)
0.982920 0.184031i \(-0.0589146\pi\)
\(504\) 901.836i 1.78936i
\(505\) 0 0
\(506\) 233.792i 0.462039i
\(507\) −628.138 + 29.5671i −1.23893 + 0.0583178i
\(508\) 303.782i 0.597997i
\(509\) 234.707 + 234.707i 0.461114 + 0.461114i 0.899020 0.437907i \(-0.144280\pi\)
−0.437907 + 0.899020i \(0.644280\pi\)
\(510\) 0 0
\(511\) 552.781i 1.08176i
\(512\) −2555.33 + 2555.33i −4.99088 + 4.99088i
\(513\) 133.924 133.924i 0.261061 0.261061i
\(514\) 235.756 235.756i 0.458670 0.458670i
\(515\) 0 0
\(516\) −1702.35 −3.29912
\(517\) −251.836 −0.487110
\(518\) −84.5833 84.5833i −0.163288 0.163288i
\(519\) 617.424i 1.18964i
\(520\) 0 0
\(521\) −749.963 −1.43947 −0.719735 0.694249i \(-0.755737\pi\)
−0.719735 + 0.694249i \(0.755737\pi\)
\(522\) 294.001 294.001i 0.563221 0.563221i
\(523\) 772.536i 1.47712i −0.674185 0.738562i \(-0.735505\pi\)
0.674185 0.738562i \(-0.264495\pi\)
\(524\) 101.538i 0.193775i
\(525\) 0 0
\(526\) −487.143 487.143i −0.926127 0.926127i
\(527\) 85.7281 + 85.7281i 0.162672 + 0.162672i
\(528\) 2795.89 + 2795.89i 5.29525 + 5.29525i
\(529\) −512.169 −0.968184
\(530\) 0 0
\(531\) −49.7875 + 49.7875i −0.0937618 + 0.0937618i
\(532\) 875.254 1.64521
\(533\) −190.709 + 4.48595i −0.357803 + 0.00841642i
\(534\) 1559.85 2.92107
\(535\) 0 0
\(536\) 263.382 0.491384
\(537\) 549.534 1.02334
\(538\) −855.366 + 855.366i −1.58990 + 1.58990i
\(539\) −118.387 118.387i −0.219642 0.219642i
\(540\) 0 0
\(541\) −361.414 + 361.414i −0.668047 + 0.668047i −0.957264 0.289216i \(-0.906605\pi\)
0.289216 + 0.957264i \(0.406605\pi\)
\(542\) 1657.00i 3.05719i
\(543\) −399.480 −0.735690
\(544\) 553.117 553.117i 1.01676 1.01676i
\(545\) 0 0
\(546\) −847.348 808.400i −1.55192 1.48059i
\(547\) 453.400i 0.828884i 0.910076 + 0.414442i \(0.136023\pi\)
−0.910076 + 0.414442i \(0.863977\pi\)
\(548\) 1572.13 1572.13i 2.86884 2.86884i
\(549\) 0.355418 0.000647391
\(550\) 0 0
\(551\) 187.685 + 187.685i 0.340626 + 0.340626i
\(552\) 328.687 328.687i 0.595448 0.595448i
\(553\) 553.920 + 553.920i 1.00166 + 1.00166i
\(554\) −574.421 + 574.421i −1.03686 + 1.03686i
\(555\) 0 0
\(556\) 2431.84i 4.37382i
\(557\) −453.573 453.573i −0.814315 0.814315i 0.170963 0.985277i \(-0.445312\pi\)
−0.985277 + 0.170963i \(0.945312\pi\)
\(558\) 507.823 0.910077
\(559\) −351.261 + 368.184i −0.628374 + 0.658648i
\(560\) 0 0
\(561\) −173.438 173.438i −0.309158 0.309158i
\(562\) 544.401i 0.968684i
\(563\) −979.383 −1.73958 −0.869790 0.493423i \(-0.835746\pi\)
−0.869790 + 0.493423i \(0.835746\pi\)
\(564\) 538.268 + 538.268i 0.954376 + 0.954376i
\(565\) 0 0
\(566\) 704.634 704.634i 1.24494 1.24494i
\(567\) −437.111 437.111i −0.770920 0.770920i
\(568\) 703.245i 1.23811i
\(569\) 31.3304i 0.0550622i 0.999621 + 0.0275311i \(0.00876453\pi\)
−0.999621 + 0.0275311i \(0.991235\pi\)
