Newspace parameters
Level: | \( N \) | \(=\) | \( 325 = 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 325.bm (of order \(60\), degree \(16\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.85560859171\) |
Analytic rank: | \(0\) |
Dimension: | \(1088\) |
Relative dimension: | \(68\) over \(\Q(\zeta_{60})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{60}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.1 | −3.23555 | + | 2.10119i | 0.162560 | + | 1.54666i | 4.42684 | − | 9.94285i | −4.43110 | + | 2.31632i | −3.77580 | − | 4.66272i | −1.64843 | + | 6.15203i | 4.15449 | + | 26.2304i | 6.43760 | − | 1.36835i | 9.47003 | − | 16.8052i |
6.2 | −3.21795 | + | 2.08976i | −0.0637219 | − | 0.606273i | 4.36114 | − | 9.79528i | 4.96740 | − | 0.570062i | 1.47202 | + | 1.81779i | −0.216885 | + | 0.809426i | 4.03492 | + | 25.4755i | 8.43982 | − | 1.79394i | −14.7935 | + | 12.2151i |
6.3 | −3.11118 | + | 2.02042i | 0.597107 | + | 5.68109i | 3.97039 | − | 8.91764i | 2.21104 | − | 4.48456i | −13.3359 | − | 16.4685i | −1.68960 | + | 6.30567i | 3.34354 | + | 21.1103i | −23.1150 | + | 4.91324i | 2.18179 | + | 18.4195i |
6.4 | −3.07034 | + | 1.99390i | 0.152494 | + | 1.45089i | 3.82440 | − | 8.58974i | −3.70151 | − | 3.36137i | −3.36113 | − | 4.15066i | 3.50562 | − | 13.0832i | 3.09410 | + | 19.5354i | 6.72151 | − | 1.42870i | 18.0671 | + | 2.94010i |
6.5 | −2.90131 | + | 1.88413i | −0.428913 | − | 4.08083i | 3.24070 | − | 7.27873i | −2.87751 | + | 4.08900i | 8.93325 | + | 11.0316i | 3.13792 | − | 11.7109i | 2.14713 | + | 13.5565i | −7.66591 | + | 1.62944i | 0.644328 | − | 17.2851i |
6.6 | −2.89753 | + | 1.88168i | −0.433688 | − | 4.12627i | 3.22801 | − | 7.25023i | 2.76127 | + | 4.16838i | 9.02093 | + | 11.1399i | −1.31106 | + | 4.89295i | 2.12747 | + | 13.4323i | −8.03469 | + | 1.70783i | −15.8444 | − | 6.88219i |
6.7 | −2.77924 | + | 1.80486i | 0.382223 | + | 3.63661i | 2.83972 | − | 6.37812i | 3.47687 | + | 3.59324i | −7.62586 | − | 9.41715i | 2.76221 | − | 10.3087i | 1.54573 | + | 9.75936i | −4.27548 | + | 0.908781i | −16.1484 | − | 3.71121i |
6.8 | −2.70600 | + | 1.75730i | 0.363225 | + | 3.45585i | 2.60740 | − | 5.85632i | 1.84247 | + | 4.64815i | −7.05584 | − | 8.71324i | −1.38389 | + | 5.16475i | 1.21670 | + | 7.68194i | −3.00764 | + | 0.639294i | −13.1539 | − | 9.34014i |
6.9 | −2.69978 | + | 1.75326i | −0.408696 | − | 3.88848i | 2.58796 | − | 5.81264i | −4.96786 | − | 0.565971i | 7.92090 | + | 9.78150i | −1.09939 | + | 4.10296i | 1.18983 | + | 7.51227i | −6.14992 | + | 1.30721i | 14.4044 | − | 7.18195i |
6.10 | −2.62906 | + | 1.70733i | −0.233137 | − | 2.21815i | 2.37002 | − | 5.32316i | 1.42208 | − | 4.79350i | 4.40005 | + | 5.43361i | 0.539336 | − | 2.01283i | 0.895905 | + | 5.65652i | 3.93748 | − | 0.836938i | 4.44536 | + | 15.0304i |
6.11 | −2.52003 | + | 1.63653i | 0.0597045 | + | 0.568050i | 2.04539 | − | 4.59403i | −1.44158 | − | 4.78768i | −1.08009 | − | 1.33380i | −2.53391 | + | 9.45669i | 0.483586 | + | 3.05324i | 8.48421 | − | 1.80337i | 11.4680 | + | 9.70592i |
6.12 | −2.30000 | + | 1.49364i | 0.0606957 | + | 0.577481i | 1.43209 | − | 3.21654i | −2.69645 | + | 4.21060i | −1.00215 | − | 1.23755i | −0.410482 | + | 1.53194i | −0.205524 | − | 1.29763i | 8.47353 | − | 1.80110i | −0.0872631 | − | 13.7119i |
6.13 | −2.20368 | + | 1.43109i | 0.404487 | + | 3.84843i | 1.18125 | − | 2.65312i | −4.37972 | − | 2.41206i | −6.39879 | − | 7.90185i | 0.471172 | − | 1.75844i | −0.450421 | − | 2.84385i | −5.84349 | + | 1.24207i | 13.1034 | − | 0.952364i |
6.14 | −2.09137 | + | 1.35815i | −0.608207 | − | 5.78670i | 0.902312 | − | 2.02663i | 3.88765 | − | 3.14423i | 9.13122 | + | 11.2761i | −2.13644 | + | 7.97331i | −0.694990 | − | 4.38799i | −24.3127 | + | 5.16782i | −3.86019 | + | 11.8558i |
6.15 | −2.02248 | + | 1.31341i | 0.388850 | + | 3.69966i | 0.738411 | − | 1.65850i | 3.25935 | − | 3.79165i | −5.64561 | − | 6.97175i | 1.30936 | − | 4.88658i | −0.824111 | − | 5.20323i | −4.73294 | + | 1.00602i | −1.61196 | + | 11.9494i |
6.16 | −1.96882 | + | 1.27857i | −0.268630 | − | 2.55584i | 0.614567 | − | 1.38034i | 4.97524 | + | 0.496976i | 3.79670 | + | 4.68853i | 2.43747 | − | 9.09675i | −0.914064 | − | 5.77117i | 2.34315 | − | 0.498053i | −10.4308 | + | 5.38271i |
6.17 | −1.77771 | + | 1.15446i | 0.0867468 | + | 0.825341i | 0.200542 | − | 0.450424i | 4.99853 | + | 0.121176i | −1.10704 | − | 1.36707i | −3.54203 | + | 13.2190i | −1.16287 | − | 7.34210i | 8.12967 | − | 1.72801i | −9.02586 | + | 5.55520i |
6.18 | −1.71380 | + | 1.11296i | −0.0422985 | − | 0.402443i | 0.0715016 | − | 0.160595i | −1.92025 | + | 4.61656i | 0.520393 | + | 0.642632i | 1.55360 | − | 5.79810i | −1.22248 | − | 7.71846i | 8.64316 | − | 1.83716i | −1.84710 | − | 10.0490i |
6.19 | −1.65077 | + | 1.07203i | 0.498194 | + | 4.73999i | −0.0511289 | + | 0.114837i | −4.96527 | + | 0.588284i | −5.90380 | − | 7.29059i | −1.98843 | + | 7.42093i | −1.27036 | − | 8.02074i | −13.4160 | + | 2.85166i | 7.56589 | − | 6.29402i |
6.20 | −1.51092 | + | 0.981204i | −0.486696 | − | 4.63060i | −0.306824 | + | 0.689137i | −3.35256 | − | 3.70950i | 5.27892 | + | 6.51893i | 1.63781 | − | 6.11239i | −1.33991 | − | 8.45984i | −12.4023 | + | 2.63618i | 8.70522 | + | 2.31522i |
See next 80 embeddings (of 1088 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.f | odd | 12 | 1 | inner |
25.d | even | 5 | 1 | inner |
325.bm | odd | 60 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 325.3.bm.a | ✓ | 1088 |
13.f | odd | 12 | 1 | inner | 325.3.bm.a | ✓ | 1088 |
25.d | even | 5 | 1 | inner | 325.3.bm.a | ✓ | 1088 |
325.bm | odd | 60 | 1 | inner | 325.3.bm.a | ✓ | 1088 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
325.3.bm.a | ✓ | 1088 | 1.a | even | 1 | 1 | trivial |
325.3.bm.a | ✓ | 1088 | 13.f | odd | 12 | 1 | inner |
325.3.bm.a | ✓ | 1088 | 25.d | even | 5 | 1 | inner |
325.3.bm.a | ✓ | 1088 | 325.bm | odd | 60 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(325, [\chi])\).