\(570\) 0 0
\(571\) 476.731i 0.834905i 0.908699 + 0.417452i \(0.137077\pi\)
−0.908699 + 0.417452i \(0.862923\pi\)
\(572\) 2185.53 51.4092i 3.82086 0.0898762i
\(573\) 226.043i 0.394491i
\(574\) −251.212 251.212i −0.437651 0.437651i
\(575\) 0 0
\(576\) 1845.07i 3.20324i
\(577\) −573.936 + 573.936i −0.994689 + 0.994689i −0.999986 0.00529665i \(-0.998314\pi\)
0.00529665 + 0.999986i \(0.498314\pi\)
\(578\) 750.617 750.617i 1.29864 1.29864i
\(579\) 449.883 449.883i 0.777000 0.777000i
\(580\) 0 0
\(581\) 473.475 0.814931
\(582\) −2035.33 −3.49712
\(583\) −1042.57 1042.57i −1.78828 1.78828i
\(584\) 2753.76i 4.71535i
\(585\) 0 0
\(586\) −1420.08 −2.42335
\(587\) 511.672 511.672i 0.871673 0.871673i −0.120981 0.992655i \(-0.538604\pi\)
0.992655 + 0.120981i \(0.0386041\pi\)
\(588\) 506.074i 0.860670i
\(589\) 324.184i 0.550398i
\(590\) 0 0
\(591\) −679.825 679.825i −1.15030 1.15030i
\(592\) −258.031 258.031i −0.435862 0.435862i
\(593\) −145.706 145.706i −0.245711 0.245711i 0.573497 0.819208i \(-0.305586\pi\)
−0.819208 + 0.573497i \(0.805586\pi\)
\(594\) 881.011 1.48318
\(595\) 0 0
\(596\) 578.600 578.600i 0.970806 0.970806i
\(597\) 912.094 1.52780
\(598\) −4.96756 211.183i −0.00830696 0.353149i
\(599\) 330.589 0.551902 0.275951 0.961172i \(-0.411007\pi\)
0.275951 + 0.961172i \(0.411007\pi\)
\(600\) 0 0
\(601\) −538.002 −0.895177 −0.447589 0.894240i \(-0.647717\pi\)
−0.447589 + 0.894240i \(0.647717\pi\)
\(602\) −947.690 −1.57424
\(603\) −29.6333 + 29.6333i −0.0491432 + 0.0491432i
\(604\) 690.019 + 690.019i 1.14242 + 1.14242i
\(605\) 0 0
\(606\) 961.346 961.346i 1.58638 1.58638i
\(607\) 412.828i 0.680111i 0.940405 + 0.340056i \(0.110446\pi\)
−0.940405 + 0.340056i \(0.889554\pi\)
\(608\) 2091.63 3.44019
\(609\) 348.442 348.442i 0.572155 0.572155i
\(610\) 0 0
\(611\) 227.482 5.35096i 0.372312 0.00875771i
\(612\) 259.456i 0.423948i
\(613\) 452.991 452.991i 0.738973 0.738973i −0.233406 0.972379i \(-0.574987\pi\)
0.972379 + 0.233406i \(0.0749872\pi\)
\(614\) −782.807 −1.27493
\(615\) 0 0
\(616\) 1893.65 + 1893.65i 3.07410 + 3.07410i
\(617\) −120.125 + 120.125i −0.194691 + 0.194691i −0.797720 0.603028i \(-0.793961\pi\)
0.603028 + 0.797720i \(0.293961\pi\)
\(618\) 86.1666 + 86.1666i 0.139428 + 0.139428i
\(619\) −732.097 + 732.097i −1.18271 + 1.18271i −0.203669 + 0.979040i \(0.565287\pi\)
−0.979040 + 0.203669i \(0.934713\pi\)
\(620\) 0 0
\(621\) 63.4244i 0.102133i
\(622\) 1284.62 + 1284.62i 2.06531 + 2.06531i
\(623\) 646.954 1.03845
\(624\) −2584.93 2466.11i −4.14251 3.95210i
\(625\) 0 0
\(626\) 1062.96 + 1062.96i 1.69802 + 1.69802i
\(627\) 655.862i 1.04603i
\(628\) 1765.44 2.81121
\(629\) 16.0064 + 16.0064i 0.0254474 + 0.0254474i
\(630\) 0 0
\(631\) −377.611 + 377.611i −0.598433 + 0.598433i −0.939895 0.341463i \(-0.889078\pi\)
0.341463 + 0.939895i \(0.389078\pi\)
\(632\) 2759.44 + 2759.44i 4.36620 + 4.36620i
\(633\) 1005.81i 1.58895i
\(634\) 496.063i 0.782433i
\(635\) 0 0
\(636\) 4456.72i 7.00742i
\(637\) 109.454 + 104.423i 0.171827 + 0.163929i
\(638\) 1234.67i 1.93522i
\(639\) 79.1228 + 79.1228i 0.123823 + 0.123823i
\(640\) 0 0
\(641\) 1125.68i 1.75614i −0.478535 0.878068i \(-0.658832\pi\)
0.478535 0.878068i \(-0.341168\pi\)
\(642\) −346.488 + 346.488i −0.539700 + 0.539700i
\(643\) −687.121 + 687.121i −1.06862 + 1.06862i −0.0711525 + 0.997465i \(0.522668\pi\)
−0.997465 + 0.0711525i \(0.977332\pi\)
\(644\) 207.253 207.253i 0.321821 0.321821i
\(645\) 0 0
\(646\) −222.316 −0.344143
\(647\) −894.637 −1.38275 −0.691374 0.722498i \(-0.742994\pi\)
−0.691374 + 0.722498i \(0.742994\pi\)
\(648\) −2177.54 2177.54i −3.36040 3.36040i
\(649\) 209.084i 0.322164i
\(650\) 0 0
\(651\) 601.857 0.924512
\(652\) −844.455 + 844.455i −1.29518 + 1.29518i
\(653\) 259.531i 0.397444i 0.980056 + 0.198722i \(0.0636791\pi\)
−0.980056 + 0.198722i \(0.936321\pi\)
\(654\) 1014.53i 1.55126i
\(655\) 0 0
\(656\) −766.348 766.348i −1.16821 1.16821i
\(657\) 309.829 + 309.829i 0.471581 + 0.471581i
\(658\) 299.652 + 299.652i 0.455398 + 0.455398i
\(659\) 541.017 0.820967 0.410483 0.911868i \(-0.365360\pi\)
0.410483 + 0.911868i \(0.365360\pi\)
\(660\) 0 0
\(661\) 580.306 580.306i 0.877921 0.877921i −0.115398 0.993319i \(-0.536814\pi\)
0.993319 + 0.115398i \(0.0368145\pi\)
\(662\) −946.543 −1.42982
\(663\) 160.351 + 152.981i 0.241857 + 0.230740i
\(664\) 2358.69 3.55224
\(665\) 0 0
\(666\) 94.8164 0.142367
\(667\) 88.8844 0.133260
\(668\) −2086.25 + 2086.25i −3.12313 + 3.12313i
\(669\) −998.663 998.663i −1.49277 1.49277i
\(670\) 0 0
\(671\) −0.746295 + 0.746295i −0.00111221 + 0.00111221i
\(672\) 3883.18i 5.77854i
\(673\) 965.968 1.43532 0.717658 0.696396i \(-0.245214\pi\)
0.717658 + 0.696396i \(0.245214\pi\)
\(674\) −1484.85 + 1484.85i −2.20304 + 2.20304i
\(675\) 0 0
\(676\) −1973.09 + 92.8754i −2.91877 + 0.137390i
\(677\) 813.684i 1.20190i −0.799288 0.600948i \(-0.794790\pi\)
0.799288 0.600948i \(-0.205210\pi\)
\(678\) −869.022 + 869.022i −1.28174 + 1.28174i
\(679\) −844.160 −1.24324
\(680\) 0 0
\(681\) 64.3042 + 64.3042i 0.0944261 + 0.0944261i
\(682\) −1066.31 + 1066.31i −1.56350 + 1.56350i
\(683\) 824.970 + 824.970i 1.20786 + 1.20786i 0.971718 + 0.236145i \(0.0758839\pi\)
0.236145 + 0.971718i \(0.424116\pi\)
\(684\) −490.572 + 490.572i −0.717211 + 0.717211i
\(685\) 0 0
\(686\) 1468.05i 2.14002i
\(687\) 57.2649 + 57.2649i 0.0833550 + 0.0833550i
\(688\) −2891.03 −4.20208
\(689\) 963.900 + 919.596i 1.39898 + 1.33468i
\(690\) 0 0
\(691\) 190.752 + 190.752i 0.276052 + 0.276052i 0.831531 0.555479i \(-0.187465\pi\)
−0.555479 + 0.831531i \(0.687465\pi\)
\(692\) 1939.43i 2.80265i
\(693\) −426.112 −0.614880
\(694\) −891.484 891.484i −1.28456 1.28456i
\(695\) 0 0
\(696\) 1735.82 1735.82i 2.49399 2.49399i
\(697\) 47.5389 + 47.5389i 0.0682051 + 0.0682051i
\(698\) 872.939i 1.25063i
\(699\) 1559.24i 2.23067i
\(700\) 0 0
\(701\) 623.742i 0.889789i 0.895583 + 0.444894i \(0.146759\pi\)
−0.895583 + 0.444894i \(0.853241\pi\)
\(702\) −795.814 + 18.7195i −1.13364 + 0.0266660i
\(703\) 60.5289i 0.0861009i
\(704\) 3874.21 + 3874.21i 5.50314 + 5.50314i
\(705\) 0 0
\(706\) 721.374i 1.02178i
\(707\) 398.722 398.722i 0.563963 0.563963i
\(708\) −446.892 + 446.892i −0.631203 + 0.631203i
\(709\) −232.551 + 232.551i −0.327998 + 0.327998i −0.851825 0.523827i \(-0.824504\pi\)
0.523827 + 0.851825i \(0.324504\pi\)
\(710\) 0 0
\(711\) −620.935 −0.873326
\(712\) 3222.91 4.52655
\(713\) 76.7642 + 76.7642i 0.107664 + 0.107664i
\(714\) 412.736i 0.578062i
\(715\) 0 0
\(716\) 1726.18 2.41086
\(717\) 782.075 782.075i 1.09076 1.09076i
\(718\) 2134.27i 2.97252i
\(719\) 604.087i 0.840176i −0.907483 0.420088i \(-0.861999\pi\)
0.907483 0.420088i \(-0.138001\pi\)
\(720\) 0 0
\(721\) 35.7379 + 35.7379i 0.0495672 + 0.0495672i
\(722\) 590.709 + 590.709i 0.818156 + 0.818156i
\(723\) 554.511 + 554.511i 0.766959 + 0.766959i
\(724\) −1254.83 −1.73320
\(725\) 0 0
\(726\) 896.303 896.303i 1.23458 1.23458i
\(727\) 270.298 0.371799 0.185899 0.982569i \(-0.440480\pi\)
0.185899 + 0.982569i \(0.440480\pi\)
\(728\) −1750.76 1670.29i −2.40489 2.29435i
\(729\) −27.7267 −0.0380339
\(730\) 0 0
\(731\) 179.340 0.245335
\(732\) 3.19022 0.00435823
\(733\) −769.944 + 769.944i −1.05040 + 1.05040i −0.0517401 + 0.998661i \(0.516477\pi\)
−0.998661 + 0.0517401i \(0.983523\pi\)
\(734\) −1101.25 1101.25i −1.50034 1.50034i
\(735\) 0 0
\(736\) 495.281 495.281i 0.672937 0.672937i
\(737\) 124.446i 0.168855i
\(738\) 281.604 0.381577
\(739\) −0.209620 + 0.209620i −0.000283653 + 0.000283653i −0.707249 0.706965i \(-0.750064\pi\)
0.706965 + 0.707249i \(0.250064\pi\)
\(740\) 0 0
\(741\) 13.9356 + 592.438i 0.0188065 + 0.799511i
\(742\) 2481.04i 3.34372i
\(743\) 215.520 215.520i 0.290068 0.290068i −0.547039 0.837107i \(-0.684245\pi\)
0.837107 + 0.547039i \(0.184245\pi\)
\(744\) 2998.25 4.02990
\(745\) 0 0
\(746\) −970.062 970.062i −1.30035 1.30035i
\(747\) −265.379 + 265.379i −0.355259 + 0.355259i
\(748\) −544.798 544.798i −0.728339 0.728339i
\(749\) −143.707 + 143.707i −0.191865 + 0.191865i
\(750\) 0 0
\(751\) 433.472i 0.577193i −0.957451 0.288596i \(-0.906811\pi\)
0.957451 0.288596i \(-0.0931886\pi\)
\(752\) 914.120 + 914.120i 1.21558 + 1.21558i
\(753\) 1202.41 1.59682
\(754\) −26.2340 1115.27i −0.0347931 1.47914i
\(755\) 0 0
\(756\) −781.003 781.003i −1.03307 1.03307i
\(757\) 667.177i 0.881343i −0.897668 0.440672i \(-0.854740\pi\)
0.897668 0.440672i \(-0.145260\pi\)
\(758\) 1364.16 1.79969
\(759\) −155.303 155.303i −0.204615 0.204615i
\(760\) 0 0
\(761\) −331.781 + 331.781i −0.435980 + 0.435980i −0.890657 0.454676i \(-0.849755\pi\)
0.454676 + 0.890657i \(0.349755\pi\)
\(762\) −270.857 270.857i −0.355455 0.355455i
\(763\) 420.779i 0.551479i
\(764\) 710.040i 0.929371i
\(765\) 0 0
\(766\) 1194.81i 1.55980i
\(767\) 4.44258 + 188.865i 0.00579216 + 0.246239i
\(768\) 6496.44i 8.45890i
\(769\) −927.008 927.008i −1.20547 1.20547i −0.972478 0.232994i \(-0.925148\pi\)
−0.232994 0.972478i \(-0.574852\pi\)
\(770\) 0 0
\(771\) 313.216i 0.406246i
\(772\) 1413.16 1413.16i 1.83052 1.83052i
\(773\) −398.507 + 398.507i −0.515533 + 0.515533i −0.916216 0.400684i \(-0.868773\pi\)
0.400684 + 0.916216i \(0.368773\pi\)
\(774\) 531.172 531.172i 0.686269 0.686269i
\(775\) 0 0
\(776\) −4205.31 −5.41922
\(777\) 112.374 0.144625
\(778\) 512.908 + 512.908i 0.659264 + 0.659264i
\(779\) 179.770i 0.230771i
\(780\) 0 0
\(781\) −332.279 −0.425453
\(782\) −52.6426 + 52.6426i −0.0673180 + 0.0673180i
\(783\) 334.948i 0.427776i
\(784\) 859.446i 1.09623i
\(785\) 0 0
\(786\) 90.5331 + 90.5331i 0.115182 + 0.115182i
\(787\) 119.609 + 119.609i 0.151981 + 0.151981i 0.779002 0.627021i \(-0.215726\pi\)
−0.627021 + 0.779002i \(0.715726\pi\)
\(788\) −2135.45 2135.45i −2.70996 2.70996i
\(789\) 647.197 0.820275
\(790\) 0 0
\(791\) −360.431 + 360.431i −0.455665 + 0.455665i
\(792\) −2122.74 −2.68023
\(793\) 0.658268 0.689982i 0.000830098 0.000870091i
\(794\) −1242.73 −1.56515
\(795\) 0 0
\(796\) 2865.04 3.59930
\(797\) −704.728 −0.884226 −0.442113 0.896959i \(-0.645771\pi\)
−0.442113 + 0.896959i \(0.645771\pi\)
\(798\) −780.390 + 780.390i −0.977932 + 0.977932i
\(799\) −56.7057 56.7057i −0.0709708 0.0709708i
\(800\) 0 0
\(801\) −362.612 + 362.612i −0.452699 + 0.452699i
\(802\) 1385.75i 1.72786i
\(803\) −1301.14 −1.62034
\(804\) −265.988 + 265.988i −0.330831 + 0.330831i
\(805\) 0 0
\(806\) 940.537 985.850i 1.16692 1.22314i
\(807\) 1136.40i 1.40818i
\(808\) 1986.30 1986.30i 2.45829 2.45829i
\(809\) −500.209 −0.618305 −0.309153 0.951012i \(-0.600045\pi\)
−0.309153 + 0.951012i \(0.600045\pi\)
\(810\) 0 0
\(811\) −267.269 267.269i −0.329555 0.329555i 0.522862 0.852417i \(-0.324864\pi\)
−0.852417 + 0.522862i \(0.824864\pi\)
\(812\) 1094.52 1094.52i 1.34793 1.34793i
\(813\) 1100.71 + 1100.71i 1.35388 + 1.35388i
\(814\) −199.092 + 199.092i −0.244585 + 0.244585i
\(815\) 0 0
\(816\) 1259.10i 1.54301i
\(817\) 339.090 + 339.090i 0.415043 + 0.415043i
\(818\) 1853.84 2.26631
\(819\) 384.905 9.05394i 0.469970 0.0110549i
\(820\) 0 0
\(821\) −253.704 253.704i −0.309019 0.309019i 0.535510 0.844529i \(-0.320119\pi\)
−0.844529 + 0.535510i \(0.820119\pi\)
\(822\) 2803.46i 3.41054i
\(823\) 890.680 1.08224 0.541118 0.840947i \(-0.318001\pi\)
0.541118 + 0.840947i \(0.318001\pi\)
\(824\) 178.034 + 178.034i 0.216061 + 0.216061i
\(825\) 0 0
\(826\) −248.783 + 248.783i −0.301190 + 0.301190i
\(827\) 460.288 + 460.288i 0.556576 + 0.556576i 0.928331 0.371755i \(-0.121244\pi\)
−0.371755 + 0.928331i \(0.621244\pi\)
\(828\) 232.327i 0.280588i
\(829\) 680.292i 0.820618i 0.911947 + 0.410309i \(0.134579\pi\)
−0.911947 + 0.410309i \(0.865421\pi\)
\(830\) 0 0
\(831\) 763.151i 0.918352i
\(832\) −3581.88 3417.24i −4.30514 4.10726i
\(833\) 53.3141i 0.0640025i
\(834\) −2168.27 2168.27i −2.59984 2.59984i
\(835\) 0 0
\(836\) 2060.17i 2.46432i
\(837\) 289.275 289.275i 0.345609 0.345609i
\(838\) 77.0417 77.0417i 0.0919353 0.0919353i
\(839\) −614.213 + 614.213i −0.732078 + 0.732078i −0.971031 0.238953i \(-0.923196\pi\)
0.238953 + 0.971031i \(0.423196\pi\)
\(840\) 0 0
\(841\) −371.596 −0.441850
\(842\) −2081.20 −2.47173
\(843\) −361.633 361.633i −0.428984 0.428984i
\(844\) 3159.41i 3.74338i
\(845\) 0 0
\(846\) −335.904 −0.397050
\(847\) 371.745 371.745i 0.438897 0.438897i
\(848\) 7568.68i 8.92533i
\(849\) 936.147i 1.10265i
\(850\) 0 0
\(851\) 14.3327 + 14.3327i 0.0168422 + 0.0168422i
\(852\) 710.205 + 710.205i 0.833574 + 0.833574i
\(853\) 110.970 + 110.970i 0.130094 + 0.130094i 0.769155 0.639062i \(-0.220677\pi\)
−0.639062 + 0.769155i \(0.720677\pi\)
\(854\) 1.77598 0.00207961
\(855\) 0 0
\(856\) −715.900 + 715.900i −0.836332 + 0.836332i
\(857\) −797.203 −0.930225 −0.465113 0.885251i \(-0.653986\pi\)
−0.465113 + 0.885251i \(0.653986\pi\)
\(858\) −1902.81 + 1994.49i −2.21773 + 2.32458i
\(859\) 364.974 0.424882 0.212441 0.977174i \(-0.431859\pi\)
0.212441 + 0.977174i \(0.431859\pi\)
\(860\) 0 0
\(861\) 333.749 0.387629
\(862\) −66.9687 −0.0776899
\(863\) −462.068 + 462.068i −0.535420 + 0.535420i −0.922180 0.386760i \(-0.873594\pi\)
0.386760 + 0.922180i \(0.373594\pi\)
\(864\) −1866.40 1866.40i −2.16018 2.16018i
\(865\) 0 0
\(866\) −598.338 + 598.338i −0.690922 + 0.690922i
\(867\) 997.236i 1.15022i
\(868\) 1890.54 2.17804
\(869\) 1303.82 1303.82i 1.50037 1.50037i
\(870\) 0 0
\(871\) 2.64421 + 112.412i 0.00303583 + 0.129061i
\(872\) 2096.17i 2.40387i
\(873\) 473.144 473.144i 0.541975 0.541975i
\(874\) −199.070 −0.227769
\(875\) 0 0
\(876\) 2781.02 + 2781.02i 3.17468 + 3.17468i
\(877\) 782.481 782.481i 0.892225 0.892225i −0.102507 0.994732i \(-0.532686\pi\)
0.994732 + 0.102507i \(0.0326864\pi\)
\(878\) −2004.35 2004.35i −2.28286 2.28286i
\(879\) 943.331 943.331i 1.07319 1.07319i
\(880\) 0 0
\(881\) 181.009i 0.205458i 0.994709 + 0.102729i \(0.0327575\pi\)
−0.994709 + 0.102729i \(0.967243\pi\)
\(882\) −157.907 157.907i −0.179033 0.179033i
\(883\) 898.698 1.01778 0.508889 0.860832i \(-0.330056\pi\)
0.508889 + 0.860832i \(0.330056\pi\)
\(884\) 503.689 + 480.538i 0.569784 + 0.543595i
\(885\) 0 0
\(886\) 750.584 + 750.584i 0.847160 + 0.847160i
\(887\) 153.874i 0.173477i −0.996231 0.0867387i \(-0.972355\pi\)
0.996231 0.0867387i \(-0.0276445\pi\)
\(888\) 559.807 0.630413
\(889\) −112.339 112.339i −0.126366 0.126366i
\(890\) 0 0
\(891\) −1028.87 + 1028.87i −1.15474 + 1.15474i
\(892\) −3136.97 3136.97i −3.51678 3.51678i
\(893\) 214.435i 0.240128i
\(894\) 1031.78i 1.15411i
\(895\) 0 0
\(896\) 5045.17i 5.63077i
\(897\) 143.584 + 136.984i 0.160072 + 0.152714i
\(898\) 2944.54i 3.27900i
\(899\) 405.397 + 405.397i 0.450942 + 0.450942i
\(900\) 0 0
\(901\) 469.508i 0.521097i
\(902\) −591.302 + 591.302i −0.655546 + 0.655546i
\(903\) 629.530 629.530i 0.697154 0.697154i
\(904\) −1795.54 + 1795.54i −1.98622 + 1.98622i
\(905\) 0 0
\(906\) −1230.46 −1.35813
\(907\) −636.228 −0.701464 −0.350732 0.936476i \(-0.614067\pi\)
−0.350732 + 0.936476i \(0.614067\pi\)
\(908\) 201.990 + 201.990i 0.222456 + 0.222456i
\(909\) 446.960i 0.491706i
\(910\) 0 0
\(911\) −1415.45 −1.55374 −0.776868 0.629664i \(-0.783193\pi\)
−0.776868 + 0.629664i \(0.783193\pi\)
\(912\) −2380.66 + 2380.66i −2.61038 + 2.61038i
\(913\) 1114.47i 1.22066i
\(914\) 2129.37i 2.32973i
\(915\) 0 0
\(916\) 179.879 + 179.879i 0.196374 + 0.196374i
\(917\) 37.5490 + 37.5490i 0.0409476 + 0.0409476i
\(918\) 198.376 + 198.376i 0.216096 + 0.216096i
\(919\) 791.494 0.861256 0.430628 0.902530i \(-0.358292\pi\)
0.430628 + 0.902530i \(0.358292\pi\)
\(920\) 0 0
\(921\) 520.002 520.002i 0.564606 0.564606i
\(922\) −3402.44 −3.69029
\(923\) 300.146 7.06020i 0.325185 0.00764918i
\(924\) −3824.77 −4.13936
\(925\) 0 0
\(926\) 3099.29 3.34697
\(927\) −40.0616 −0.0432164
\(928\) 2615.61 2615.61i 2.81855 2.81855i
\(929\) −31.5586 31.5586i −0.0339705 0.0339705i 0.689918 0.723888i \(-0.257647\pi\)
−0.723888 + 0.689918i \(0.757647\pi\)
\(930\) 0 0
\(931\) 100.805 100.805i 0.108276 0.108276i
\(932\) 4897.83i 5.25519i
\(933\) −1706.69 −1.82925
\(934\) 1727.38 1727.38i 1.84945 1.84945i
\(935\) 0 0
\(936\) 1917.47 45.1036i 2.04857 0.0481876i
\(937\) 602.943i 0.643482i −0.946828 0.321741i \(-0.895732\pi\)
0.946828 0.321741i \(-0.104268\pi\)
\(938\) −148.075 + 148.075i −0.157862 + 0.157862i
\(939\) −1412.20 −1.50394
\(940\) 0 0
\(941\) −927.710 927.710i −0.985876 0.985876i 0.0140252 0.999902i \(-0.495535\pi\)
−0.999902 + 0.0140252i \(0.995535\pi\)
\(942\) −1574.09 + 1574.09i −1.67101 + 1.67101i
\(943\) 42.5681 + 42.5681i 0.0451412 + 0.0451412i
\(944\) −758.940 + 758.940i −0.803961 + 0.803961i
\(945\) 0 0
\(946\) 2230.68i 2.35801i
\(947\) 72.0662 + 72.0662i 0.0760994 + 0.0760994i 0.744132 0.668033i \(-0.232863\pi\)
−0.668033 + 0.744132i \(0.732863\pi\)
\(948\) −5573.50 −5.87922
\(949\) 1175.31 27.6463i 1.23847 0.0291320i
\(950\) 0 0
\(951\) 329.524 + 329.524i 0.346502 + 0.346502i
\(952\) 852.781i 0.895778i
\(953\) −870.605 −0.913542 −0.456771 0.889584i \(-0.650994\pi\)
−0.456771 + 0.889584i \(0.650994\pi\)
\(954\) −1390.60 1390.60i −1.45765 1.45765i
\(955\) 0 0
\(956\) 2456.63 2456.63i 2.56970 2.56970i
\(957\) −820.164 820.164i −0.857016 0.857016i
\(958\) 598.800i 0.625052i
\(959\) 1162.75i 1.21246i
\(960\) 0 0
\(961\) 260.767i 0.271349i
\(962\) 175.609 184.069i 0.182546 0.191340i
\(963\) 161.093i 0.167283i
\(964\) 1741.81 + 1741.81i 1.80686 + 1.80686i
\(965\) 0 0
\(966\) 369.580i 0.382588i
\(967\) 1300.80 1300.80i 1.34519 1.34519i 0.454392 0.890802i \(-0.349856\pi\)
0.890802 0.454392i \(-0.150144\pi\)
\(968\) 1851.91 1851.91i 1.91313 1.91313i
\(969\) 147.680 147.680i 0.152404 0.152404i
\(970\) 0 0
\(971\) −379.072 −0.390394 −0.195197 0.980764i \(-0.562535\pi\)
−0.195197 + 0.980764i \(0.562535\pi\)
\(972\) 2771.93 2.85178
\(973\) −899.298 899.298i −0.924253 0.924253i
\(974\) 1312.15i 1.34717i
\(975\) 0 0
\(976\) 5.41784 0.00555106
\(977\) −80.1135 + 80.1135i −0.0819995 + 0.0819995i −0.746917 0.664917i \(-0.768467\pi\)
0.664917 + 0.746917i \(0.268467\pi\)
\(978\) 1505.86i 1.53973i
\(979\) 1522.80i 1.55547i
\(980\) 0 0
\(981\) −235.843 235.843i −0.240410 0.240410i
\(982\) 1826.86 + 1826.86i 1.86035 + 1.86035i
\(983\) 626.438 + 626.438i 0.637272 + 0.637272i 0.949882 0.312610i \(-0.101203\pi\)
−0.312610 + 0.949882i \(0.601203\pi\)
\(984\) 1662.62 1.68966
\(985\) 0 0
\(986\) −278.009 + 278.009i −0.281957 + 0.281957i
\(987\) −398.104 −0.403348
\(988\) 43.7742 + 1860.95i 0.0443058 + 1.88355i
\(989\) 160.587 0.162373
\(990\) 0 0
\(991\) −693.576 −0.699875 −0.349937 0.936773i \(-0.613797\pi\)
−0.349937 + 0.936773i \(0.613797\pi\)
\(992\) 4517.90 4.55433
\(993\) 628.768 628.768i 0.633200 0.633200i
\(994\) 395.368 + 395.368i 0.397755 + 0.397755i
\(995\) 0 0
\(996\) −2382.03 + 2382.03i −2.39160 + 2.39160i
\(997\) 442.915i 0.444247i −0.975019 0.222124i \(-0.928701\pi\)
0.975019 0.222124i \(-0.0712989\pi\)
\(998\) 1391.38 1.39417
\(999\) 54.0109 54.0109i 0.0540650 0.0540650i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.3.g.f.99.1 20
5.2 odd 4 325.3.j.c.151.1 20
5.3 odd 4 325.3.j.d.151.10 yes 20
5.4 even 2 325.3.g.e.99.10 20
13.5 odd 4 325.3.g.e.174.10 20
65.18 even 4 325.3.j.d.226.10 yes 20
65.44 odd 4 inner 325.3.g.f.174.1 20
65.57 even 4 325.3.j.c.226.1 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.3.g.e.99.10 20 5.4 even 2
325.3.g.e.174.10 20 13.5 odd 4
325.3.g.f.99.1 20 1.1 even 1 trivial
325.3.g.f.174.1 20 65.44 odd 4 inner
325.3.j.c.151.1 20 5.2 odd 4
325.3.j.c.226.1 yes 20 65.57 even 4
325.3.j.d.151.10 yes 20 5.3 odd 4
325.3.j.d.226.10 yes 20 65.18 even 4